
Theoretical foundations of machine learning for
cutting plane selection

Ellen Vitercik
Berkeley (EECS) → Stanford (MS&E + CS)

Balcan, Sandholm, Prasad, Vitercik [NeurIPS’21]
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik [STOC’21]

Integer programming solvers

Most popular tool for solving combinatorial problems

Routing Manufacturing Scheduling PlanningRobust ML

ML for integer programming
Used heavily throughout industry and science

Many different ways to incorporate learning into solving
E.g., IP solvers (CPLEX, Gurobi) have a ton of parameters

CPLEX has 170-page manual describing 172 parameters

ML for integer programming
Used heavily throughout industry and science

Many different ways to incorporate learning into solving
E.g., IP solvers (CPLEX, Gurobi) have a ton of parameters

CPLEX has 170-page manual describing 172 parameters

Solving is extremely difficult, so ML can make a huge difference

Companies often have lots of data about their applications
E.g., all the scheduling IPs an airline solves day after day

ML for integer programming
Lots of interest from an empirical perspective, e.g.:

Leyton-Brown, Nudelman, Andrew, McFadden, Shoham IJCAI’03, CP’03
Hutter, Hoos, Leyton-Brown, Stützle JAIR’09
Sandholm Handbook of Market Design’13
He, Daume, Eisner NeurIPS’14
Khalil, Le Bodic, Song, Nemhauser, Dilkina AAAI’16
Song, Lanka, Yue, Dilkina NeurIPS’20
Tang, Agrawal, Faenza ICML’20
Huang, Wang, Liu, Zhen, Zhang, Yuan, Hao, Yu, Wang Pattern Recognition ‘22

This talk:
Guarantees for IP parameter optimization (cut selection)

ML for algorithm design

Applied
research

2000 2022

Integer & linear programming
[Leyton-Brown, Nudelman, Andrew, McFadden, Shoham, CP ’03; …]

Constraint satisfaction
[Horvitz, Ruan, Gomes, Krautz, Selman, Chickering, UAI’01; …]

Economics (mechanism design)
[Likhodedov, Sandholm, AAAI ‘04, ’05; …]

Computational biology
[Majoros, Salzberg, Bioinformatics’04; …]

ML for algorithm design

Applied
research

Theory
research

2000 2022

Automated algorithm configuration and selection
[Gupta, Roughgarden, ITCS’16; Balcan, Nagarajan, Vitercik, White, COLT’17; …]

Algorithms with predictions
[Lykouris, Vassilvitskii, ICML’18; Mitzenmacher, NeurIPS’18; …]

Mechanism design via machine learning
[Elkind, SODA’07; Morgenstern, Roughgarden, NeurIPS’15, COLT’16; …]

Outline

1. Introduction
2. Integer programming

i. Overview
ii. Branch-and-bound
iii. Our results

3. Beyond integer programming
4. Conclusions

Integer programs

maximize 𝒄 " 𝒛
subject to 𝐴𝒛 ≤ 𝒃

𝒛 ∈ ℤ!

𝐴 ∈ ℤ"×! , 𝒃 ∈ ℤ"

Modeling the application domain
IPs drawn from unknown application-specific distribution 𝒟

Widely assumed in applied research, e.g.:
Horvitz, Ruan, Gomez, Kautz, Selman, Chickering UAI’01
Xu, Hutter, Hoos, Leyton-Brown JAIR’08
He, Daumé, Eisner NeurIPS’14

And theoretical research on algorithm configuration, e.g.:
Gupta, Roughgarden ITCS’16
Balcan Book Chapter’20

E.g., distribution over routing problems

Automated configuration procedure
1. Fix parameterized IP solver
2. Receive training set of “typical” IPs sampled from 𝒟

3. Return parameter settings +𝝁 with good avg performance

Key question: How to find +𝝁 with good avg performance?
Hutter et al. [JAIR’09, LION’11], Ansótegui et al. [CP’09], Sandholm [Handbook of Market
Design ‘13], Khalil et al. [AAAI’16], Balcan, Sandholm, Vitercik [AAAI’20], …

𝐴 ! , 𝒃 ! , 𝒄 ! 𝐴 " , 𝒃 " , 𝒄 " 𝐴 # , 𝒃 # , 𝒄 # 𝐴 $, 𝒃 $, 𝒄 $

, runtime, etc.Search tree size

Automated configuration procedure
1. Fix parameterized IP solver
2. Receive training set of “typical” IPs sampled from 𝒟

3. Return parameter settings +𝝁 with good avg performance

Focus of this talk: Will +𝝁 have good future performance?
Formally: Is expected utility of +𝝆 also high?

