From Large to Small Datasets: Size Generalization for Clustering Algorithm Selection

Vaggos Chatziafratis UC Santa Cruz

Ishani Karmarkar Stanford

Ellen Vitercik Stanford

How to integrate machine learning into discrete optimization?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm <mark>design</mark>

Can machine learning guide algorithm discovery?

How to integrate machine learning into discrete optimization?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

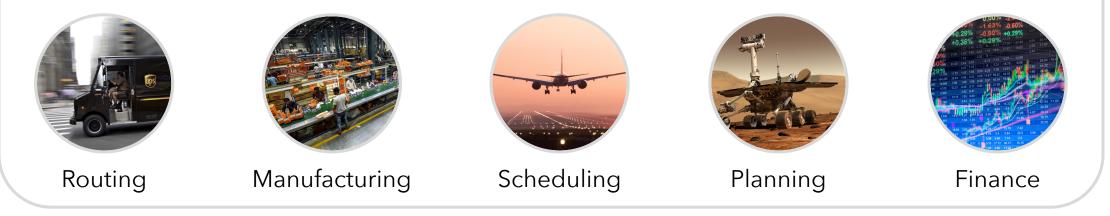
Algorithm design

Can machine learning guide algorithm discovery?

Algorithm configuration

Example: Integer programming solvers

Most popular tool for solving combinatorial (& nonconvex) problems



Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

CPX PARAM NODEFILEIND 100 CPX_PARAM_NODELIM 101 CPX PARAM NODESEL 102 CPX PARAM NZREADLIM 103 CPX_PARAM_OBJDIF 104 CPX_PARAM_OBJLLIM 105 CPX_PARAM_OBJULIM 105 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_PERIND 110 CPX PARAM PERLIM 111 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHTIME (deprecated) 116 CPX_PARAM_POPULATELIM 117 CPX PARAM PPRIIND 118 CPX_PARAM_PREDUAL 119 CPX_PARAM_PREIND 120 CPX_PARAM_PRELINEAR 120 CPX PARAM PREPASS 121 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPX_PARAM_PROBE 123 CPX_PARAM_PROBEDETTIME 124 CPX_PARAM_PROBETIME 124 CPX_PARAM_QPMAKEPSDIND 125 CPX_PARAM_QPMETHOD 138 CPX PARAM OPNZREADLIM 126

CPX_PARAM_TUNINGDETTILIM 160 CPX PARAM TUNINGDISPLAY 162 CPX_PARAM_NUMERICALEMPHASIS 102CPX_PARAM_TUNINGMEASURE 163 CPX_PARAM_TUNINGREPEAT 164 CPX_PARAM_TUNINGTILIM 165 CPX_PARAM_VARSEL 166 CPX_PARAM_WORKDIR 167 CPX_PARAM_WORKMEM 168 CPX PARAM WRITELEVEL 169 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPX_PARAM_POLISHAFTERTIME 116 CPXPARAM_DistMIP_Rampup_Duration 128 CPXPARAM_LPMethod 136 CPXPARAM_MIP_Cuts_BQP 38 CPXPARAM_MIP_Cuts_LocalImplied 77 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM_MIP_Cuts_ZeroHalfCut 170 CPXPARAM_MIP_Limits_CutsFactor 52 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP_Limits_Solutions 79 CPXPARAM MIP Limits StrongCand 154 CPXPARAM_MIP_Limits_StrongIt 154 CPXPARAM_MIP_Limits_TreeMemory 160 CPXPARAM_MIP_OrderType 91 CPXPARAM_MIP_Pool_AbsGap 146 CPXPARAM_MIP_Pool_Capacity 147 CPXPARAM_MIP_Pool_Intensity 149

CPX PARAM TRELIM 160

CPX_PARAM_RANDOMSEED 130 CPX PARAM REDUCE 131 CPX PARAM REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX PARAM REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX_PARAM_RLT 136 CPX PARAM ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX_PARAM_SOLNPOOLAGAP 146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX_PARAM_SOLUTIONTYPE 152 CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX_PARAM_STRONGITLIM 154 CPX_PARAM_SUBALG 99 CPX PARAM SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156 CPX PARAM THREADS 157 CPX_PARAM_TILIM 159

CPXPARAM MIP Pool RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM_MIP_SubMIP_NodeLimit 155 CPX_PARAM_GUBCOVERS 75 CPXPARAM_OptimalityTarget 106 CPXPARAM Output WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM Sifting Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM_Tune_DetTimeLimit 160 CPXPARAM_Tune_Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM_Tune_TimeLimit 165 CPXPARAM WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX_PARAM_FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX PARAM HEURFREO 76 CPX_PARAM_IMPLBD 76 CPX PARAM INTSOLFILEPREFIX 78 CPX PARAM COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS 83CPX_PARAM_DATACHECK 54 CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX_PARAM_NETITLIM 98 CPX PARAM NETPPRIIND 98

CPX_PARAM_BRDIR 39 CPX PARAM BTTOL 40 CPX_PARAM_CALCOCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX_PARAM_COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 CPX PARAM DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX_PARAM_FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

How to integrate machine learning into discrete optimization?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

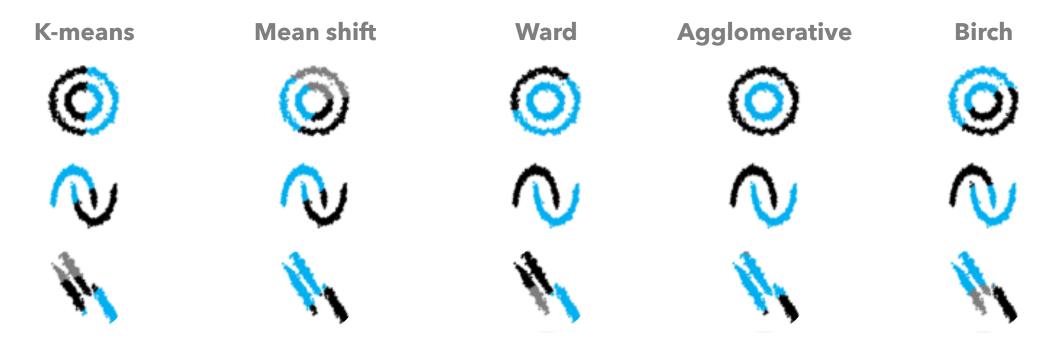
Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Example: Clustering

Many different algorithms



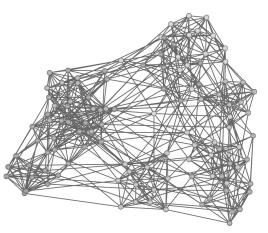
How to **select** the best algorithm for the application at hand?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades Has led to beautiful, practical algorithms

Worst-case analysis's approach to **algorithm selection**: Select the algorithm that's best in worst-case scenarios

Worst-case instances rarely occur in practice



How to integrate machine learning into discrete optimization?

