
Private optimization without 
constraint violations

Andrés Muñoz Medina, Umar Syed, Sergei Vassilvitskii, Ellen Vitercik

Google Research and UC Berkeley
AISTATS’21



Private linearly-constrained optimization

Goal: Privately find 𝒙 ∈ ℝ! maximizing 𝑔(𝒙) such that 𝐴𝒙 ≤ 𝒃(𝐷)

Solution can’t violate any constraint
Crucial in many applications, such as resource allocation

Lipschitz Private database
𝐷 ⊆ 𝒳



Example: linear programming

Goal: Decide which pharmacies should supply which hospitals
RHS of constraints is private:

Indicates number of patients with disease at each hospital 
If constraints violated, hospital can’t treat all patients

Transport cost

Hospitals Pharmacies



Our contributions

Differentially-private algorithm

Main result: Nearly-matching lower bound on loss 
Matching up to log factors
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Most related prior research

Differentially private linear programming
Hsu et al., ICALP’14; Cummings et al., WINE’15

Primary distinctions:
• Specific to linear programming
• Allow constraints to be violated by bounded amount
• Constraints (𝐴, 𝒃) and objective function can be private
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Differential privacy

𝒙 𝐷 ∈ ℝ!: algorithm’s output given database 𝐷

Algorithm is differentially private if:
𝒙 𝐷 reveals (almost) nothing more about a record in 𝐷

than it would have if the record wasn’t in 𝐷



Differential privacy

𝒙 𝐷 ∈ ℝ!: algorithm’s output given database 𝐷

Alice Bob Claire David

Algorithm

𝑥

Density of 𝑥 𝐷



Differential privacy

𝒙 𝐷 ∈ ℝ!: algorithm’s output given database 𝐷
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Differential privacy

Two databases 𝐷,𝐷′ are neighboring if differ on ≤ 1 element
Denoted 𝐷~𝐷′

Algorithm is (𝜀, 𝛿)-differentially private if:
For any 𝐷~𝐷′ and 𝑉 ⊆ ℝ!, ℙ 𝒙 𝐷 ∈ 𝑉 ≤ 𝑒"ℙ 𝒙 𝐷# ∈ 𝑉 + 𝛿



Outline

1. Introduction
2. Background: Differential privacy
3. Algorithm
4. Lower bound
5. Experiments
6. Conclusion



Feasibility assumption
If feasible region changes too much between databases:

Private optimization w/o constraint violations is impossible

Assumption: ⋂$⊆𝒳{𝒙 ∶ 𝐴𝒙 ≤ 𝒃 𝐷 } ≠ ∅
E.g., it includes the origin

In particular, ⋂$⊆𝒳{𝒙 ∶ 𝐴𝒙 ≤ 𝒃 𝐷 } = 𝒙 ∶ 𝐴𝒙 ≤ 𝑏'∗, … , 𝑏)∗

𝒙 ∶ 𝐴𝒙 ≤ 𝒃 𝐷

𝒙 ∶ 𝐴𝒙 ≤ 𝒃 𝐷′
𝐷~𝐷′

There’s no (𝜖, 𝛿)-DP 
algorithm with 𝛿 < 1



Algorithm
1. Map constraint vector 𝒃(𝐷) ↦ @𝒃(𝐷) such that @𝒃 𝐷 ≤ 𝒃(𝐷)

using the Truncated Laplace Mechanism
2. Return 𝒙 ∈ ℝ! maximizing 𝑔(𝒙) such that 𝐴𝒙 ≤ @𝒃 𝐷



Algorithm
1. Map constraint vector 𝒃(𝐷) ↦ @𝒃(𝐷) such that @𝒃 𝐷 ≤ 𝒃(𝐷):
• Sensitivity: ∆= max

,~,-
𝒃 𝐷 − 𝒃 𝐷- .

• 𝑠 = /
0 ln

1 2!3.
4 + 1

• 𝜂5 = Truncated Laplace noise with scale /0 and support [−𝑠, 𝑠]
• 9𝒃 𝐷 5 = max 𝒃 𝐷 5 − 𝑠 + 𝜂5, 𝑏5∗

𝒃 𝐷 !

Density of 7𝒃 𝐷 !

