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Integer programming solvers

Most popular tool for solving combinatorial problems

Routing Manufacturing Scheduling PlanningRobust ML



ML for integer programming
Used heavily throughout industry and science

Many different ways to incorporate learning into solving
E.g., IP solvers (CPLEX, Gurobi) have a ton of parameters

CPLEX has 170-page manual describing 172 parameters



ML for integer programming
Used heavily throughout industry and science

Many different ways to incorporate learning into solving
E.g., IP solvers (CPLEX, Gurobi) have a ton of parameters

CPLEX has 170-page manual describing 172 parameters

Solving is extremely difficult, so ML can make a huge difference

Companies often have lots of data about their applications
E.g., all the scheduling IPs an airline solves day after day



ML for integer programming
Lots of interest from an empirical perspective, e.g.:

Leyton-Brown, Nudelman, Andrew, McFadden, Shoham IJCAI’03, CP’03
Hutter, Hoos, Leyton-Brown, Stützle JAIR’09
Sandholm Handbook of Market Design’13
He, Daume, Eisner NeurIPS’14
Khalil, Le Bodic, Song, Nemhauser, Dilkina AAAI’16
Song, Lanka, Yue, Dilkina NeurIPS’20
Tang, Agrawal, Faenza ICML’20
Huang, Wang, Liu, Zhen, Zhang, Yuan, Hao, Yu, Wang Pattern Recognition ‘22

This talk:
Guarantees for IP parameter optimization (cut selection)



ML for algorithm design

Applied 
research

2000 2022

Integer & linear programming
[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, CP ’03; …]

Constraint satisfaction
[Horvitz, Ruan, Gomes, Krautz, Selman, Chickering, UAI’01; …]

Economics (mechanism design)
[Likhodedov, Sandholm, AAAI ‘04, ’05; …]

Computational biology
[Majoros, Salzberg, Bioinformatics’04; …]



ML for algorithm design

Applied 
research

Theory 
research

2000 2022

Automated algorithm configuration and selection
[Gupta, Roughgarden, ITCS’16; Balcan, Nagarajan, Vitercik, White, COLT’17; …]

Algorithms with predictions
[Lykouris, Vassilvitskii, ICML’18; Mitzenmacher, NeurIPS’18; …]

Mechanism design via machine learning
[Elkind, SODA’07; Morgenstern, Roughgarden, NeurIPS’15, COLT’16; …]



Outline

1. Introduction
2. Integer programming

i. Overview
ii. Branch-and-bound
iii. Our results

3. Beyond integer programming
4. Conclusions



Integer programs

maximize 𝒄 " 𝒛
subject to 𝐴𝒛 ≤ 𝒃

𝒛 ∈ ℤ!

𝐴 ∈ ℤ"×! , 𝒃 ∈ ℤ"



Modeling the application domain
IPs drawn from unknown application-specific distribution 𝒟

Widely assumed in applied research, e.g.:
Horvitz, Ruan, Gomez, Kautz, Selman, Chickering UAI’01
Xu, Hutter, Hoos, Leyton-Brown JAIR’08
He, Daumé, Eisner NeurIPS’14

And theoretical research on algorithm configuration, e.g.:
Gupta, Roughgarden ITCS’16
Balcan Book Chapter’20

E.g., distribution over routing problems



Automated configuration procedure
1. Fix parameterized IP solver
2. Receive training set of “typical” IPs sampled from 𝒟

3. Return parameter settings +𝝁 with good avg performance

Key question: How to find +𝝁 with good avg performance?
Hutter et al. [JAIR’09, LION’11], Ansótegui et al. [CP’09], Sandholm [Handbook of Market 
Design ‘13], Khalil et al. [AAAI’16], Balcan, Sandholm, Vitercik [AAAI’20], …

𝐴 ! , 𝒃 ! , 𝒄 ! 𝐴 " , 𝒃 " , 𝒄 " 𝐴 # , 𝒃 # , 𝒄 # 𝐴 $ , 𝒃 $ , 𝒄 $

, runtime, etc.Search tree size



Automated configuration procedure
1. Fix parameterized IP solver
2. Receive training set of “typical” IPs sampled from 𝒟

3. Return parameter settings +𝝁 with good avg performance

Focus of this talk: Will +𝝁 have good future performance?
Formally: Is expected utility of +𝝆 also high?

𝐴 ! , 𝒃 ! , 𝒄 ! 𝐴 " , 𝒃 " , 𝒄 " 𝐴 # , 𝒃 # , 𝒄 # 𝐴 $ , 𝒃 $ , 𝒄 $

, runtime, etc.Search tree size

More formally: Is the expected utility of +𝝁 also high?
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max (40, 60, 10, 10, 3, 20, 60) - 𝒛
s.t. 40, 50, 30, 10, 10, 40, 30 - 𝒛 ≤ 100
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won’t find better solution along branch

Branch
and
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(B&B)



Cutting planes

Additional constraints that:
• Separate the LP optimal solution
• Tightens LP relaxation to prune nodes sooner

• Don’t separate any integer point

LP optimal solution
Invalid



Cutting planes
Modern IP solvers add cutting planes through the B&B tree

“Branch-and-cut”

Responsible for breakthrough speedups of IP solvers
Cornuéjols, Annals of OR ’07

Challenges:
• Many different types of cutting planes
• Chvátal-Gomory cuts, cover cuts, clique cuts, …

• How to choose which cuts to apply?