Answer to this question is built on a key observation:

In practice, we have data about the application domain

Routing problems a shipping company solves

Clustering problems a biology lab solves

Scheduling problems an airline solves

How can we use this data to guide:

Algorithm configuration

How to tune an algorithm's parameters?

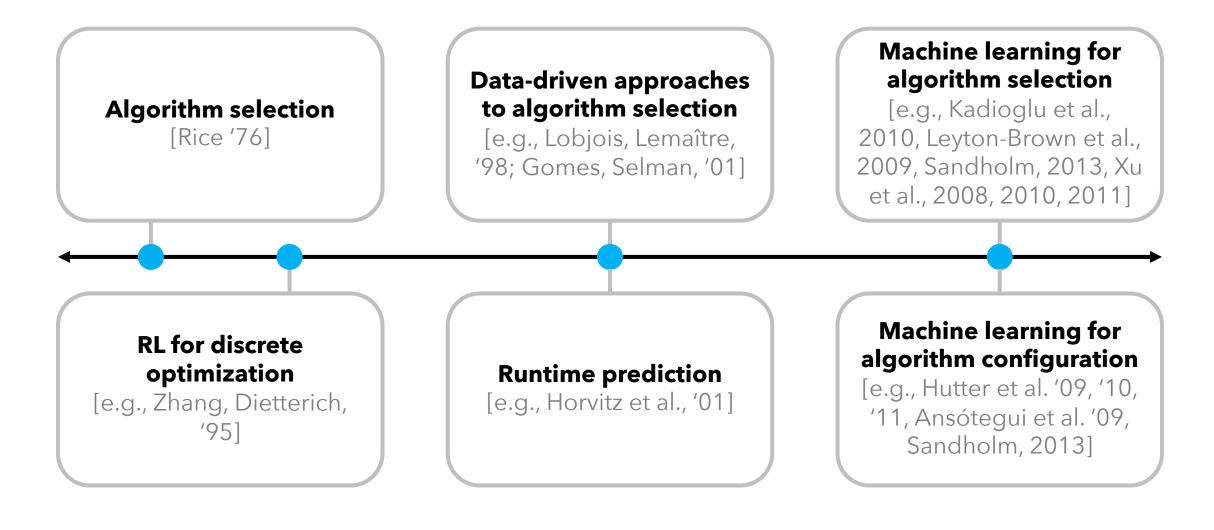
Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

A bit of history



A bit of history

Late 2010s-present:

- Tons of work integrating modern ML models into discrete optimization [e.g., surveys by Bengio et al., '18; Cappart et al., '23; ...]
- Theoretical guarantees [e.g., book chapters by Balcan, '20; Mitzenmacher, Vassilvitskii, '20; ...]

Conventional data-driven pipeline

- 1. Gather **historical** problem instances
- 2. Identify the algorithm (and configuration) with the **best average performance**
- 3. Hope (or prove) it will have (nearly) best **future** performance

Key scalability challenge:

Evaluating an alg's performance on a combinatorial problem... Typically requires **solving** that combinatorial problem!

Size generalization in practice

Applied research circumvents this challenge: Use a **distribution** to generate small & large problems *E.g., Erdős-Rényi graphs*

Small instances are used for training

Large instances are used for testing

E.g.:

Dai, Khalil, et al., NeurIPS'17 Li et al., NeurIPS'18 Gasse et al., NeurIPS'19 Veličković et al., ICLR'20

Veličković et al., ICML'20 Tang et al., ICML'20 Gupta et al., NeurIPS'20 Ibarz et al., LoG'22 Chmiela et al., NeurIPS'21 Huang et al., ICML'23 Alomrani et al., TMLR'23

. . .

Size generalization in practice

Applied research circumvents this challenge: Use a **distribution** to generate small & large problems *E.g., Erdős-Rényi graphs*

Small instances are used for training

Large instances are used for testing

However:

- Practical problems don't have a **known** distribution
- Practitioners simply have massive problems they must solve

Size generalization: algorithm selection

Given a massive combinatorial problem, can we:

- 1. "Shrink" it
- 2. Evaluate **candidate algorithms** on the smaller instance
- 3. Provably guarantee:

The best algorithm on the **small** instance

... is also best on the original large instance?

Outline

- 1. Introduction
 - a. Size generalization motivation
 - **b.** Clustering algorithm selection
- 2. Center-based clustering
- 3. Single-linkage
- 4. Conclusions and future directions

Semi-supervised clustering

Assume there's a ground truth clustering of a massive dataset

- Accessible through **expensive** ground-truth oracle queries
- Models interactions with a domain expert
- Basu et al., KDD'04; Zhu, '05; Kulis, ICML'05; Chen, Feng, Neurocomputing '12; Balcan, Nagarajan, White, V, COLT'17; ...