𝐴 ! , 𝒃 ! , 𝒄 ! 𝐴 " , 𝒃 " , 𝒄 " 𝐴 # , 𝒃 # , 𝒄 # 𝐴 $, 𝒃 $, 𝒄 $

, runtime, etc.Search tree size

More formally: Is the expected utility of +𝝁 also high?

Outline

1. Introduction
2. Integer programming

i. Overview
ii. Branch-and-bound
iii. Our results

3. Beyond integer programming
4. Conclusions

max (40, 60, 10, 10, 3, 20, 60) - 𝒛
s.t. 40, 50, 30, 10, 10, 40, 30 - 𝒛 ≤ 100

𝒛 ∈ {0,1}%

𝒛 = !
"
, 1, 0, 0, 0, 0, 1

140

1, #
&
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0, !
$
, 1

135

1, 0, 0, 1, 0, !
"
, 1

120

1, 1, 0, 0, 0, 0, !
#

120

0, #
&
, 0, 0, 0, 1, 1

116

0, 1, !
#
, 1, 0, 0, 1

133.3

𝑧! = 0 𝑧! = 1

𝑧' = 0 𝑧' = 1 𝑧" = 0 𝑧" = 1

𝑧# = 0 𝑧# = 1

0, $
&
, 1, 0, 0, 0, 1

118

0, 1, 0, 1, 1, 0, 1

133

Prune node if:
won’t find better solution along branch

Branch
and

bound
(B&B)

Cutting planes

Additional constraints that:
• Separate the LP optimal solution
• Tightens LP relaxation to prune nodes sooner

• Don’t separate any integer point

LP optimal solution
Invalid

Cutting planes
Modern IP solvers add cutting planes through the B&B tree

“Branch-and-cut”

Responsible for breakthrough speedups of IP solvers
Cornuéjols, Annals of OR ’07

Challenges:
• Many different types of cutting planes
• Chvátal-Gomory cuts, cover cuts, clique cuts, …

• How to choose which cuts to apply?

Key challenge

Cut (typically) remains in LPs throughout entire tree search

Every aspect of tree search depends on LP guidance
Node selection, variable selection, pruning, …

Tiny change in cut can cause major changes to tree

Outline

1. Introduction
2. Integer programming

i. Overview of results
ii. Branch-and-bound
iii. Our results

3. Beyond integer programming
4. Conclusions

Chvátal-Gomory cuts

We study the canonical family of Chvátal-Gomory (CG) cuts

CG cut parameterized by 𝝁 ∈ [0,1)! is 𝝁"𝐴 𝒛 ≤ ⌊𝝁"𝒃⌋

Important properties:
• CG cuts are valid
• Can be chosen so it separates the LP opt

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21

Key challenge: Sensitivity of B&C

Theorem [informal]:
Tiny changes to 𝝁 can lead to exponential jumps in tree size

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21

Tree size is a piecewise-constant function of 𝝁 ∈ [0,1)!

Key lemma

Tree size

𝜇[1]

𝜇[2]

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21

Lemma: 𝑂 𝐴 ;,; + 𝒃 ; + 𝑛 hyperplanes partition 0,1 < into regions
s.t. in any one region, B&C tree is fixed

Key lemma

Proof idea:
• CG cut parameterized by 𝝁 ∈ [0,1)! is 𝝁"𝐴 𝒛 ≤ ⌊𝝁"𝒃⌋
• For any 𝒖 and column 𝒂#, 𝝁"𝒂# ∈ [− 𝒂# $, 𝒂# $]
• For each integer 𝑘# ∈ − 𝒂# $, 𝒂# $:

𝝁"𝒂# = 𝑘# iff 𝑘# ≤ 𝝁"𝒂# < 𝑘# + 1
• In any region defined by intersection of halfspaces:

𝝁!𝒂" , … , 𝝁!𝒂# is constant

Lemma:

𝑂 𝐴 !,! + 𝑛
halfspaces

Balcan, Sandholm, Prasad, Vitercik, NeurIPS’21

𝑂 𝐴 ;,; + 𝒃 ; + 𝑛 hyperplanes partition 0,1 < into regions
s.t. in any one region, B&C tree is fixed

Beyond Chvátal-Gomory cuts

Balcan, Sandholm, Prasad, Vitercik, arXiv’22

For more complex families, boundaries can be more complex

𝜇[1]

𝜇[2]

