Leveraging Reviews: Learning to Price with Buyer and Seller Uncertainty

Ellen Vitercik
Stanford University

Joint work with Wenshuo Guo, Nika Haghtalab, and Kirthevasan Kandasamy

Appeared in the Conference on Economics and Computation (EC) 2023

Learning from reviews

Online shopping accounts for 22% of global retail sales

Customers make far more informed decisions than ever before Gain insights from hundreds of reviews before making purchases

Learning from reviews

Often use reviews by buyers who share their "type," e.g.:

Body type for clothes

Skin type for skincare products

Use these reviews to estimate how much they will vallue items Quantities they may be uncertain of before purchasing

Filtering reviews by type

[^0]
Looking for specific info?

Customer Reviews

A Mis Did not collect any hair off of my long haired cat

By Nazli Zeynep Turken on August 30, 2021
This brush/comb combo did not really collect any hair from my long-haired cat without a lot of pressure. The fur shedder work better.

Filtering reviews by type

Filtering reviews by type

Paula's Choice
Skin Perfecting 2\% BHA Liquid Exfoliant

Q Sort V	Rating \checkmark	Verified Purchases	Non-Incentivized Reviews Only (i)	Skin Concerns V	Age Range \checkmark
Oily \times Clear					
Viewing 1-6 of 189 reviews					
$\star \star \star \star \star$		LITERALLY NEED			
6 d ago		I didn't notice a major difference until I ran out of it, then my forehead started to break out again and my skin just			
\checkmark Recommended		looked dull. It's the only thing that gets rid of pimples that are painful and under the skin.			
		Helpful? \triangle (3) $\mid \nabla(1)$			

Key challenge when pricing

For rare types of customers,

- May find only a few reviews from similar customers
- Due to uncertainty, may only be willing to buy at relatively low prices

Editor Mid Rise Bootcut Pant
$\boldsymbol{\star} \boldsymbol{\star} \boldsymbol{\star} \boldsymbol{\star} \boldsymbol{\star} \boldsymbol{*} \quad 4.2$ (352) Write a review

ATHLETIC \times \square

1-7 of 7 Reviews

Key challenge when pricing

Customer's purchase decision isn't just a function of the price

- Depends on how certain the customer is about her valuation
- In turn, depends on the earlier sales and reviews

Leads to a tension between:

- Setting revenue-optimal prices, and
- Ensuring that buyers have enough reviews to estimate their values

Results overview

Introduce a model that simultaneously captures:
The seller's pricing problem
(\square The buyers' learning problem
$\star \star \star$ The modus through which the buyers learn: reviews
We study how a seller can learn to set high-revenue prices

- Provide a no-regret learning algorithm
- Matching regret lower bounds

Outline

1. Introduction
2. Mechanism design background
3. Model
4. Main results
5. Conclusions and future directions

Mechanism design background

- Single item, single buyer
- Distribution \mathcal{D} over buyer's value for item Seller knows \mathcal{D}

Mechanism design background

- Single item, single buyer
- Distribution \mathcal{D} over buyer's value for item

Seller knows \mathcal{D}

- Interaction between buyer and seller:

1. Seller uses \mathcal{D} to select choose price p
2. Buyer draws value $v \sim \mathcal{D}$ and purchases item if $v \geq p$

- Revenue-maximizing price: $\operatorname{argmax}\left\{p \cdot \mathbb{P}_{v \sim \mathcal{D}}[v \geq p]\right\}$
- Assumes seller knows \mathcal{D} and buyer knows v

We relax both these assumptions

Outline

1. Introduction
2. Mechanism design background
3. Model
4. Connections to prior research
5. Main results
6. Conclusions and future directions

Model

- Item sold repeatedly to sequence of buyers over T rounds
- Buyers are distinct
- Each buyer has a type $i \in[d]$
- E.g., height, weight, skin type, ...
- There's an unknown distribution \mathcal{P} over types [d]

Model

- Buyer of type i 's value for item drawn from distribution \mathcal{D}_{i}
- support $\left(\mathcal{D}_{i}\right) \subseteq[0,1]$
- Has mean θ_{i}
- θ_{i} : buyer's ex-ante value
- What buyer would expect their value to be before buying the item
- $v \sim \mathcal{D}_{i}$: buyer's ex-post value
- What their value actually is after buying the item
- Seller knows $\theta_{1}, \ldots, \theta_{d}$ but not the distributions $\mathcal{P}, \mathcal{D}_{1}, \ldots, \mathcal{D}_{d}$
Distribution over types