Applications:

- Image recognition [Boom et al., ICPR'12]
- Medical diagnostics [Ershadi, Seifi, Applied Soft Computing, '22]

Clustering algorithm selection

Given a set of **candidate algorithms**:

select algorithm that will best recover the ground truth using

- Low runtime
- Few ground-truth queries

In practice, clustering algorithm selection is often done "in a very **ad hoc**, if not completely random, manner," which is regrettable "given the **crucial effect** of [algorithm selection] on the resulting clustering." [Ben-David, AAAI'18]

Notation

 $G = \{G_1, \dots, G_k\}$ is the ground truth clustering of $\mathcal{X} \subset \mathbb{R}^d$ Ground-truth oracle $\tau: \tau(x) = i$ if $x \in G_i$

$$\mathcal{C} = \{C_1, \dots, C_k\} \text{ is a clustering of } \mathcal{X}' \subseteq \mathcal{X}$$
$$\operatorname{cost}_{\mathcal{G}}(\mathcal{C}; \mathcal{X}') = \frac{1}{|\mathcal{X}'|} \min_{\sigma \in \Sigma^k} \sum_{x \in \mathcal{X}'} \sum_{j=1}^k \mathbf{1} \{x \in C_{\sigma(j)} \text{ and } x \notin G_j\}$$

[e.g., Ashtiani, Ben-David, UAI'15]

Distance oracle returns d(x, y) for $x, y \in \mathcal{X}$

Size generalization for clustering

Given a huge clustering dataset \mathcal{X} , can we:

- 1. Subsample \mathcal{X} (uniformly at random)
- 2. Evaluate a set of candidate algorithms on the subsample
- 3. Prove the algorithm with lowest cost on the subsample ...will have low cost on X?

1. Runtime

- **Goal:** minimize \langle 2. Number of ground-truth oracle queries
 - 3. Number of distance oracle queries

Size generalization for clustering

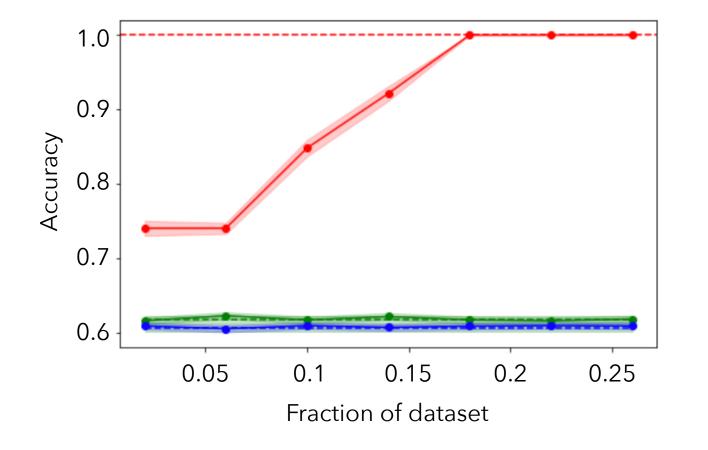
Given a huge clustering dataset X, can we:

- 1. Subsample X (uniformly at random)
- 2. Evaluate a set of candidate algorithms on the subsample
- 3. Prove the algorithm with lowest cost on the subsample \dots will have low cost on X?

Answer this question in the affirmative for

- 1. Gonzalez's k-centers heuristic*
- 2. k-means++
- 3. Single-linkage clustering

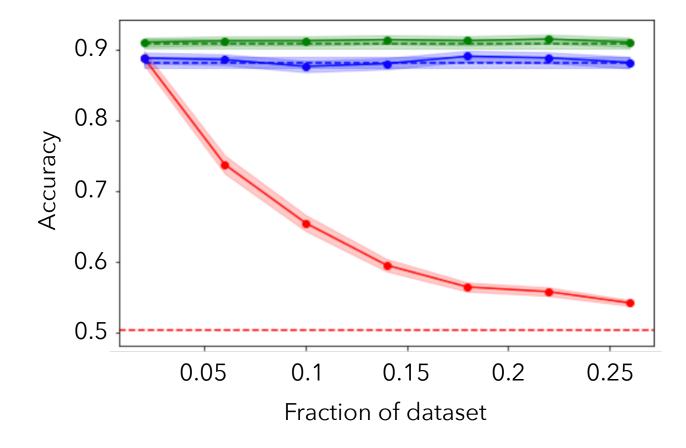
Empirical motivation



- Single linkage
 Subsampled single linkage *k*-means++
 Subsampled *k*-means++ *k*-centers heuristic
 Subsampled *k*-centers heuristic

 - Noisy circles dataset [Pedregosa, et al., '11]
 - 500 points in original instance

Empirical motivation



- Single linkage
 Subsampled single linkage
- --- k-means++
- Subsampled k-means++
- *k*-centers heuristic

Subsampled k-centers heuristic

- Gaussian mixtures
- 500 points in original instance

The clustering theory literature:

- Often implicitly assumes ground truth minimizes some *h*
 - E.g., *k*-means or -centers
- Many algorithms to (approximately) minimize h
 - E.g., algorithms based on **coresets**:

Subsets $X_c \subseteq X$ such that for any set of k centers $C, h(C, X) \approx h(C, X_c)$

E.g., *k*-means objective given **dataset** *X* and centers *C*

E.g., *k*-means objective given **coreset** X_c and centers *C*

The clustering theory literature:

- Often implicitly assumes ground truth minimizes some *h*
 - E.g., *k*-means or -centers
- Many algorithms to (approximately) minimize h
 - E.g., algorithms based on **coresets**:

Subsets $X_c \subseteq X$ such that for any set of k centers $C, h(C, X) \approx h(C, X_c)$

However:

- Identifying *h* may be as hard as identifying the ground truth
- Ground truth **need not align** with any previously studied *h*

The clustering theory literature:

- Often implicitly assumes ground truth minimizes some *h*
- Many algorithms to (approximately) minimize h
 - E.g., algorithms based on **coresets**:

Subsets $X_c \subseteq X$ such that for any set of k centers $C, h(C, X) \approx h(C, X_c)$

Even if the ground truth is known to align with some *h*:

Good approximation with respect to h $h(C, X) \approx h(C, X_c)$

Low error with respect to the ground truth $cost_{\mathcal{G}}(\mathcal{C}, \mathcal{X}) \approx cost_{\mathcal{G}}(\mathcal{C}, \mathcal{X}_{c})$

Even if the ground truth is known to align with some *h*:

Good approximation with respect to h $h(C, X) \approx h(C, X_c)$

Low error with respect to the ground truth $cost_{\mathcal{G}}(\mathcal{C}, \mathcal{X}) \approx cost_{\mathcal{G}}(\mathcal{C}, \mathcal{X}_{c})$

At the heart of an **important gap** between theory and practice [Blum, '09; von Luxburg et al., '12; Balcan et al., JACM'13; Ben-David, AAAI'18; ...]

