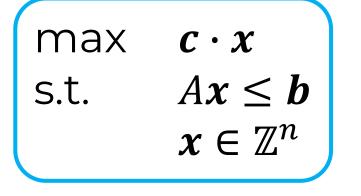
Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond

Integer programs (IPs)



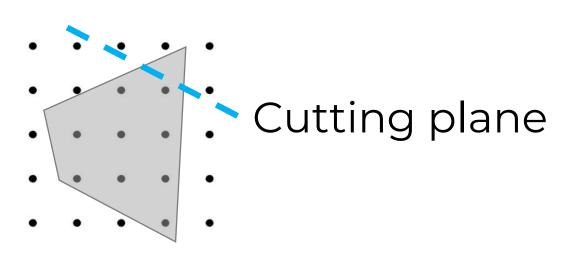
Scheduling

Planning

One of the most **useful**, **widely applicable** optimization techniques

Cutting planes:

Responsible for recent breakthrough speedups of IP solvers



Our contribution:

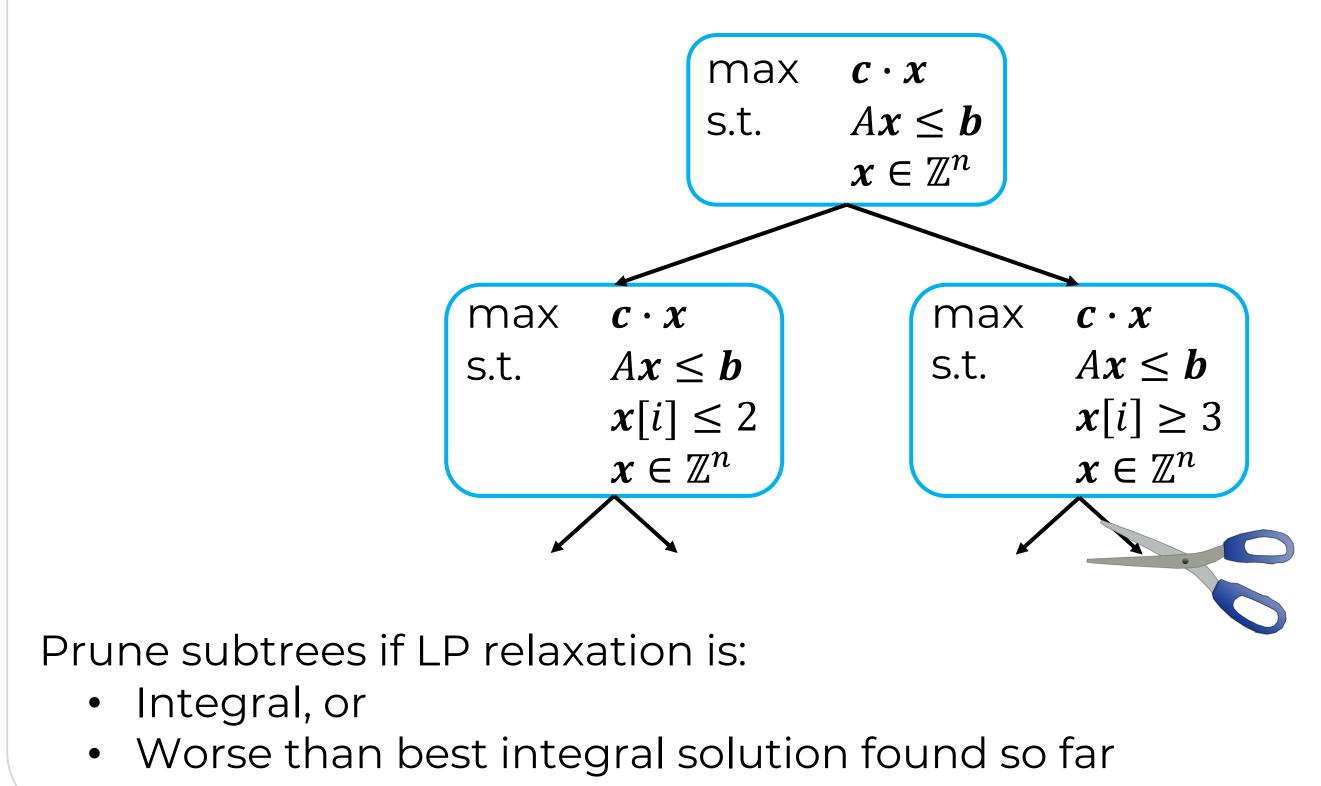
First formal theory for using ML to select cutting planes

Sample complexity bounds

Branch-and-bound (B&B)

B&B uses LP relaxation to do informed search through feasible set

Choose variable *i* to branch on: add constraints $x[i] \le [x_{LP}^*[i]], x[i] \ge [x_{LP}^*[i]]$



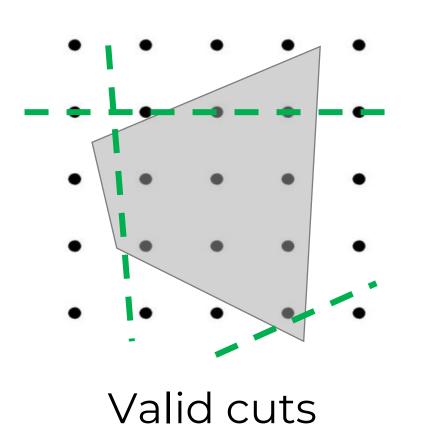
Nina Balcan, Siddharth Prasad, Tuomas Sandholm, Ellen Vitercik