Online learning model

At each timestep $t=1, \ldots, T$:

1. Reviews σ_{t-1} describe past buyers' types $\&$ ex-post values

Type
Value v_{6}

Online learning model

At each timestep $t=1, \ldots, T$:

1. Reviews σ_{t-1} describe past buyers' types \& ex-post values
2. Seller sets a price $p_{t} \in[0,1]$
3. Buyer arrives with type $i_{t} \sim \mathcal{P}$
i. They observe the past reviews of buyers with type i_{t}
ii. They decide whether to purchase the item

Seller doesn't know the type i_{t} when they choose p_{t}
4. If the buyer purchases the item, they pay p_{t}
i. If they buy, they leave a review of $\left(i_{t}, v_{t}\right)$ with $v_{t} \sim \mathcal{D}_{i_{t}}$

Buyers' purchasing model

- Buyer's purchase decision defined by threshold $\tau_{t}\left(\sigma_{t-1}, i_{t}\right)$
- $\tau_{t}\left(\sigma_{t-1}, i_{t}\right)$ represents the buyer's estimation of $\theta_{i_{t}}$ based on reviews
- Agent purchases the item if $p_{t} \leq \tau_{t}\left(\sigma_{t-1}, i_{t}\right)$
- Conservative agent would choose $\tau_{t}\left(\sigma_{t-1}, i_{t}\right)$ to be low
- Extreme example would set $\tau_{t}\left(\sigma_{t-1}, i_{t}\right)=0$

Agent only buys item if offered for free!

- Optimizing revenue with such a conservative agent is hopeless

Bounded pessimism assumption

$\tau_{t}\left(\sigma_{t-1}, i_{t}\right)$ is at least a lower confidence bound LB_{t} that equals:

- The average of the reviews left by buyers with type i_{t},
- Minus an uncertainty term that depends on \# of reviews

Definition: η-pessimistic agent

- $\Phi_{t}=$ reviews left by previous buyers with type i_{t}
- $\mathrm{LB}_{t}=\frac{1}{\left|\Phi_{t}\right|} \sum_{v \in \Phi_{t}} v-\sqrt{\frac{1}{2\left|\Phi_{t}\right|} \ln \frac{t}{\eta}}$
- Agent is η-pessimistic if $\tau_{t}\left(\sigma_{t-1}, i_{t}\right) \geq \mathrm{LB}_{t}$
- Will definitely buy if $\mathrm{LB}_{t} \geq p_{t}$

Bounded pessimism assumption

Definition: η-pessimistic agent

- $\Phi_{t}=$ reviews left by previous buyers with type i_{t}
- $\mathrm{LB}_{t}=\frac{1}{\left|\Phi_{t}\right|} \sum_{v \in \Phi_{t}} v-\sqrt{\frac{1}{2\left|\Phi_{t}\right|} \ln \frac{t}{\eta}}$
- Agent is η-pessimistic if $\tau_{t}\left(\sigma_{t-1}, i_{t}\right) \geq \mathrm{LB}_{t}$
- Will definitely buy if $\mathrm{LB}_{t} \geq p_{t}$

With probability $1-\eta$, for all $t, \theta_{i_{t}} \geq \mathrm{LB}_{t}$

- If $\mathrm{LB}_{t} \geq p_{t}$, agent's expected utility $\theta_{i_{t}}-p_{t}$ is likely positive
- Will buy if have good reason to believe their expected utility is ≥ 0

Key challenge

- Seller doesn't know i_{t}
\Rightarrow Doesn't know \# of reviews buyer will use to construct value estimate
- If i_{t} is a rare type, then LB_{t} will be low

Would have to set a llow price to ensure a purchase and a review

- If rare type's value is high, may be worth it to offer a low price

Seller could "win over" these rare but high-value customers

Key challenge

- Seller doesn't know i_{t}
\Rightarrow Doesn't know \# of reviews buyer will use to construct value estimate
- If i_{t} is a rare type, then LB_{t} will be low