Also related: Ashtiani and Ben-David [UAI'15]

- Also study semi-supervised clustering
- Use samples to learn a data representation for downstream clustering

Outline

1. Introduction

2. Center-based clustering

- 3. Single-linkage
- 4. Conclusions and future directions

Center-based clustering algorithms

Algorithms return centers $C = \{c_1, \dots, c_k\} \subset \mathbb{R}^d$

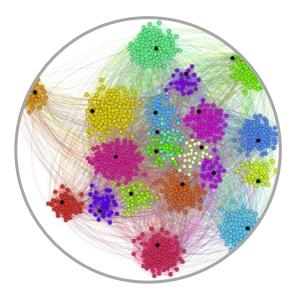
Assign points to nearest center:

$$S_i = \left\{ x \in \mathcal{X} : i = \operatorname*{argmin}_{j \in [k]} d(x, c_j) \right\}$$

Notation: $d_{\text{center}}(x, C) = \min_{c \in C} d(x, c)$

k-means objective: minimize $\sum_{x \in \mathcal{X}} d_{center}(x, C)^2$

k-centers objective: minimize $\max_{x \in \mathcal{X}} d_{center}(x, C)$



Center seeding algorithm

SEEDING

Choose
$$c_1 \sim \text{Unif}(\mathcal{X})$$
, set $C^1 = \{c_1\}$
For $i \in \{2, ..., k\}$:
Sample c_i with probability $\propto f(d_{\text{center}}(c_i, C^{i-1}); \mathcal{X})$
Set $C^i = C^{i-1} \cup \{c_i\}$

k-means++ [Arthur, Vassilvitskii, SODA'07]: $f(d_{center}(c_i, C^{i-1}); \mathcal{X}) = d_{center}(c_i, C^{i-1})^2$

log k-approximation algorithm for the k-means objective This 1-step version; additional Lloyd iterations can further improve objective

Center seeding algorithm

SEEDING

Choose
$$c_1 \sim \text{Unif}(\mathcal{X})$$
, set $C^1 = \{c_1\}$
For $i \in \{2, ..., k\}$:
Sample c_i with probability $\propto f(d_{\text{center}}(c_i, C^{i-1}); \mathcal{X})$
Set $C^i = C^{i-1} \cup \{c_i\}$

Gonzalez's k-centers heuristic [TCS'85]: $f(d_{center}(c_i, C^{i-1}); \mathcal{X}) = \mathbf{1} \left\{ c_i = \operatorname*{argmax}_{x \in \mathcal{X}} d_{center}(x, C^{i-1}) \right\}$

Selects the point that's furthest from current centers C^{i-1}

Center seeding algorithm

SEEDING

Choose
$$c_1 \sim \text{Unif}(\mathcal{X})$$
, set $C^1 = \{c_1\}$
For $i \in \{2, ..., k\}$:
Sample c_i with probability $\propto f(d_{\text{center}}(c_i, C^{i-1}); \mathcal{X})$
Set $C^i = C^{i-1} \cup \{c_i\}$

Gonzalez's k-centers heuristic [TCS'85]: $f(d_{center}(c_i, C^{i-1}); \mathcal{X}) = \mathbf{1} \left\{ c_i = \operatorname*{argmax}_{x \in \mathcal{X}} d_{center}(x, C^{i-1}) \right\}$ 2-approximation to the k-centers objective

Center seeding algorithm: **ApxSEEDING**

Sample
$$\mathcal{X}' = \{x_1, ..., x_{mk}\} \sim \text{Unif}(\mathcal{X})^{mk}$$

Set $C^1 = \{x_1\}$ and $\ell = 2$ // ℓ is a counter for stepping through the sample \mathcal{X}'
For $i \in \{2, ..., k\}$:
Set $x = x_{\ell}; \ell + +$ // x is the candidate for the i^{th} center
For $j \in \{2, ..., m\}$: // Metropolis-Hastings procedure to update x
Set $y = x_{\ell}; \ell + +$
If $\frac{f(d_{\text{center}}(y, C^{i-1}); \mathcal{X}')}{f(d_{\text{center}}(x, C^{i-1}); \mathcal{X}')} > \text{Unif}([0,1])$: set $x = y$
Set $C^i = C^{i-1} \cup \{x\}$

Center seeding algorithm: **ApxSEEDING**

Sample
$$\mathcal{X}' = \{x_1, \dots, x_{mk}\} \sim \text{Unif}(\mathcal{X})^{mk}$$

Set $C^1 = \{x_1\}$ and $\ell = 2$
For $i \in \{2, \dots, k\}$:
Set $x = x_{\ell}; \ell + +$
For $j \in \{2, \dots, m\}$:
Set $y = x_{\ell}; \ell + +$
If $\frac{f(d_{\text{center}}(y, C^{i-1}); \mathcal{X}')}{f(d_{\text{center}}(x, C^{i-1}); \mathcal{X}')} > \text{Unif}([0,1])$: set $x = y$
Set $C^i = C^{i-1} \cup \{x\}$

Connection to prior research

APXSEEDING generalizes an approach by Bachem et al. [AAAI'16] Use MCMC to obtain a sublinear-time *k*-means approximation

We generalize their framework to:

- 1. Work with **general functions** *f* (beyond *k*-means)
- 2. Give **accuracy** guarantees (instead of approximation)

Guarantees depend on a parameter $\zeta_{k,f}(X)$

- Measures the **smoothness** of SEEDING's distribution over centers
- As the distribution approaches uniform, $\zeta_{k,f}(\mathcal{X}) \rightarrow 1$

$$\zeta_{k,f}(\mathcal{X}) = \max_{Q \subseteq \mathcal{X}, |Q| \le k} \max_{x \in \mathcal{X}} \frac{|\mathcal{X}| f(d_{\text{center}}(x, Q); \mathcal{X})}{\sum_{y \in Q} f(d_{\text{center}}(y, Q); \mathcal{X})}$$

