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How to integrate machine learning
into discrete optimization?

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?
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Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

Algorithm configuration



IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration



IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration

Best configuration for routing problems
    likely not suited for scheduling

What’s the best configuration for the application at hand?



Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How to integrate machine learning
into discrete optimization?



Example: Clustering

Many different algorithms
K-means Ward Agglomerative BirchMean shift

How to select the best algorithm for the application at hand?



Algorithm selection in theory

Worst-case analysis has been the main framework for decades
Has led to beautiful, practical algorithms

Worst-case analysis’s approach to algorithm selection:
Select the algorithm that’s best in worst-case scenarios

Worst-case instances rarely occur in practice



How to integrate machine learning
into discrete optimization?

Answer to this question is built on a key observation:

In practice, we have data about 
the application domain



In practice, we have data about 
the application domain

Routing problems a shipping company solves



Clustering problems a biology lab solves

In practice, we have data about 
the application domain



Scheduling problems an airline solves

In practice, we have data about 
the application domain



In practice, we have data about 
the application domain

Algorithm design
Can machine learning guide algorithm discovery?

Algorithm selection
Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?

How can we use this data to guide:



A bit of history

Algorithm selection
[Rice ‘76]

Data-driven approaches 
to algorithm selection
[e.g., Lobjois, Lemaître, 

‘98; Gomes, Selman, ‘01]

Runtime prediction
[e.g., Horvitz et al., ‘01]

RL for discrete 
optimization

[e.g., Zhang, Dietterich, 
‘95]

Machine learning for 
algorithm selection
[e.g., Kadioglu et al., 

2010, Leyton-Brown et al., 
2009, Sandholm, 2013, Xu 

et al., 2008, 2010, 2011]

Machine learning for 
algorithm configuration
[e.g., Hutter et al. ‘09, ‘10, 
‘11, Ansótegui et al. ’09, 

Sandholm, 2013]



A bit of history

Late 2010s-present:
• Tons of work integrating modern ML models into discrete optimization

[e.g., surveys by Bengio et al., ‘18; Cappart et al., ’23; …]
• Theoretical guarantees

[e.g., book chapters by Balcan, ‘20; Mitzenmacher, Vassilvitskii, ’20; …]



Conventional data-driven pipeline

1. Gather historical problem instances
2. Identify the algorithm (and configuration) with the

best average performance
3. Hope (or prove) it will have (nearly) best future performance

Key scalability challenge:
Evaluating an alg’s performance on a combinatorial problem…

Typically requires solving that combinatorial problem!



Size generalization in practice
Applied research circumvents this challenge:

Use a distribution to generate small & large problems
E.g., Erdős–Rényi graphs

Small instances are used for training
Large instances are used for testing

E.g.:

 

Dai, Khalil, et al., NeurIPS’17
Li et al., NeurIPS’18
Gasse et al., NeurIPS’19
Veličković et al., ICLR’20

Veličković et al., ICML’20
Tang et al., ICML’20
Gupta et al., NeurIPS’20
Ibarz et al., LoG’22

Chmiela et al., NeurIPS’21
Huang et al., ICML’23
Alomrani et al., TMLR’23
…



Size generalization in practice
Applied research circumvents this challenge:

Use a distribution to generate small & large problems
E.g., Erdős–Rényi graphs

Small instances are used for training
Large instances are used for testing

However:
• Practical problems don’t have a known distribution
• Practitioners simply have massive problems they must solve



Size generalization: algorithm selection

Given a massive combinatorial problem, can we:
1. “Shrink” it
2. Evaluate candidate algorithms on the smaller instance
3. Provably guarantee:

The best algorithm on the small instance
…is also best on the original large instance?



Outline

1. Introduction
a. Size generalization motivation
b. Clustering algorithm selection

2. Center-based clustering
3. Single-linkage
4. Conclusions and future directions



Semi-supervised clustering

Assume there’s a ground truth clustering of a massive dataset
• Accessible through expensive ground-truth oracle queries
• Models interactions with a domain expert
• Basu et al., KDD’04; Zhu, ‘05; Kulis, ICML’05; Chen, Feng, 

Neurocomputing ‘12; Balcan, Nagarajan, White, V, COLT’17; …

Applications:
• Image recognition [Boom et al., ICPR’12]
• Medical diagnostics [Ershadi, Seifi, Applied Soft Computing, ‘22]



Clustering algorithm selection

Given a set of candidate algorithms:
select algorithm that will best recover the ground truth using
• Low runtime
• Few ground-truth queries

In practice, clustering algorithm selection is often done
“in a very ad hoc, if not completely random, manner,”
which is regrettable “given the crucial effect of
[algorithm selection] on the resulting clustering.”