Outline

1. Introduction
2. Integer programming
3. Beyond integer programming
4. Conclusions

Overview
A unifying structure connects seemingly disparate problems:

Use to provide generalization bounds

Clustering
algorithm

configuration

Integer
programming

algorithm
configuration

Computational
biology

algorithm
configuration

Mechanism
configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Greedy
algorithm

configuration

ℝ%: Set of all algorithm parameter settings
𝒳: Set of all algorithm inputs

E.g., integer programs

Algorithmic performance:
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 on input 𝑥

E.g., runtime, solution quality, revenue, memory usage …

General algorithm configuration model

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

𝑢𝝁 𝑥 = utility of algorithm parameterized by 𝝁 on input 𝑥

𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝁: 𝒳 → ℝ 𝝁 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

𝑢(∗ 𝝁 = utility as function of parameters
𝑢(∗ 𝝁 = 𝑢𝝁 𝑥
𝒰∗ = 𝑢(∗ : ℝ% → ℝ 𝑥 ∈ 𝒳 “Dual” function class

• Dual functions have simple, Euclidean domain
• Often have ample structure can use to bound complexity of 𝒰

Primal & dual classes

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

𝑢𝝁 𝑥 = utility of algorithm parameterized by 𝝁 on input 𝑥

VC dimension, Rademacher complexity, …

Primal & dual classes
𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ% on input 𝑥
𝒰 = 𝑢𝝁: 𝒳 → ℝ 𝝁 ∈ ℝ% “Primal” function class

Typically, prove guarantees by bounding complexity of 𝒰

𝑢(∗ 𝝁 = utility as function of parameters
𝑢(∗ 𝝁 = 𝑢𝝁 𝑥
𝒰∗ = 𝑢(∗ : ℝ% → ℝ 𝑥 ∈ 𝒳 “Dual” function class

• Dual functions have simple, Euclidean domain
• Often have ample structure can use to bound complexity of 𝒰

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

𝑢𝝁 𝑥 = utility of algorithm parameterized by 𝝁 on input 𝑥

Dual functions 𝑢(∗ : ℝ% → ℝ are piecewise-structured

Piecewise-structured functions

Clustering
algorithm

configuration

Integer
programming

algorithm
configuration

Selling
mechanism

configuration

Greedy
algorithm

configuration

Computational
biology

algorithm
configuration

Voting
mechanism

configuration

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Generalization to future inputs

Theorem:

Pseudo-dimension(𝒰) = D𝑂 VC−dim ℱ∗ + P−dim 𝒢∗ log 𝑘

𝑓 ∈ ℱ

𝑔 ∈ 𝒢

𝜇!

𝜇"

𝑢)∗ 𝝁

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Runtime, solution quality,
memory usage, …

Dual of the
boundary functions

Dual of the
piece functions

boundary
functions

Generalization to future inputs

With high probability, for all 𝝁:

|Avg utility on training set – expected utility| = D𝑂 𝐻
*ℱ∗+*𝒢∗

,

𝑓 ∈ ℱ

𝑔 ∈ 𝒢
𝑢)∗ 𝝁

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

Upper bound
on utility

Training
set size

Theorem:
Pseudo-dimension(𝒰) = D𝑂 𝑚 log 𝐴 $,$ + 𝒃 $ + 𝑛

Application to cutting planes

𝑓 ∈ ℱ

𝑔 ∈ 𝒢

Max over support
of distribution

Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik, STOC’21

constraints # variables

𝑢)∗ 𝝁

Outline

1. Introduction
2. Integer programming
3. Beyond integer programming
4. Conclusions

Future directions

Existing solvers choose cuts from finite pool using heuristics

Efficacy Good
parallelism

Worse
parallelism

Machine learning to design new cut selection policies

Future directions

Machine-learned algorithms can scale to larger instances
Applied research: Dai et al., NeurIPS’17; Agrawal et al., ICML’20; …

Eventually, solve IPs no one’s ever been able to solve

More generally, given a single huge IP, how to use ML to solve?

Future directions

E.g., Dai et al. [NeurIPS’17] write that their RL alg discovered:
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”

Data-driven
algorithm design

Which algorithm classes to optimize over?

Q: Why are some (unexpected) configurations dominant?

Classical algorithm
design & analysis

Theoretical foundations of machine learning for
cutting plane selection

Ellen Vitercik
Berkeley (EECS) → Stanford (MS&E + CS)

Balcan, Sandholm, Prasad, Vitercik [NeurIPS’21]
Balcan, DeBlasio, Dick, Kingsford, Sandholm, Vitercik [STOC’21]