Theorem:

- Let S be the partition of \mathcal{X} induced by SEEDING
- Let S' be the partition of \mathcal{X} induced by APXSEEDING with $O\left(\zeta_{k,f}(\mathcal{X}) \cdot k \cdot \log \frac{k}{\epsilon}\right)$ uniform samples \leftarrow
- For any ground truth clustering \mathcal{G}_{i} $\left|\mathbb{E}\left[\operatorname{cost}_{\mathcal{G}}(S;\mathcal{X})\right] - \mathbb{E}\left[\operatorname{cost}_{\mathcal{G}}(S';\mathcal{X})\right]\right| \leq \epsilon$
 - $\zeta_{k,f}(\mathcal{X}) \in [1, |\mathcal{X}|]$ Smaller is better

Theorem:

- Let S be the partition of ${\mathcal X}$ induced by SEEDING
- Let S' be the partition of \mathcal{X} induced by APXSEEDING with $O\left(\zeta_{k,f}(\mathcal{X}) \cdot k \cdot \log \frac{k}{\epsilon}\right)$ uniform samples
- For any ground truth clustering \mathcal{G} , $\left|\mathbb{E}\left[\operatorname{cost}_{\mathcal{G}}(S; \mathcal{X})\right] - \mathbb{E}\left[\operatorname{cost}_{\mathcal{G}}(S'; \mathcal{X})\right]\right| \leq \epsilon$ Coming up:

Under natural assumptions, $\zeta_{k,f}(X)$ is independent of |X| for k-means++ and (a smoothed version) of Gonzales's heuristic

Theorem:

- Let S be the partition of ${\mathcal X}$ induced by SEEDING
- Let S' be the partition of \mathcal{X} induced by APXSEEDING with $O\left(\zeta_{k,f}(\mathcal{X}) \cdot k \cdot \log \frac{k}{\epsilon}\right)$ uniform samples
- For any ground truth clustering \mathcal{G} , $\left|\mathbb{E}\left[\operatorname{cost}_{\mathcal{G}}(S; \mathcal{X})\right] - \mathbb{E}\left[\operatorname{cost}_{\mathcal{G}}(S'; \mathcal{X})\right]\right| \leq \epsilon$

Can be estimated to error ϵ using $O\left(\frac{k}{\epsilon^2}\right)$ ground-truth queries

Outline

- 1. Introduction
- 2. Center-based clustering
 - a. APXSEEDING

b. *k*-centers

- c. *k*-means
- 3. Single-linkage
- 4. Conclusions and future directions

Gonzalez's k-centers heuristic

First obstacle:

$$f(d_{center}(x, C); \mathcal{X}) = \mathbf{1} \left\{ x = \underset{y \in \mathcal{X}}{\operatorname{argmax}} d_{center}(y, C) \right\}$$

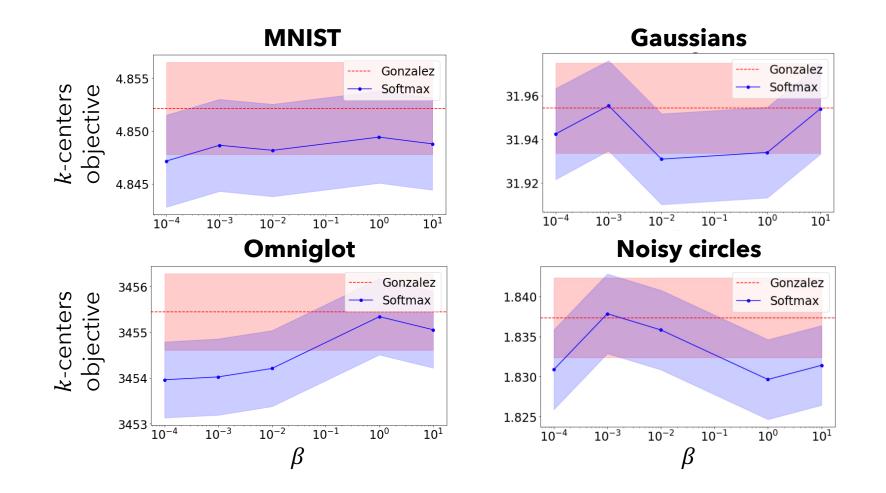
is deterministic, so $\zeta_{k,f}(\mathcal{X}) = |\mathcal{X}|$

Instead, we'll study a **smoothed** version of the heuristic: $f_{\text{softmax}}(d_{\text{center}}(x, C); \mathcal{X}) = \exp(\beta d_{\text{center}}(x, C))$

Outline

- 1. Introduction
- 2. Center-based clustering
 - a. APXSEEDING
 - b. k-centers
 - a. Justification of smoothed k-centers
 - b. Size generalization for smoothed k-centers
 - c. *k*-means
- 3. Single-linkage
- 4. Conclusions and future directions

Gonzalez versus softmax k-centers



García-Díaz et al. [J. of Heuristics, '17] also observe a smoother heuristic can yield better performance

Softmax k-centers approximation bound

Theorem:

- C_{OPT} = optimal k-centers solution
 - Induces partition S_1, \ldots, S_k of \mathcal{X}
 - Suppose partition is balanced: $\mu_{\ell}|\mathcal{X}| \leq |S_i| \leq \mu_u|\mathcal{X}|$ for all i
- C = centers returned by Softmax k-centers
- With high probability,

 $\max_{x \in \mathcal{X}} d_{\text{center}}(x, C) \le 4 \max_{x \in \mathcal{X}} d_{\text{center}}(x, C_{\text{OPT}}) + \frac{1}{\beta} \log \frac{k\mu_u}{\mu_\ell}$

Outline

- 1. Introduction
- 2. Center-based clustering
 - a. APXSEEDING
 - b. *k*-centers
 - a. Justification of smoothed k-centers
 - **b.** Size generalization for smoothed *k*-centers
 - c. *k*-means
- 3. Single-linkage
- 4. Conclusions and future directions