[Ben-David, AAAI’18]



Notation
𝒢 = 𝐺!, … , 𝐺"  is the ground truth clustering of 𝒳 ⊂ ℝ#

Ground-truth oracle 𝜏: 𝜏 𝑥 = 𝑖 if 𝑥 ∈ 𝐺!

𝒞 = 𝐶!, … , 𝐶"  is a clustering of 𝒳$ ⊆ 𝒳

cost𝒢 𝒞;𝒳′ =
1
𝒳′

min
&∈(!

6
)∈𝒳"

6
+,!

"

𝟏 𝑥 ∈ 𝐶& + 	and	𝑥 ∉ 𝐺+

[e.g., Ashtiani, Ben-David, UAI’15]

Distance oracle returns 𝑑(𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝒳



Size generalization for clustering

1. Runtime
2. Number of ground-truth oracle queries
3. Number of distance oracle queries

Given a huge clustering dataset 𝒳, can we:
1. Subsample 𝒳 (uniformly at random)
2. Evaluate a set of candidate algorithms on the subsample
3. Prove the algorithm with lowest cost on the subsample

…will have low cost on 𝒳?

Goal: minimize



Size generalization for clustering

Given a huge clustering dataset 𝒳, can we:
1. Subsample 𝒳 (uniformly at random)
2. Evaluate a set of candidate algorithms on the subsample
3. Prove the algorithm with lowest cost on the subsample

…will have low cost on 𝒳?

1. Gonzalez’s k-centers heuristic*
2. k-means++
3. Single-linkage clustering

Answer this question in 
the affirmative for

*A smoothed version



Empirical motivation
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Subsampled 𝑘-centers heuristic

• Noisy circles dataset 
[Pedregosa, et al., ‘11]

• 500 points in original instance



Empirical motivation
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Single linkage
Subsampled single linkage
𝑘-means++
Subsampled 𝑘-means++
𝑘-centers heuristic
Subsampled 𝑘-centers heuristic

• Gaussian mixtures
• 500 points in original instance

0.6



Related research

The clustering theory literature:
• Often implicitly assumes ground truth minimizes some ℎ
• E.g., 𝑘-means or -centers

• Many algorithms to (approximately) minimize ℎ
• E.g., algorithms based on coresets:

Subsets 𝒳! ⊆ 𝒳 such that for any set of 𝑘 centers 𝐶, ℎ 𝐶,𝒳 ≈ ℎ 𝐶,𝒳!

E.g., 𝑘-means objective given
dataset 𝓧 and centers 𝐶

E.g., 𝑘-means objective given
coreset 𝓧𝐜 and centers 𝐶



Related research

The clustering theory literature:
• Often implicitly assumes ground truth minimizes some ℎ
• E.g., 𝑘-means or -centers

• Many algorithms to (approximately) minimize ℎ
• E.g., algorithms based on coresets:

Subsets 𝒳! ⊆ 𝒳 such that for any set of 𝑘 centers 𝐶, ℎ 𝐶,𝒳 ≈ ℎ 𝐶,𝒳!

However:
• Identifying ℎ may be as hard as identifying the ground truth
• Ground truth need not align with any previously studied ℎ

• Many algorithms to (approximately) minimize ℎ
• E.g., algorithms based on coresets:

Subsets 𝒳! ⊆ 𝒳 such that for any set of 𝑘 centers 𝐶, ℎ 𝐶,𝒳 ≈ ℎ 𝐶,𝒳!



Related research

The clustering theory literature:
• Often implicitly assumes ground truth minimizes some ℎ

Good approximation 
with respect to ℎ
ℎ 𝐶,𝒳 ≈ ℎ 𝐶,𝒳%

Low error with respect 
to the ground truth

cost𝒢 𝐶,𝒳 ≈ cost𝒢 𝐶,𝒳%

Even if the ground truth is known to align with some ℎ: 

• Many algorithms to (approximately) minimize ℎ
• E.g., algorithms based on coresets:

Subsets 𝒳! ⊆ 𝒳 such that for any set of 𝑘 centers 𝐶, ℎ 𝐶,𝒳 ≈ ℎ 𝐶,𝒳!