Would have to set a low price to ensure a purchase and a review

- If rare type's value is high, may be worth it to offer a low price

Seller could "win over" these rare but high-value customers

- Seller has to decide who to win over without knowing i_{t} or \mathcal{P}

May offer low price to a buyer who'd be willing to buy at a higher price

Outline

1. Introduction
2. Mechanism design background
3. Model
4. Connections to prior research
5. Main results
6. Conclusions and future directions

Prior research

Rich literature on social learning from reviews

[Chamley, '04; Bose et al., RAND J. Econ'06; Crapis et al., Manage Sci '17; Besbes, Scarsini, OR'18; Ifrach et al., OR'19; Kakhbod et al. SSRN'21; Boursier et al., ALT'22; Acemoglu et al. Econometrica'22]

Bayesian buyers:

Calculate item's posterior quality given the past reviews [e.g., Ifrach et al., OR'19; Boursier et al., ALT'22; Acemoglu et al., Econometrica'22]

May be challenging to compute Bayesian updates
Several papers relax this assumption
[e.g., Crapis et al., Manage Sci '17; Besbes, Scarsini, OR'18]

Prior research

- E.g., Besbes and Scarsini [OR'18] study

1. Fully Baysian buyers
2. Buyers who can only observe the average of the past reviews

- Conditions under which buyers can recover product's true quality
- Our model is situated between (1) and (2)
- Purchase decisions depend on:
- Average of the past reviews
- Number of those reviews
- Besbes and Scarsini [OR'18] analyze risk-neutrall buyers
- We study risk-averse buyers:

May not purchase even if the price is below the average reviews

Outline

1. Introduction
2. Mechanism design background
3. Model
4. Connections to prior research
5. Main results
6. Conclusions and future directions

Regret

Regret is the difference between:
(1) The algorithm's total expected revenue, and
(2) The expected revenue of the optimal fixed price if: agents buy if their ex-ante value is larger than the price

Under (2) the buyers and seller know more than under (1):

- Seller knows all distributions $\mathcal{P}, \mathcal{D}_{1}, \ldots, \mathcal{D}_{d}$

Knows which customers to target to maximize revenue

- Buyers know their ex-ante values $\theta_{1}, \ldots, \theta_{d}$

Seller can extract more revenue than he could from uncertain buyers

Regret

Regret is the difference between:
(1) The algorithm's total expected revenue, and
(2) The expected revenue of the optimal fixed price if: agents buy if their ex-ante value is larger than the price
$b_{t}=1$ if buyer buys at round t at price $p_{t} ; b_{t}=0$ otherwise

$$
\text { (1) }=\sum_{t=1}^{T} b_{t} \cdot p_{t}
$$

$$
\begin{gathered}
p^{*}=\underset{\operatorname{argmax}}{\arg }\left\{p \cdot \mathbb{P}_{i \sim \mathcal{P}}\left[\theta_{i} \geq p\right]\right\} \\
2=T \cdot p^{*} \cdot \mathbb{P}_{i \sim \mathcal{P}}\left[\theta_{i} \geq p^{*}\right]
\end{gathered}
$$

Regret

Regret is the difference between:
(1) The algorithm's total expected revenue, and
(2) The expected revenue of the optimal fixed price if: agents buy if their ex-ante value is larger than the price

In other words,

$$
\mathbb{E}\left[R_{T}\right]=T \cdot p^{*} \cdot \mathbb{P}_{i \sim \mathcal{P}}\left[\theta_{i} \geq p^{*}\right]-\sum_{t=1}^{T} p_{t} \cdot b_{t}
$$

Main result

$q_{\text {min }}=$ minimum probability of any type $\left(\min _{i \in[d]} \mathbb{P}_{j \sim \mathcal{D}}[j=i]\right)$
Theorem: We provide an algorithm such that

- If $q_{\text {min }}$ not tiny $\left(q_{\min }>2 d^{-2 / 3} T^{-1 / 3}\right)$ then

$$
\mathbb{E}\left[R_{T}\right]=O\left(\sqrt{\frac{T}{q_{\min }}}+T^{1 / 3} d^{2 / 3}\right)
$$

- Otherwise,

$$
\mathbb{E}\left[R_{T}\right]=O\left(T^{2 / 3} d^{1 / 3}+T^{1 / 3} d^{2 / 3}\right)
$$