LP optimal

IP optimal

Cutting planes

Constraint $\alpha^T x \leq \beta$ that doesn't cut off any integer feasible points



Branch-and-cut (B&C): Cuts added at any node of the search tree

Tightens LP relaxation to prune nodes sooner



We study Chvátal-Gomory (CG) cuts: $[\mathbf{u}^T A]\mathbf{x} \leq [\mathbf{u}^T \mathbf{b}]$ for $\mathbf{u} \in [0,1)^m$

Learning to cut

Best cutting planes for **routing** problems likely not suited for **scheduling**

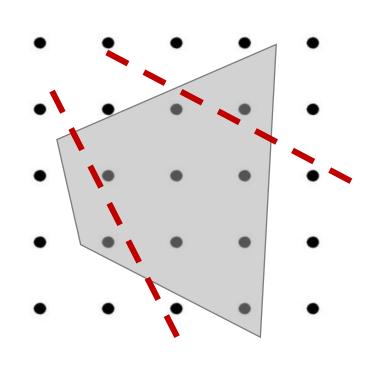
Application domain modeled by distribution over IPs

Key question: Sample complexity

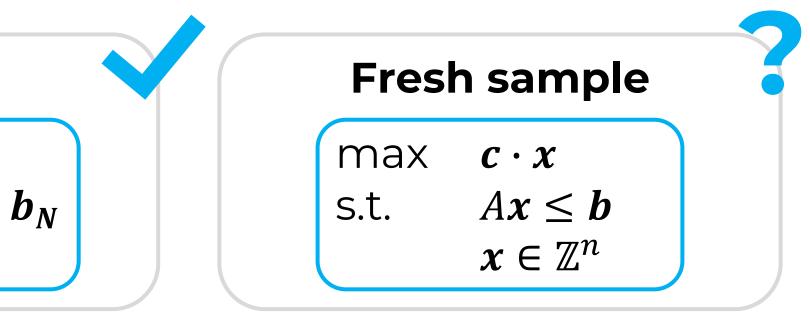
If CG cut yields small B&C tree size on average over a training set...

Training set				
max s.t.	$c_1 \cdot x$ $A_1 x \le b_1$ $x \in \mathbb{Z}^n$		max s.t.	$egin{aligned} m{c}_N \cdot m{x} \ A_N m{x} &\leq m{k} \ m{x} &\in \mathbb{Z}^n \end{aligned}$

Sample complexity quantified by **pseudo-dimension** Generalization of VC dimension



Invalid cuts



...will it yield a small B&C tree on a fresh IP?

Results

- Wave 1: Add cuts $u_1^1, ..., u_1^k$
- Wave w: Add cuts $\boldsymbol{u}_w^1, \dots, \boldsymbol{u}_w^k$

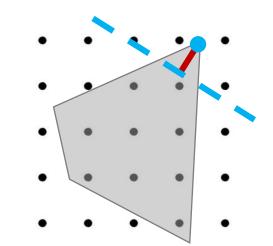
But it is **piecewise constant**

Theorem: For any IP, $O(kw2^{kw}||A||_{1,1} + 2^{kw}||b||_1 + kwn)$ polynomials partition parameters s.t.: In each region, B&C builds the same tree

for IPs with $||A||_{1,1} \leq \alpha$, $||\mathbf{b}||_1 \leq \beta$

Cut selection policies

Solvers often use *scoring rules* to choose from a pool of cuts



Given d scoring rules, learn mixture μ_1 score₁ + … + μ_d score_d

Theorem: Class of tree-size functions parameterized by μ has pseudo-dim $\tilde{O}(dmw^2 \log(\alpha + \beta + n))$, where w = # of sequential CG cuts

General tree search

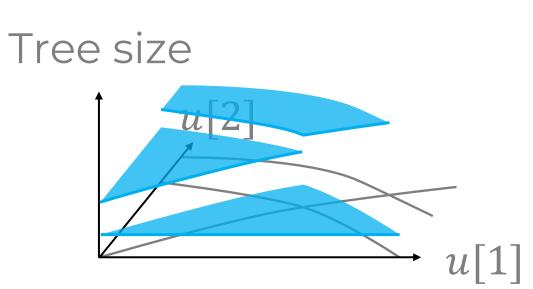
Model captures branching, cutting planes, node selection *simultaneously*

Theorem:

- *t* types of actions
- T_i actions of type j

Waves of cuts: Solvers usually add several cuts in *waves*

Main challenge: Tree-size is a complex function of *u*



Implies **pseudo-dimension** bound $\tilde{O}(mk^2w^2\log(\alpha + \beta + n))$

E.g., score($\alpha^T x \leq \beta$) = distance between cut and x_{LP}^*

• Chosen according to mixtures of d scoring rules for every type: Pseudo-dim = $O(d\kappa \sum_{i=1}^{t} \log T_i + d \log d)$.