Sample complexity bound

Lemma: If $\max_{x,y\in\mathcal{X}} d(x,y) \leq R$, then $\zeta_{k,f_{\text{softmax}}}(\mathcal{X}) \leq \exp(2\beta R)$ Exist instances where this is tight

Connecting the dots:
$$O\left(\exp(\beta R) \cdot k \cdot \log \frac{k}{\epsilon}\right)$$
 samples sufficient
to ensure $\left|\mathbb{E}\left[\cos t_{\mathcal{G}}(S; \mathcal{X})\right] - \mathbb{E}\left[\cos t_{\mathcal{G}}(S'; \mathcal{X})\right]\right| \leq \epsilon$
Partition of \mathcal{X} induced by SEEDING Partition of \mathcal{X} induced by APXSEEDING

Sample complexity bound

Lemma: If $\max_{x,y\in\mathcal{X}} d(x,y) \leq R$, then $\zeta_{k,f_{\text{softmax}}}(\mathcal{X}) \leq \exp(2\beta R)$ Exist instances where this is tight

Connecting the dots:
$$O\left(\exp(\beta R) \cdot k \cdot \log\frac{k}{\epsilon}\right)$$
 samples sufficient to ensure $\left|\mathbb{E}\left[\cos t_{\mathcal{G}}(S; \mathcal{X})\right] - \mathbb{E}\left[\cos t_{\mathcal{G}}(S'; \mathcal{X})\right]\right| \le \epsilon$

 $\beta \ge \frac{1}{\gamma} \log \frac{\kappa \mu_u}{\mu_\ell}$ sufficient for k-centers (4, γ)-approximation \Rightarrow number of samples doesn't depend on $|\mathcal{X}|$

Sample complexity bound

Lemma: If $\max_{x,y\in\mathcal{X}} d(x,y) \leq R$, then $\zeta_{k,f_{\text{softmax}}}(\mathcal{X}) \leq \exp(2\beta R)$ Exist instances where this is tight

Connecting the dots:
$$O\left(\exp(\beta R) \cdot k \cdot \log\frac{k}{\epsilon}\right)$$
 samples sufficient to ensure $\left|\mathbb{E}\left[\cos t_{\mathcal{G}}(S; \mathcal{X})\right] - \mathbb{E}\left[\cos t_{\mathcal{G}}(S'; \mathcal{X})\right]\right| \le \epsilon$

Experiments indicate β can be set much smaller, e.g., $\beta = \frac{1}{R}$ \Rightarrow number of samples is $O\left(k \cdot \log \frac{k}{\epsilon}\right)$

Outline

- 1. Introduction
- 2. Center-based clustering
 - a. ApxSeeding
 - b. k-centers
 - c. k-means
- 3. Single-linkage
- 4. Conclusions and future directions

k-means summary

$$f(d_{\text{center}}(x, C); \mathcal{X}) = d_{\text{center}}(x, C)^2$$

Assume \mathcal{X} drawn from some distribution

- Support contained in ball of radius *R*
- Distribution satisfies other mild non-degeneracy assumptions

Results by Bachem et al. [AAAI'16] imply (informally) that $\zeta_{k,f}(\mathcal{X})$ grows **linearly** in \mathbb{R}^2 and k \Rightarrow number of samples doesn't depend on $|\mathcal{X}|$

Outline

- 1. Introduction
- 2. Center-based clustering
- 3. Single-linkage
- 4. Conclusions and future directions

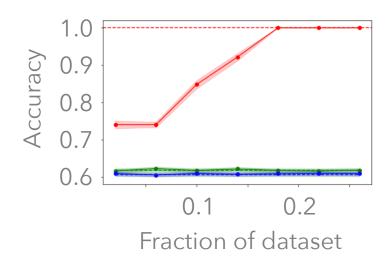
Instability of single-linkage

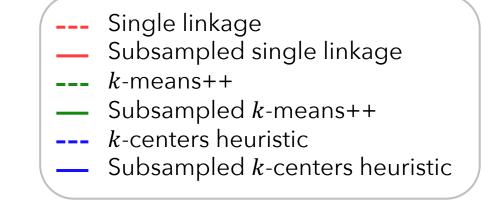
Single linkage is known to be **unstable**

[Balcan et al., JMLR'14; Chaudhuri et al., IEEE Trans. Inf. Theory '14]

But in our experiments,

we find its accuracy can be estimated on a subsample





Instability of single-linkage

Single linkage is known to be **unstable**

[Balcan et al., JMLR'14; Chaudhuri et al., IEEE Trans. Inf. Theory '14]

But in our experiments,

we find its accuracy can be estimated on a subsample

albeit, a larger sample

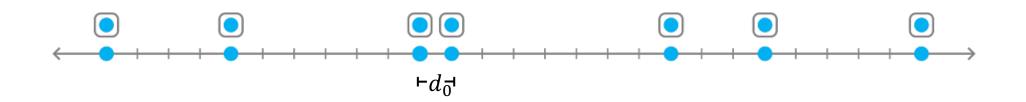
Goal of this section (a more philosophical goal 🤥):

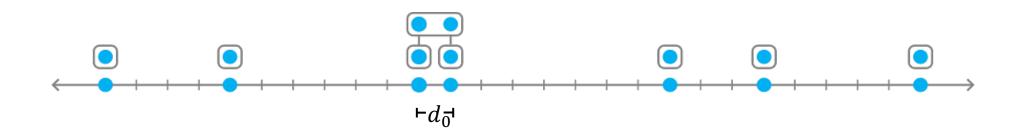
We characterize which **property** of the dataset \mathcal{X} either:

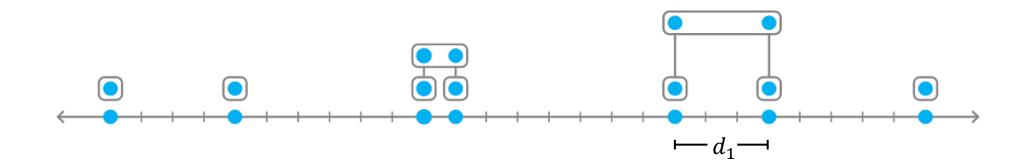
- Allows for size generalization when this property holds, or
- Prohibits size generalization when it does not