Also provide lower bounds that match up to lower order terms

Prior research

If seller only observes purchase decisions and not reviews:

- $\widetilde{\Theta}\left(T^{2 / 3}\right)$ regret bound [Kleinberg \& Leighton, '03]
- Can be improved to $\widetilde{\Theta}\left(T^{1 / 2}\right)$ under distributional assumptions

If seller observes purchase decisions and reviews:

- Algorithm with $\tilde{O}(\sqrt{T})$ regret [Zhao \& Chen, '20]
- Assumes buyers know their own values

Outline

1. Introduction
2. Mechanism design background
3. Model
4. Connections to prior research
5. Main results
a. Regret bound overview
b. Algorithm
c. Regret bound proof sketch
d. Lower bound
6. Conclusions and future directions

Algorithm overview

Algorithm maintains set S_{t} of buyer types which it estimates:

1. Have a sufficiently high value, and
2. Are not exceedingly rare

Intuitively, S_{t} is the set of buyers that the algorithm is targeting

Algorithm overview

Algorithm has two phases

1st phase:

- Algorithm offers the item for free
- Observes i.i.d.d. samples from the type distribution
- Sets S_{t} to be the set of types that appeared often enough

2nd phase:

- Sets price low enough so that buyers in S_{t} always buy
- Eliminates types from S_{t} that contribute too little revenue

Algorithm: $1^{\text {st }}$ phase

Offers item for free for $\widetilde{\Theta}\left(T^{1 / 3} d^{2 / 3}\right)$ rounds
$Q=$ set of buyer types that appeared frequently

Algorithm: $2^{\text {nd }}$ phase overview

Algorithm will ignore types not in Q

- These customers are rare
- Will have more uncertainty about their value (low LB_{t})
- Seller will have to set a low price to target these customers
\Rightarrow Not worthwhile to target these customers

$$
Q=\{\bullet, \mathbf{\Delta}\}
$$

Algorithm: $2^{\text {nd }}$ phase overview

In $2^{\text {nd }}$ phase, only aims to maximize revenue WRT buyers in Q

- $\operatorname{rev}(p, Q)=p \cdot \mathbb{P}_{i \sim \mathcal{D}}\left[\theta_{i} \geq p\right.$ and $\left.i \in Q\right]$
- $p^{*}(Q)=\operatorname{argmax}_{p \in[0,1]} \operatorname{rev}(p, Q)$

Observation: $p^{*}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$

$$
Q=\{0, \Delta\}
$$

Algorithm: $2^{\text {nd }}$ phase price selection

Maintains set S_{t} of "active types" such that i_{Q} is likely in S_{t} S_{t} initially set to Q

Sets p_{t} low enough to ensure if $i_{t} \in S_{t}$, then the buyer will buy Ensures a review if $i_{t} \in S_{t}$

$$
s_{t}=\{\boldsymbol{\bullet}, \mathbf{\triangle}\}
$$

Algorithm: $2^{\text {nd }}$ phase type elimination

For each active type $i \in S_{t}$, algorithm estimates $\operatorname{rev}\left(\theta_{i}, Q\right)$ $\operatorname{rev}\left(\theta_{i}, Q\right)=\theta_{i} \cdot \mathbb{P}_{j \sim \mathcal{D}}\left[\theta_{j} \geq \theta_{i}\right.$ and $\left.j \in Q\right]$

Requires care because at each round:

- Don't observe $\mathbf{1}_{\left\{\theta_{i_{t} \geq \theta_{i}} \text { and } i_{t} \in Q\right\}}$
- Only observe $\mathbf{1}_{\left\{b_{t}=1, \theta_{i_{t}} \geq \theta_{i} \text {, and } i_{t} \in Q\right\}}$

Algorithm: $2^{\text {nd }}$ phase type elimination

For each active type $i \in S_{t}$, algorithm estimates $\operatorname{rev}\left(\theta_{i}, Q\right)$

$$
\operatorname{rev}\left(\theta_{i}, Q\right)=\theta_{i} \cdot \mathbb{P}_{j \sim \mathcal{D}}\left[\theta_{j} \geq \theta_{i} \text { and } j \in Q\right]
$$

Removes types from S_{t} if estimate is too small

Algorithm summary

Phase 1:

- Offer item for free to get samples from type distribution
- Set Q to be set of types that appeared sufficiently often