Related research

At the heart of an important gap between theory and practice
[Blum, ’09; von Luxburg et al., ‘12; Balcan et al., JACM’13; Ben-David, AAAI’18; …]

Also related: Ashtiani and Ben-David [UAI’15]
• Also study semi-supervised clustering
• Use samples to learn a data representation for downstream clustering

Even if the ground truth is known to align with some ℎ: 

Good approximation 
with respect to ℎ
ℎ 𝐶,𝒳 ≈ ℎ 𝐶,𝒳%

Low error with respect 
to the ground truth

cost𝒢 𝐶,𝒳 ≈ cost𝒢 𝐶,𝒳%



Outline

1. Introduction
2. Center-based clustering
3. Single-linkage
4. Conclusions and future directions



Center-based clustering algorithms
Algorithms return centers 𝐶 = 𝑐!, … , 𝑐" ⊂ ℝ#

Assign points to nearest center:
𝑆3 = 𝑥 ∈ 𝒳 ∶ 𝑖 = argmin

+∈ "
𝑑 𝑥, 𝑐+

Notation: 𝑑456758 𝑥, 𝐶 = min
9∈:

𝑑 𝑥, 𝑐

k-means objective: minimize ∑)∈𝒳 𝑑456758 𝑥, 𝐶 ;

k-centers objective: minimize max
)∈𝒳

𝑑456758 𝑥, 𝐶



Center seeding algorithm

SEEDING
Choose 𝑐! ∼ Unif(𝒳), set 𝐶! = 𝑐!
For 𝑖 ∈ 2, … , 𝑘 :

Sample 𝑐3 with probability ∝ 𝑓 𝑑456758 𝑐3 , 𝐶3<! ; 𝒳
Set 𝐶3 = 𝐶3<! ∪ 𝑐3

𝑘-means++ [Arthur, Vassilvitskii, SODA’07]:
𝑓 𝑑456758 𝑐3 , 𝐶3<! ; 𝒳 = 𝑑456758 𝑐3 , 𝐶3<!

;

log 𝑘-approximation algorithm for the 𝑘-means objective
This 1-step version; additional Lloyd iterations can further improve objective



Center seeding algorithm

SEEDING
Choose 𝑐! ∼ Unif(𝒳), set 𝐶! = 𝑐!
For 𝑖 ∈ 2, … , 𝑘 :

Sample 𝑐3 with probability ∝ 𝑓 𝑑456758 𝑐3 , 𝐶3<! ; 𝒳
Set 𝐶3 = 𝐶3<! ∪ 𝑐3

Gonzalez’s 𝑘-centers heuristic [TCS’85]:
𝑓 𝑑456758 𝑐3 , 𝐶3<! ; 𝒳 = 𝟏 𝑐3 = argmax

)∈𝒳
𝑑456758 𝑥, 𝐶3<!

Selects the point that’s furthest from current centers 𝐶"#$



Center seeding algorithm

SEEDING
Choose 𝑐! ∼ Unif(𝒳), set 𝐶! = 𝑐!
For 𝑖 ∈ 2, … , 𝑘 :

Sample 𝑐3 with probability ∝ 𝑓 𝑑456758 𝑐3 , 𝐶3<! ; 𝒳
Set 𝐶3 = 𝐶3<! ∪ 𝑐3

Gonzalez’s 𝑘-centers heuristic [TCS’85]:
𝑓 𝑑456758 𝑐3 , 𝐶3<! ; 𝒳 = 𝟏 𝑐3 = argmax

)∈𝒳
𝑑456758 𝑥, 𝐶3<!

2-approximation to the 𝑘-centers objective



Center seeding algorithm: APXSEEDING

Sample 𝒳′ = 𝑥!, … , 𝑥"# ∼ Unif 𝒳 "#

Set 𝐶! = 𝑥!  and ℓ = 2
For 𝑖 ∈ 2,… , 𝑘 :

Set 𝑥 = 𝑥ℓ; ℓ++
For 𝑗 ∈ 2,… ,𝑚 :

Set 𝑦 = 𝑥ℓ; ℓ++
If % &'()*(+ ',),-. ;𝒳/

% &'()*(+ ,,),-. ;𝒳/ > Unif 0,1 : set 𝑥 = 𝑦
Set 𝐶- = 𝐶-.! ∪ 𝑥

// 𝑥 is the candidate for the 𝑖%& center

// ℓ	is a counter for stepping through the sample 𝒳′

// Metropolis-Hastings procedure to update 𝑥



Center seeding algorithm: APXSEEDING

Sample 𝒳′ = 𝑥!, … , 𝑥"# ∼ Unif 𝒳 "#

Set 𝐶! = 𝑥!  and ℓ = 2
For 𝑖 ∈ 2,… , 𝑘 :