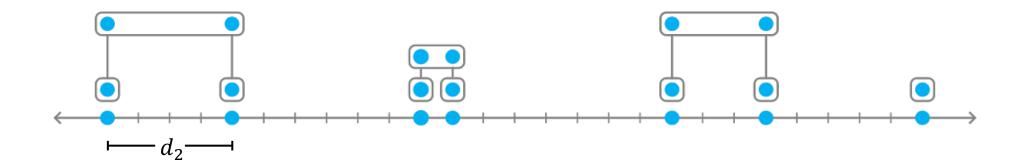
Each point is initially in its own cluster: $C^0 = \{\{x_1\}, \dots, \{x_n\}\}; i = 0$ While $|C^i| > k$: $d_i = \min_{A,B \in C^i} \min_{x \in A, y \in B} d(x, y)$

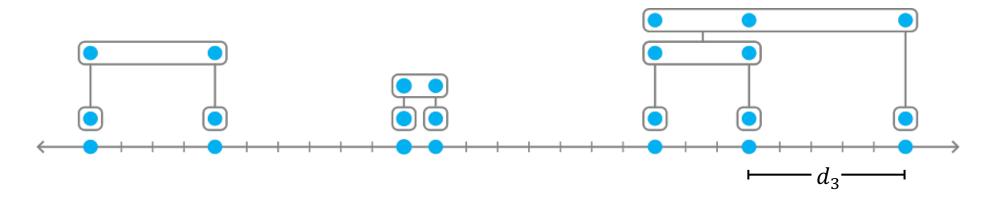
Intercluster distance
$$d(A, B) \coloneqq \min_{x \in A, y \in B} d(x, y)$$







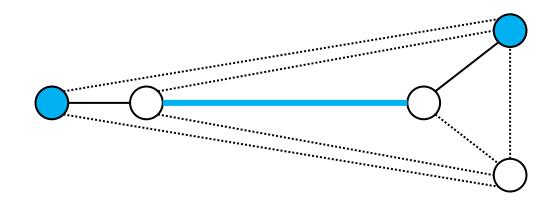




Min-max distance

Min-max distance (or **bottleneck cost**) between $x, y \in \mathcal{X}$: $d_{mm}(x, y; \mathcal{X}) = \min_{\substack{p \\ i}} \max_{i} d(p_i, p_{i+1})$

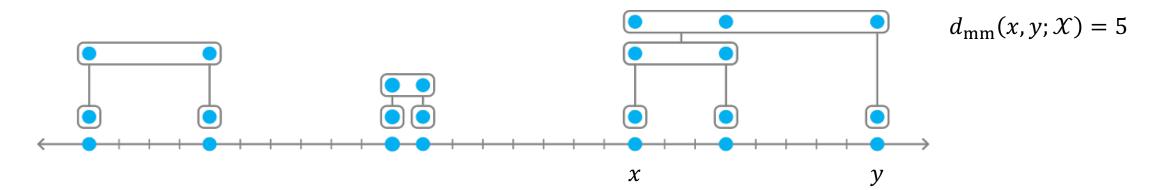
Taken over all simple paths $p = (p_1 = x, p_1, ..., p_t = y)$ in complete graph over X with edge weights d(x, y)



Min-max distance

Min-max distance (or **bottleneck cost**) between $x, y \in \mathcal{X}$: $d_{mm}(x, y; \mathcal{X}) = \min_{\substack{p \\ i}} \max_{i} d(p_i, p_{i+1})$

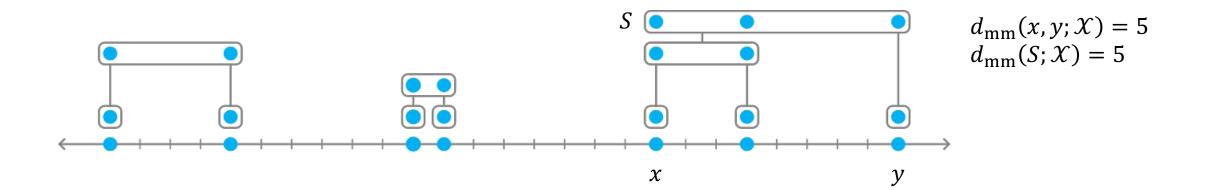
Taken over all simple paths $p = (p_1 = x, p_1, ..., p_t = y)$ in complete graph over X with edge weights d(x, y)



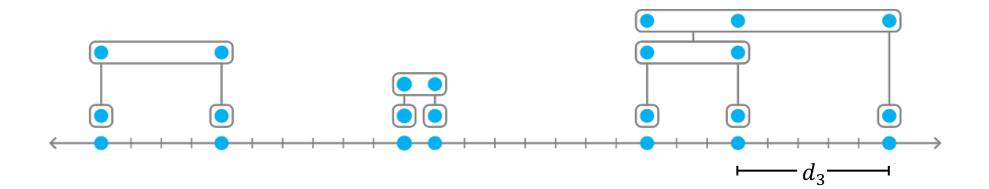
Min-max distance

Min-max distance (or **bottleneck cost**) between $x, y \in \mathcal{X}$: $d_{mm}(x, y; \mathcal{X}) = \min_{p} \max_{i} d(p_i, p_{i+1})$ For $S \subseteq \mathcal{X}$:

$$d_{\mathrm{mm}}(S; \mathcal{X}) = \max_{x, y \in S} d_{\mathrm{mm}}(x, y; \mathcal{X})$$



Lemma: x, y are merged by round ℓ if and only if $d_{mm}(x, y; X) \le d_{\ell}$



Min-max distance distortion

Suppose we run SL on subsample X_m of X of size mClusters will be merged based on $d_{mm}(x, y; X_m) \ge d_{mm}(x, y; X)$

