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Integer programs (IPs)

Cutting planes:
Responsible for recent breakthrough speedups of IP solvers

Branch-and-bound (B&B)
B&B uses LP relaxation to do informed search through feasible set

Cutting planes
Constraint 𝜶!𝒙 ≤ 𝛽 that doesn’t cut off any integer feasible points

Learning to cut

Results
Waves of cuts: Solvers usually add several cuts in waves
• Wave 1: Add cuts 𝒖"", … , 𝒖"#
• …
• Wave w: Add cuts 𝒖$" , … , 𝒖$#

Main challenge: Tree-size is a complex function of 𝒖
But it is piecewise constant

Theorem: For any IP,
𝑂 𝑘𝑤2#$ 𝐴 "," + 2#$ 𝒃 " + 𝑘𝑤𝑛 polynomials partition parameters s.t.:

In each region, B&C builds the same tree

Implies pseudo-dimension bound 0𝑂 𝑚𝑘&𝑤& log 𝛼 + 𝛽 + 𝑛
for IPs with 𝐴 "," ≤ 𝛼, 𝒃 " ≤ 𝛽

max 𝒄 7 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ'

One of the most useful, widely applicable optimization techniques

Routing Scheduling Planning Finance

Cutting plane

Sample complexity bounds

Linear program (LP)
max 𝒄 7 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ'

LP optimal

IP optimal

Prune subtrees if LP relaxation is:
• Integral, or
• Worse than best integral solution found so far 

Choose variable 𝑖 to branch on: add constraints 𝒙 𝑖 ≤ 𝒙()∗ 𝑖 , 𝒙 𝑖 ≥ ⌈𝒙()∗ 𝑖 ⌉

Invalid cutsValid cuts

Branch-and-cut (B&C): Cuts added at any node of the search tree

Tightens LP relaxation to prune nodes sooner

𝒙()∗ after cut added

We study Chvátal-Gomory (CG) cuts: 𝒖!𝐴 𝒙 ≤ ⌊𝒖!𝒃⌋ for 𝒖 ∈ [0,1)+

Best cutting planes for routing problems
likely not suited for scheduling

Application domain modeled by distribution over IPs

Key question: Sample complexity
If CG cut yields small B&C tree size on average over a training set…

…will it yield a small B&C tree on a fresh IP?

Sample complexity quantified by pseudo-dimension
Generalization of VC dimension

max 𝒄 7 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ'

Training set

⋯
max 𝒄𝟏 7 𝒙
s.t. 𝐴"𝒙 ≤ 𝒃𝟏

𝒙 ∈ ℤ'

max 𝒄𝑵 7 𝒙
s.t. 𝐴.𝒙 ≤ 𝒃𝑵

𝒙 ∈ ℤ'

Fresh sample ?

𝒙()∗

Tree size
𝑢[2]

𝑢[1]

Cut selection policies
Solvers often use scoring rules to choose from a pool of cuts

Given 𝑑 scoring rules, learn mixture 𝜇"score" +⋯+ 𝜇/score/

Theorem: Class of tree-size functions parameterized by 𝝁 has pseudo-dim
0𝑂 𝑑𝑚𝑤& log 𝛼 + 𝛽 + 𝑛 , where 𝑤 = # of sequential CG cuts

E.g., score 𝜶!𝒙 ≤ 𝛽 = distance between cut and 𝒙()∗

Our contribution:
First formal theory for using ML to select cutting planes

max 𝒄 7 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ'

max 𝒄 7 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙[𝑖] ≤ 2
𝒙 ∈ ℤ'

max 𝒄 7 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 𝑖 ≥ 3
𝒙 ∈ ℤ'

General tree search
Model captures branching, cutting planes, node selection simultaneously

Theorem:
• t types of actions
• Tj actions of type j
• Chosen according to mixtures of d scoring rules for every type:

Pseudo-dim = 𝑂 𝑑𝜅 ∑01"2 log 𝑇0 + 𝑑 log 𝑑 .
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