Set 𝑥 = 𝑥ℓ; ℓ++
For 𝑗 ∈ 2,… ,𝑚 :

Set 𝑦 = 𝑥ℓ; ℓ++
If % &'()*(+ ',),-. ;𝒳/

% &'()*(+ ,,),-. ;𝒳/ > Unif 0,1 : set 𝑥 = 𝑦
Set 𝐶- = 𝐶-.! ∪ 𝑥

• Requires only 
𝑂 𝑚𝑘;  distance 
oracle queries

• SEEDING requires 
𝑂 𝒳 𝑘  queries



Connection to prior research

APXSEEDING generalizes an approach by Bachem et al. [AAAI’16]
Use MCMC to obtain a sublinear-time 𝑘-means approximation

We generalize their framework to:
1. Work with general functions 𝒇 (beyond 𝑘-means)
2. Give accuracy guarantees (instead of approximation)



APXSEEDING guarantees

Guarantees depend on a parameter 𝜁",= 𝒳
• Measures the smoothness of SEEDING’s distribution over centers
• As the distribution approaches uniform, 𝜁6,8 𝒳 → 1

𝜁",= 𝒳 = max
>⊆𝒳, > ?"

max
)∈𝒳

𝒳 𝑓 𝑑456758 𝑥, 𝑄 ;𝒳
∑@∈> 𝑓 𝑑456758 𝑦, 𝑄 ;𝒳



APXSEEDING guarantees

Theorem:
• Let 𝑆 be the partition of 𝒳 induced by SEEDING

• Let 𝑆′ be the partition of 𝒳 induced by APXSEEDING

with 𝑂 𝜁",= 𝒳 ⋅ 𝑘 ⋅ log "
A

 uniform samples
• For any ground truth clustering 𝒢,

𝔼 cost𝒢 𝑆;𝒳 − 𝔼 cost𝒢 𝑆$; 𝒳 ≤ 𝜖

• 𝜁",= 𝒳 ∈ 1, 𝒳
• Smaller is better



APXSEEDING guarantees

Theorem:
• Let 𝑆 be the partition of 𝒳 induced by SEEDING

• Let 𝑆′ be the partition of 𝒳 induced by APXSEEDING

with 𝑂 𝜁",= 𝒳 ⋅ 𝑘 ⋅ log "
A

 uniform samples
• For any ground truth clustering 𝒢,

𝔼 cost𝒢 𝑆;𝒳 − 𝔼 cost𝒢 𝑆$; 𝒳 ≤ 𝜖

Under natural assumptions, 𝜁",= 𝒳  is independent of 𝒳  for
𝑘-means++ and (a smoothed version) of Gonzales’s heuristic

Coming up:



APXSEEDING guarantees

Theorem:
• Let 𝑆 be the partition of 𝒳 induced by SEEDING

• Let 𝑆′ be the partition of 𝒳 induced by APXSEEDING

with 𝑂 𝜁",= 𝒳 ⋅ 𝑘 ⋅ log "
A

 uniform samples
• For any ground truth clustering 𝒢,

𝔼 cost𝒢 𝑆;𝒳 − 𝔼 cost𝒢 𝑆$; 𝒳 ≤ 𝜖

Can be estimated to error 𝜖 using 𝑂 "
A#

 ground-truth queries
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Gonzalez’s k-centers heuristic

First obstacle:
𝑓 𝑑456758 𝑥, 𝐶 ;𝒳 = 𝟏 𝑥 = argmax

@∈𝒳
𝑑456758 𝑦, 𝐶

is deterministic, so 𝜁",= 𝒳 = 𝒳

Instead, we’ll study a smoothed version of the heuristic:
𝑓BCD7EFG 𝑑456758 𝑥, 𝐶 ;𝒳 = exp 𝛽𝑑456758 𝑥, 𝐶
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Gonzalez versus softmax k-centers
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Omniglot

Gaussians

Noisy circles

García-Díaz et al. [J. 
of Heuristics, ‘17] also 
observe a smoother 
heuristic can yield 
better performance



Softmax 𝑘-centers approximation bound

Theorem:
• 𝐶IJK = optimal 𝑘-centers solution
• Induces partition 𝑆:, … , 𝑆6 of 𝒳
• Suppose partition is balanced: 𝜇ℓ 𝒳 ≤ 𝑆! ≤ 𝜇; 𝒳  for all 𝑖