Phase 2:

- Only aim to compete with $p^{*}(Q)=\theta_{i_{Q}}$ for some $i_{Q} \in Q$
- Maintain set S_{t} such that $i_{Q} \in S_{t}$
- Set price low enough so that buyers in S_{t} always buy
- Eliminate types from S_{t} that contribute too little revenue

Distinctions from explore-then-commit

"Explore" phase of ETC is much longer (often $O\left(T^{2 / 3}\right)$ rounds)
ETC algorithms focus on learning all unknowns in $1^{\text {st }}$ phase We only focus on eliminating low probability types
"Commit" phase of ETC often doesn't include any learning In the $2^{\text {nd }}$ phase, our algorithm is still learning the optimal price

Unlike our algorithm, ETC can"t obtain $O\left(T^{1 / 2}\right)$ regret

Outline

1. Introduction
2. Mechanism design background
3. Model
4. Connections to prior research
5. Main results
6. Regret bound overview
7. Algorithm
8. Regret bound proof sketch
9. Lower bound
10. Conclusions and future directions

Regret bound

Theorem: If $q_{\min }$ is tiny $\left(q_{\min }<2 d^{-2 / 3} T^{-1 / 3}\right)$

$$
\mathbb{E}\left[R_{T}\right]=O\left(T^{1 / 3} d^{2 / 3}+T^{2 / 3} d^{1 / 3}\right)
$$

Otherwise,

$$
\mathbb{E}\left[R_{T}\right]=O\left(\sqrt{\frac{T}{q_{\min }}}+T^{1 / 3} d^{2 / 3}\right)
$$

$q_{\text {min }}=$ minimum probability of any type $\left(\min _{i \in[d]} \mathbb{P}_{j \sim \mathcal{D}}[j=i]\right)$

Proof sketch

Theorem: If $q_{\min }$ is tiny $\left(q_{\min }<2 d^{-2 / 3} T^{-1 / 3}\right)$

$$
\mathbb{E}\left[R_{T}\right]=O\left(T^{1 / 3} d^{2 / 3}+T^{2 / 3} d^{1 / 3}\right)
$$

Proof sketch:

- In $1^{\text {st }}$ phase, item offered for free
- Phase lasts $\widetilde{\Theta}\left(T^{1 / 3} d^{2 / 3}\right)$ rounds

Phase 1

Proof sketch

Theorem: If $q_{\min }$ is tiny $\left(q_{\min }<2 d^{-2 / 3} T^{-1 / 3}\right)$

$$
\mathbb{E}\left[R_{T}\right]=O\left(T^{1 / 3} d^{2 / 3}+T^{2 / 3} d^{1 / 3}\right)
$$

Proof sketch:

- In $2^{\text {nd }}$ phase, alg competes with $p^{*}(Q)$
- Competing with $p^{*}(Q)$ instead of optimal price adds $O\left(T^{2 / 3} d^{1 / 3}\right)$ regret

$$
\underset{\bullet \Delta}{\stackrel{\Xi_{\theta_{1}} \mp \theta_{2}}{ } \Gamma_{\theta_{3}}^{\longrightarrow}} \quad Q=\{\bullet, \Delta\}
$$

Proof sketch

Theorem: If $q_{\min }$ is tiny $\left(q_{\min }<2 d^{-2 / 3} T^{-1 / 3}\right)$

$$
\mathbb{E}\left[R_{T}\right]=O\left(T^{1 / 3} d^{2 / 3}+T^{2 / 3} d^{1 / 3}\right)
$$

Proof sketch:

- In $2^{\text {nd }}$ phase, maintains estimates of $\operatorname{rev}\left(\theta_{i}, Q\right)$ for all $i \in S_{t}$
- Error of estimates contributes $\tilde{O}(\sqrt{T})$ to regret

Proof sketch

Theorem: If $q_{\min }$ is tiny $\left(q_{\min }<2 d^{-2 / 3} T^{-1 / 3}\right)$

$$
\mathbb{E}\left[R_{T}\right]=O\left(T^{1 / 3} d^{2 / 3}+T^{2 / 3} d^{1 / 3}\right)
$$

Proof sketch:

- Agents themselves are learning
- Increases the regret by $O\left(d^{1 / 3} T^{1 / 3} \sqrt{\ln \frac{1}{\eta}}\right)$

What changes when $q_{\text {min }}$ isn't tiny?