If $d_{mm}(x, y; X_m) \gg d_{mm}(x, y; X)$: Clustering may be highly **distorted** on subsample

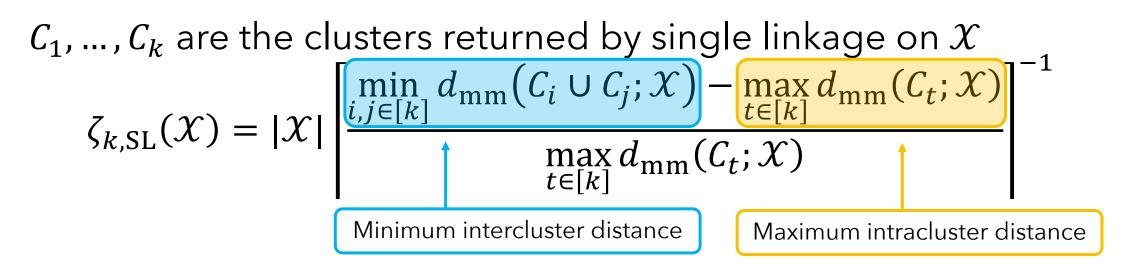
If $d_{mm}(x, y; \mathcal{X}_m) \approx d_{mm}(x, y; \mathcal{X})$ for all x, y: Clustering on \mathcal{X}_m should be **similar** to clustering on \mathcal{X}

Min-max distance distortion

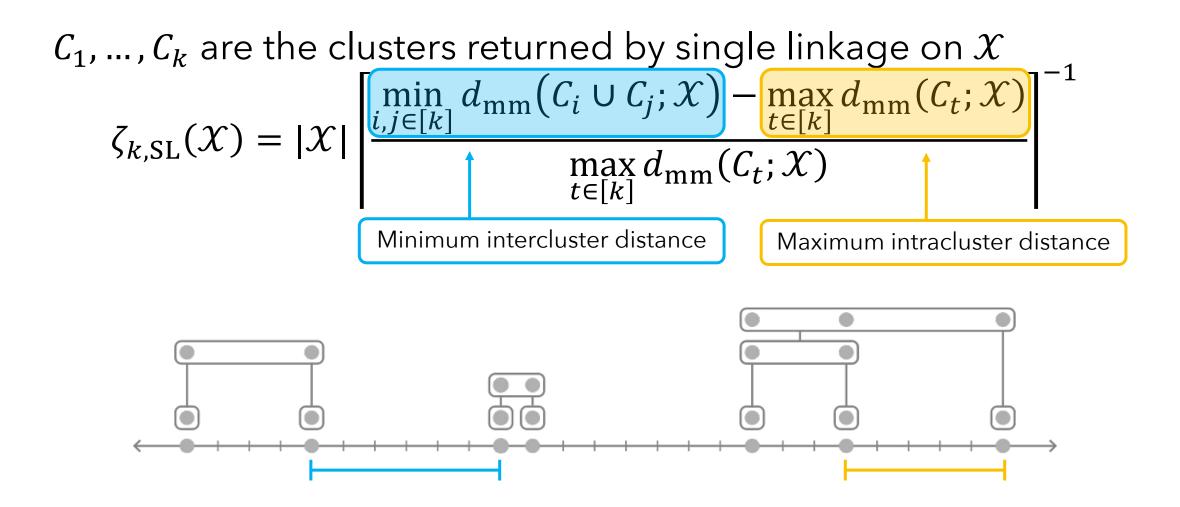
Goal of this section (a more philosophical goal ^(j)):

Characterize which property of the dataset X either:

- Allows for size generalization when this property holds, or
- Prohibits size generalization when it does not



Min-max distance distortion



Single-linkage: Main results

Theorem:

- $C = \{C_1, \dots, C_k\}$ are the clusters returned by single linkage on X
- \mathcal{C}' are the clusters returned by single linkage on \mathcal{X}_m with $m = \tilde{O}\left(\frac{k}{\epsilon^2} + \frac{|\mathcal{X}|}{\min|\mathcal{C}_i|} + \zeta_{k,\mathrm{SL}}(\mathcal{X})\right)$ uniform samples
- For any ground truth clustering \mathcal{G} , with high probability, $\left| \operatorname{cost}_{\mathcal{G}}(\mathcal{C}; \mathcal{X}) - \operatorname{cost}_{\mathcal{G}}(\mathcal{C}'; \mathcal{X}_m) \right| \leq \epsilon$

Can be computed using m^2 distance queries and m ground truth queries

Single-linkage: Main results

Theorem (informal):

Also construct instances where

$$m = \Omega\left(\frac{|\mathcal{X}|}{\min|\mathcal{C}_i|}\right)$$

and

$$m = \Omega\left(\zeta_{k,\mathrm{SL}}(\mathcal{X})\right)$$

samples are **necessary** to ensure with constant probability $|\operatorname{cost}_{\mathcal{G}}(\mathcal{C}; \mathcal{X}) - \operatorname{cost}_{\mathcal{G}}(\mathcal{C}'; \mathcal{X}_m)| \leq \text{constant}$

Outline

- 1. Introduction
- 2. Center-based clustering
- 3. Single-linkage

4. Conclusions and future directions

Summary

Given a massive combinatorial problem, can we:

- 1. "Shrink" it
- 2. Evaluate candidate algorithms on the smaller instance
- 3. Provably guarantee:

The best algorithm on the small instance

... is also best on the original large instance?

Answer this question in the affirmative for

- 1. Gonzalez's k-centers heuristic*
- 2. k-means++
- 3. Single-linkage clustering

Future directions

Given a massive combinatorial problem, can we:

- 1. "Shrink" it
- 2. Evaluate candidate algorithms on the smaller instance
- 3. Provably guarantee:
 - The best algorithm on the small instance

... is also best on the original large instance?

For what other problems can we answer this question?

Graph algorithms, integer programming,...?

From Large to Small Datasets: Size Generalization for Clustering Algorithm Selection

Vaggos Chatziafratis UC Santa Cruz

Ishani Karmarkar Stanford

Ellen Vitercik Stanford