• 𝐶 = centers returned by Softmax 𝑘-centers
• With high probability,

max
)∈𝒳

𝑑456758 𝑥, 𝐶 ≤ 4max
)∈𝒳

𝑑456758 𝑥, 𝐶IJK +
1
𝛽
log

𝑘𝜇L
𝜇ℓ
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Sample complexity bound
Lemma: If max

),@∈𝒳
𝑑 𝑥, 𝑦 ≤ 𝑅, then 𝜁",=$%&'()* 𝒳 ≤ exp 2𝛽𝑅

Exist instances where this is tight

Connecting the dots: 𝑂 exp 𝛽𝑅 ⋅ 𝑘 ⋅ log "
A

 samples sufficient 
to ensure 𝔼 cost𝒢 𝑆;𝒳 − 𝔼 cost𝒢 𝑆$; 𝒳 ≤ 𝜖

 

Partition of 𝒳 induced by SEEDING Partition of 𝒳 induced by APXSEEDING



Sample complexity bound
Lemma: If max

),@∈𝒳
𝑑 𝑥, 𝑦 ≤ 𝑅, then 𝜁",=$%&'()* 𝒳 ≤ exp 2𝛽𝑅

Exist instances where this is tight

Connecting the dots: 𝑂 exp 𝛽𝑅 ⋅ 𝑘 ⋅ log "
A

 samples sufficient 
to ensure 𝔼 cost𝒢 𝑆;𝒳 − 𝔼 cost𝒢 𝑆$; 𝒳 ≤ 𝜖

𝛽 ≥ !
N
log "O+

Oℓ
 sufficient for 𝑘-centers 4, 𝛾 -approximation

⇒ number of samples doesn’t depend on 𝒳



Sample complexity bound
Lemma: If max

),@∈𝒳
𝑑 𝑥, 𝑦 ≤ 𝑅, then 𝜁",=$%&'()* 𝒳 ≤ exp 2𝛽𝑅

Exist instances where this is tight

Connecting the dots: 𝑂 exp 𝛽𝑅 ⋅ 𝑘 ⋅ log "
A

 samples sufficient 
to ensure 𝔼 cost𝒢 𝑆;𝒳 − 𝔼 cost𝒢 𝑆$; 𝒳 ≤ 𝜖

Experiments indicate 𝛽 can be set much smaller, e.g., 𝛽 = !
P

⇒ number of samples is 𝑂 𝑘 ⋅ log "
A
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𝑘-means summary

𝑓 𝑑456758 𝑥, 𝐶 ;𝒳 = 𝑑456758 𝑥, 𝐶 ;

Assume 𝒳 drawn from some distribution
• Support contained in ball of radius 𝑅
• Distribution satisfies other mild non-degeneracy assumptions

Results by Bachem et al. [AAAI’16] imply (informally) that
𝜁",= 𝒳  grows linearly in 𝑅; and 𝑘
⇒ number of samples doesn’t depend on 𝒳



Outline

1. Introduction
2. Center-based clustering
3. Single-linkage
4. Conclusions and future directions



Instability of single-linkage

Single linkage is known to be unstable
[Balcan et al., JMLR’14; Chaudhuri et al., IEEE Trans. Inf. Theory ’14]

But in our experiments,
we find its accuracy can be estimated on a subsample
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Single linkage
Subsampled single linkage
𝑘-means++
Subsampled 𝑘-means++
𝑘-centers heuristic
Subsampled 𝑘-centers heuristic



Instability of single-linkage

Single linkage is known to be unstable
[Balcan et al., JMLR’14; Chaudhuri et al., IEEE Trans. Inf. Theory ’14]

But in our experiments,
we find its accuracy can be estimated on a subsample

Goal of this section (a more philosophical goal 🤔):
We characterize which property of the dataset 𝒳 either:
• Allows for size generalization when this property holds, or
• Prohibits size generalization when it does not

albeit, a larger sample



Single-linkage algorithm

Each point is initially in its own cluster: 𝒞Q = 𝑥! , … , 𝑥R ; 𝑖 = 0

𝑑'

Intercluster distance 𝑑 𝐴, 𝐵 ≔ min
)∈S,@∈T

𝑑 𝑥, 𝑦

While 𝒞3 > 𝑘:
𝑑3 = min

S,T∈𝒞-
min

)∈S,@∈T
𝑑 𝑥, 𝑦



Single-linkage algorithm

While 𝐶3 > 𝑘:
𝑑3 = min

S,T∈𝒞-
𝑑 𝐴, 𝐵

while there exist 𝐴, 𝐵 ∈ 𝒞3 with 𝑑 𝐴, 𝐵 = 𝑑3:
 replace 𝐴 and 𝐵 with the merged cluster 𝐴 ∪ 𝐵 in 𝒞3 

𝑑'
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Min-max distance

Min-max distance (or bottleneck cost) between 𝑥, 𝑦 ∈ 𝒳:
𝑑EE 𝑥, 𝑦;𝒳 = min

𝒑
max
3
𝑑 𝑝3 , 𝑝3V!