Theorem: If $q_{\text {min }}$ isn't tiny $\left(q_{\text {min }}>2 d^{-2 / 3} T^{-1 / 3}\right)$

$$
\mathbb{E}\left[R_{T}\right]=O\left(\sqrt{\frac{T}{q_{\min }}}+T^{1 / 3} d^{2 / 3}\right)
$$

Proof sketch:

- Same analysis structure, but we prove that WHP, $Q=[d]$
- Significantly reduces the sources of regret

Outline

1. Introduction
2. Mechanism design background
3. Model
4. Main results
5. Regret bound overview
6. Algorithm
7. Regret bound proof sketch
8. Lower bound
9. Conclusions and future directions

Nearly-matching regret lower bound

Theorem:

- $q_{\text {min }}$-independent lower bound of $\Omega\left(T^{2 / 3} d^{1 / 3}\right)$
- If $q_{\min }>T^{-1 / 3} d^{-2 / 3}$, lower bound of $\Omega\left(\sqrt{\frac{T}{q_{\min }}}\right)$

Lower bound proof intuition

Different types have similar value distributions

- But large variation in appearance probabilities

Intuitively, any algorithm must decide if:

- It will target low-probability buyers (large confidence intervals)

Lower bound proof intuition

Different types have similar value distributions

- But large variation in appearance probabilities

Intuitively, any algorithm must decide if:

- It will target low-probability buyers (large confidence intervals)
- Or ignore low-probability buyers

Either way, any algorithm suffers high regret

Lower bound proof intuition ($d=2$)

- $\theta_{1}=\theta_{2}=\frac{1}{2} \quad \Rightarrow \quad$ baseline's price is $\frac{1}{2}$
$\cdot \mathbb{P}_{i \sim \mathcal{P}}[i=1]=q, \quad \mathbb{P}_{i \sim \mathcal{P}}[i=2]=1-q, \quad q=T^{-1 / 3}$
- Type 1's lower bound will always be $\lesssim \frac{1}{2}-\sqrt{\frac{1}{q T}}=\frac{1}{2}-T^{-1 / 3}$
- If target Type 1 and 2 , must set $p_{t} \precsim \frac{1}{2}-T^{-1 / 3}$
- Means regret is at least $T \cdot T^{-1 / 3}=T^{2 / 3}$
- If only target Type 2 , will lose $\approx q T=T^{2 / 3}$ rev. from Type 1
- No algorithm can do better than these two extremes

Lower bound proof insight

Proof indicates that any policy can't do better than one that

- Chooses ahead of time to target all customer types, or
- Only focus on the high probability types
\Rightarrow Doesn't help to dynamically change which types to target

This mirrors the behavior of our algorithm as well:

- Uses a short initial phase to eliminate low probability types
- Thereon, it only targets the remaining high probability types

Outline

1. Introduction
2. Mechanism design background
3. Model
4. Connections to prior research
5. Main results
6. Conclusions and future directions

Conclusions

No-regret pricing strategies

- Both sides of the market are learning from reviews

Algorithm strategically sets low prices early on

- Boosts sales from customers who have rare types and high values

Algorithm trades off:

- Revenue loss due to discounts from the initial phase, and
- Future revenue gains

Lower bound: algorithm is optimal up to lower order terms

Future directions

Pricing strategies when buyers don't always leave reviews Mimics real-world buyer behaviors

Future directions

What if the buyers appear over severall rounds?
May behave strategically in order to purchase at lower future prices

Prior research: Buyers bid strategically over many interactions

- Key difference: buyers know their own values
- [Braverman et al.,'18, Deng et al.,'19, Nekipelov et al., '15, Devanur et al.,'14]

Leveraging Reviews: Learning to Price with Buyer and Seller Uncertainty

Ellen Vitercik
Stanford University

Joint work with Wenshuo Guo, Nika Haghtalab, and Kirthevasan Kandasamy

Appeared in the Conference on Economics and Computation (EC) 2023

[^0]: \downarrow Groomer's Best Small Combo Brush
 for Cats and Small Dogs
 Visit the Hartz Store

 7,579
 . 579 ratings | 8 answered questions
 Amazon's Choice for "hart groomer's best combo dog brush"