𝒃 𝐷 ! − 2𝑠



Algorithm
1. Map constraint vector 𝒃(𝐷) ↦ @𝒃(𝐷) such that @𝒃 𝐷 ≤ 𝒃(𝐷)

using the Truncated Laplace Mechanism
2. Return 𝒙 ∈ ℝ! maximizing 𝑔(𝒙) such that 𝐴𝒙 ≤ @𝒃 𝐷

Important properties:
Satisfies constraints with probability 1

𝐴𝒙 ≤ $𝒃 𝐷 ≤ 𝒃 𝐷

Satisfies (𝜺, 𝜹)-DP
Truncated Laplace is private

1
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Linear system condition number

𝛼*,,(𝐴) = sup
𝒖./

𝒖 *∗ ∶
𝐴0𝒖 ,∗ = 1

& the rows of 𝐴 corresponding to nonzero
components of 𝒖 are linearly independent

E.g., when 𝑝 = 𝑞 = 2 and 𝐴 is nonsingular, 𝛼*,,(𝐴) = 𝜎1234' (𝐴)

Theorem [Li, ‘93]:
• Let 𝑆 = {𝒙 ∶ 𝐴𝒙 ≤ 𝒃} and 𝑆# = 𝒙 ∶ 𝐴𝒙 ≤ 𝒃#
• For all 𝒙 ∈ 𝑆, inf

𝒙"∈7"
𝒙 − 𝒙# , ≤𝛼*,,(𝐴) 𝒃 − 𝒃# *



Quality guarantee

Upper bound: Suppose 𝑔 is 𝐿-Lipschitz under a ,. Then

𝑔 𝒙∗ − 𝑔 𝒙(𝐷) ≤ Δ ⋅ 𝐿 ⋅ inf
*.'

𝛼*,, 𝐴
# 𝑚 ⋅

2
𝜀
⋅ ln

𝑚 𝑒" − 1
𝛿

+ 1

Optimal 
solution



Quality guarantee

Upper bound: Suppose 𝑔 is 𝐿-Lipschitz under a ,. Then

𝑔 𝒙∗ − 𝑔 𝒙(𝐷) ≤ Δ ⋅ 𝐿 ⋅ inf
*.'

𝛼*,, 𝐴
# 𝑚 ⋅

2
𝜀
⋅ ln

𝑚 𝑒" − 1
𝛿

+ 1

Algorithm’s 
output



Quality guarantee

Upper bound: Suppose 𝑔 is 𝐿-Lipschitz under a ,. Then

𝑔 𝒙∗ − 𝑔 𝒙(𝐷) ≤ Δ ⋅ 𝐿 ⋅ inf
*.'

𝛼*,, 𝐴
# 𝑚 ⋅

2
𝜀
⋅ ln

𝑚 𝑒" − 1
𝛿

+ 1

Constraints’ 
sensitivity



Quality guarantee

Upper bound: Suppose 𝑔 is 𝐿-Lipschitz under a ,. Then

𝑔 𝒙∗ − 𝑔 𝒙(𝐷) ≤ Δ ⋅ 𝐿 ⋅ inf
*.'

𝛼*,, 𝐴
# 𝑚 ⋅

2
𝜀
⋅ ln

𝑚 𝑒" − 1
𝛿

+ 1

Number of 
constraints



Quality guarantee

Upper bound: Suppose 𝑔 is 𝐿-Lipschitz under a ,. Then

𝑔 𝒙∗ − 𝑔 𝒙(𝐷) ≤ Δ ⋅ 𝐿 ⋅ inf
*.'

𝛼*,, 𝐴
# 𝑚 ⋅

2
𝜀
⋅ ln

𝑚 𝑒" − 1
𝛿

+ 1

𝜀, 𝛿 -differential 
privacy



Nearly-matching lower bound

Upper bound: Suppose 𝑔 is 𝐿-Lipschitz under a ,. Then

𝑔 𝒙∗ − 𝑔 𝒙(𝐷) ≤ Δ ⋅ 𝐿 ⋅ inf
*.'

𝛼*,, 𝐴
# 𝑚 ⋅

2
𝜀
⋅ ln

𝑚 𝑒" − 1
𝛿

+ 1

Lower bnd (informal): Exist problems s.t. for any 𝜀, 𝛿 -DP alg,

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ Δ ⋅ 𝐿 a inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅

1
4𝜀
⋅ ln

𝑒" − 1
2𝛿

+ 1



Nearly-matching lower bound

Upper bound: Suppose 𝑔 is 𝐿-Lipschitz under a ,. Then

𝑔 𝒙∗ − 𝑔 𝒙(𝐷) ≤ Δ ⋅ 𝐿 ⋅ inf
*.'

𝛼*,, 𝐴
# 𝑚 ⋅

2
𝜀
⋅ ln

𝑚 𝑒" − 1
𝛿

+ 1

Lower bnd (informal): Exist problems s.t. for any 𝜀, 𝛿 -DP alg,

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ Δ ⋅ 𝐿 a inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅

1
4𝜀
⋅ ln

𝑒" − 1
2𝛿

+ 1

Takeaway: Matching up to 𝑶 𝐥𝐧𝒎



Quality upper bound

Upper bound: Suppose 𝑔 is 𝐿-Lipschitz under a ,. Then

𝑔 𝒙∗ − 𝑔 𝒙(𝐷) ≤ Δ ⋅ 𝐿 ⋅ inf
*.'