Taken over all simple paths 𝒑 = (𝑝! = 𝑥, 𝑝!, … , 𝑝X = 𝑦)
in complete graph over 𝒳 with edge weights 𝑑 𝑥, 𝑦
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Min-max distance

Min-max distance (or bottleneck cost) between 𝑥, 𝑦 ∈ 𝒳:
𝑑EE 𝑥, 𝑦;𝒳 = min

𝒑
max
3
𝑑 𝑝3 , 𝑝3V!

For 𝑆 ⊆ 𝒳:
𝑑EE 𝑆;𝒳 = max

),@∈Y
𝑑EE 𝑥, 𝑦;𝒳

𝑥 𝑦

𝑑** 𝑥, 𝑦;𝒳 = 5 
𝑑** 𝑆;𝒳 = 5 

𝑆



Key lemma

Lemma: 𝑥, 𝑦 are merged by round ℓ if and only if
𝑑EE 𝑥, 𝑦;𝒳 ≤ 𝑑ℓ

𝑑)



Min-max distance distortion

Suppose we run SL on subsample 𝒳Z of 𝒳 of size 𝑚
Clusters will be merged based on 𝑑BB 𝑥, 𝑦;𝒳C ≥ 𝑑BB 𝑥, 𝑦;𝒳

If 𝑑EE 𝑥, 𝑦;𝒳Z ≫ 𝑑EE 𝑥, 𝑦;𝒳 :
Clustering may be highly distorted on subsample 

If 𝑑EE 𝑥, 𝑦;𝒳Z ≈ 𝑑EE 𝑥, 𝑦;𝒳  for all 𝑥, 𝑦:
Clustering on 𝒳Z should be similar to clustering on 𝒳



Min-max distance distortion

Goal of this section (a more philosophical goal 🤔):
Characterize which property of the dataset 𝒳 either:
• Allows for size generalization when this property holds, or
• Prohibits size generalization when it does not

𝐶!, … , 𝐶" are the clusters returned by single linkage on 𝒳

𝜁",[\ 𝒳 = |𝒳|
min
3,+∈ "

𝑑EE 𝐶3 ∪ 𝐶+; 𝒳 −max
X∈ "

𝑑EE 𝐶X; 𝒳

max
X∈ "

𝑑EE 𝐶X; 𝒳

<!

Minimum intercluster distance Maximum intracluster distance
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Single-linkage: Main results

Theorem:
• 𝒞 = 𝐶!, … , 𝐶"  are the clusters returned by single linkage on 𝒳
• 𝒞′ are the clusters returned by single linkage on 𝒳Z with

𝑚 = s𝑂 "
A#
+ |𝒳|

E^6 :-
+ 𝜁",[\ 𝒳  uniform samples

• For any ground truth clustering 𝒢, with high probability,
cost𝒢 𝒞;𝒳 − cost𝒢 𝒞$; 𝒳Z ≤ 𝜖

Can be computed using 𝑚D distance queries and 𝑚 ground truth queries



Single-linkage: Main results

Theorem (informal):
Also construct instances where

𝑚 = Ω
|𝒳|

min 𝐶3
and

𝑚 = Ω 𝜁",[\ 𝒳
samples are necessary to ensure with constant probability

cost𝒢 𝒞;𝒳 − cost𝒢 𝒞$; 𝒳Z ≤ constant
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Summary

1. Gonzalez’s k-centers heuristic*
2. k-means++
3. Single-linkage clustering

Given a massive combinatorial problem, can we:
1. “Shrink” it
2. Evaluate candidate algorithms on the smaller instance
3. Provably guarantee:

The best algorithm on the small instance
…is also best on the original large instance?

Answer this question in 
the affirmative for

*A smoothed version



Future directions

Given a massive combinatorial problem, can we:
1. “Shrink” it
2. Evaluate candidate algorithms on the smaller instance
3. Provably guarantee:

The best algorithm on the small instance
…is also best on the original large instance?

For what other problems can we answer this question?
Graph algorithms, integer programming,…?
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