Key challenge

Cut (typically) remains in LPs throughout entire tree search

Every aspect of tree search depends on LP guidance
Node selection, variable selection, pruning, …

Tiny change in cut can cause major changes to tree
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4. Conclusions



Chvátal-Gomory cuts

We study the canonical family of Chvátal-Gomory (CG) cuts

CG cut parameterized by 𝝁 ∈ [0,1)! is 𝝁"𝐴 𝒛 ≤ ⌊𝝁"𝒃⌋

Important properties:
• CG cuts are valid
• Can be chosen so it separates the LP opt

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21



Key challenge: Sensitivity of B&C

Theorem [informal]:
Tiny changes to 𝝁 can lead to exponential jumps in tree size

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21



Tree size is a piecewise-constant function of 𝝁 ∈ [0,1)!

Key lemma

Tree size

𝜇[1]

𝜇[2]

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21

Lemma: 𝑂 𝐴 ;,; + 𝒃 ; + 𝑛 hyperplanes partition 0,1 < into regions
s.t. in any one region, B&C tree is fixed



Key lemma

Proof idea:
• CG cut parameterized by 𝝁 ∈ [0,1)! is 𝝁"𝐴 𝒛 ≤ ⌊𝝁"𝒃⌋
• For any 𝒖 and column 𝒂#, 𝝁"𝒂# ∈ [− 𝒂# $, 𝒂# $]
• For each integer 𝑘# ∈ − 𝒂# $, 𝒂# $ :

𝝁"𝒂# = 𝑘# iff 𝑘# ≤ 𝝁"𝒂# < 𝑘# + 1
• In any region defined by intersection of halfspaces: 

𝝁!𝒂" , … , 𝝁!𝒂# is constant

Lemma:

𝑂 𝐴 !,! + 𝑛
halfspaces

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21

𝑂 𝐴 ;,; + 𝒃 ; + 𝑛 hyperplanes partition 0,1 < into regions
s.t. in any one region, B&C tree is fixed



Beyond Chvátal-Gomory cuts

Balcan, Sandholm, Prasad, Vitercik, arXiv’22

For more complex families, boundaries can be more complex

𝜇[1]

𝜇[2]
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Overview
A unifying structure connects seemingly disparate problems:

Use to provide generalization bounds

Clustering
algorithm 

configuration

Integer 
programming 

algorithm 
configuration

Computational 
biology 

algorithm 
configuration

Mechanism 
configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Greedy 
algorithm 

configuration



ℝ%: Set of all algorithm parameter settings
𝒳: Set of all algorithm inputs

E.g., integer programs

Algorithmic performance:
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 on input 𝑥

E.g., runtime, solution quality, revenue, memory usage …

General algorithm configuration model

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

𝑢𝝁 𝑥 = utility of algorithm parameterized by 𝝁 on input 𝑥



𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝁: 𝒳 → ℝ 𝝁 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

𝑢(∗ 𝝁 = utility as function of parameters
𝑢(∗ 𝝁 = 𝑢𝝁 𝑥
𝒰∗ = 𝑢(∗ : ℝ% → ℝ 𝑥 ∈ 𝒳 “Dual” function class

• Dual functions have simple, Euclidean domain
• Often have ample structure can use to bound complexity of 𝒰

Primal & dual classes

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

𝑢𝝁 𝑥 = utility of algorithm parameterized by 𝝁 on input 𝑥

VC dimension, Rademacher complexity, …



Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝁: 𝒳 → ℝ 𝝁 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

𝑢(∗ 𝝁 = utility as function of parameters
𝑢(∗ 𝝁 = 𝑢𝝁 𝑥
𝒰∗ = 𝑢(∗ : ℝ% → ℝ 𝑥 ∈ 𝒳 “Dual” function class

• Dual functions have simple, Euclidean domain
• Often have ample structure can use to bound complexity of 𝒰

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

𝑢𝝁 𝑥 = utility of algorithm parameterized by 𝝁 on input 𝑥



Dual functions 𝑢(∗ : ℝ% → ℝ are piecewise-structured

Piecewise-structured functions

Clustering
algorithm 

configuration

Integer 
programming 

algorithm 
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configuration

Greedy 
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Computational 
biology 
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configuration
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Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21



Generalization to future inputs 

Theorem:

Pseudo-dimension(𝒰) = D𝑂 VC−dim ℱ∗ + P−dim 𝒢∗ log 𝑘

𝑓 ∈ ℱ

𝑔 ∈ 𝒢

𝜇!

𝜇"

𝑢)∗ 𝝁

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Runtime, solution quality, 
memory usage, …

Dual of the 
boundary functions

Dual of the 
piece functions

# boundary 
functions



Generalization to future inputs 

With high probability, for all 𝝁:

|Avg utility on training set – expected utility| = D𝑂 𝐻
*ℱ∗+*𝒢∗

,

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢)∗ 𝝁

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Upper bound 
on utility

Training 
set size



Theorem:
Pseudo-dimension(𝒰) = D𝑂 𝑚 log 𝐴 $,$ + 𝒃 $ + 𝑛

Application to cutting planes

𝑓 ∈ ℱ

𝑔 ∈ 𝒢

Max over support 
of distribution

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

# constraints # variables

𝑢)∗ 𝝁
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Future directions

Existing solvers choose cuts from finite pool using heuristics 

Efficacy Good 
parallelism

Worse 
parallelism

Machine learning to design new cut selection policies



Future directions

Machine-learned algorithms can scale to larger instances
Applied research: Dai et al., NeurIPS’17; Agrawal et al., ICML’20; …

Eventually, solve IPs no one’s ever been able to solve

More generally, given a single huge IP, how to use ML to solve?



Future directions

E.g., Dai et al. [NeurIPS’17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”

Data-driven 
algorithm design

Which algorithm classes to optimize over?

Q: Why are some (unexpected) configurations dominant?

Classical algorithm 
design & analysis
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