𝛼*,, 𝐴
# 𝑚 ⋅

2
𝜀
⋅ ln

𝑚 𝑒" − 1
𝛿

+ 1

Proof:
• 𝒃: Arbitrary vector in support of @𝒃(𝐷) and 𝑆 = 𝒙 ∶ 𝐴𝒙 ≤ 𝒃
• From Li [‘93]: inf

𝒙∈7
𝒙∗ − 𝒙 , ≤𝛼*,,(𝐴) 𝒃(𝐷) − 𝒃 *

• 𝒃(𝐷) − 𝒃 * ≤ 2𝑠# 𝑚

𝒃 𝐷 !𝒃 𝐷 ! − 2𝑠

2𝑠
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Nearly-matching lower bound

Theorem (more details):
• 𝐴: arbitrary diagonal matrix
• 𝑔 𝑥 = 1, 𝑥
• For any Δ > 0, exists mapping from databases 𝐷 to 𝒃(𝐷) s.t.:

1. Sensitivity of 𝒃(𝐷) is Δ
2. For any 𝜖 > 0, 𝛿 ∈ 0,½ and any 𝜀, 𝛿 -DP algorithm,

𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ Δ ⋅ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 ⋅ '
8"
⋅ ln 9$4'

:;
+ 1𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf

*.'
𝛼*,' 𝐴

# 𝑚 ⋅ <
8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

" #!
$

= optimal given 𝐷!
" #!"#

$

𝑥
Support of algorithm given 𝑫𝒊

Support of algorithm given 𝑫𝒊&𝟏

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 a <

8"
ln 9$4'

:;
+ 1

Proof sketch for 1D special case (max 𝑔 𝑥 = 𝑥 s.t. 𝐴𝑥 ≤ 𝑏(𝐷)):
• For all 𝑖 ∈ ℤ, let 𝐷= be a database with 𝐷=~𝐷=>' & 𝑏 𝐷= = Δ𝑖

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch for 1D special case (max 𝑔 𝑥 = 𝑥 s.t. 𝐴𝑥 ≤ 𝑏(𝐷)):
• For all 𝑖 ∈ ℤ, let 𝐷= be a database with 𝐷=~𝐷=>' & 𝑏 𝐷= = Δ𝑖
• For any 𝑉 ⊆ ℝ, ℙ 𝑥 𝐷= ∈ 𝑉 ≤ 𝑒"ℙ 𝑥 𝐷=4' ∈ 𝑉 + 𝛿

" #!
$

= optimal given 𝐷!
" #!"#

$

Density of 𝑥 𝐷!
𝑥

Only 𝛿 mass

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch for 1D special case (max 𝑔 𝑥 = 𝑥 s.t. 𝐴𝑥 ≤ 𝑏(𝐷)):
• For all 𝑖 ∈ ℤ, let 𝐷= be a database with 𝐷=~𝐷=>' & 𝑏 𝐷= = Δ𝑖
• For any 𝑉 ⊆ ℝ, ℙ 𝑥 𝐷= ∈ 𝑉 ≤ 𝑒"ℙ 𝑥 𝐷=4' ∈ 𝑉 + 𝛿

" #!
$

= optimal given 𝐷!
" #!"#

$

Density of 𝑥 𝐷!
𝑥

𝑥 𝐷!&( only has 𝛿 mass in this interval

" #!"$
$

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch for 1D special case (max 𝑔 𝑥 = 𝑥 s.t. 𝐴𝑥 ≤ 𝑏(𝐷)):
• For all 𝑖 ∈ ℤ, let 𝐷= be a database with 𝐷=~𝐷=>' & 𝑏 𝐷= = Δ𝑖
• For any 𝑉 ⊆ ℝ, ℙ 𝑥 𝐷= ∈ 𝑉 ≤ 𝑒"ℙ 𝑥 𝐷=4' ∈ 𝑉 + 𝛿

" #!
$

= optimal given 𝐷!

Density of 𝑥 𝐷!
𝑥

Only 𝑒)𝛿 + 𝛿 mass

" #!"#
$

" #!"$
$

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch for 1D special case (max 𝑔 𝑥 = 𝑥 s.t. 𝐴𝑥 ≤ 𝑏(𝐷)):
• For all 𝑖 ∈ ℤ, let 𝐷= be a database with 𝐷=~𝐷=>' & 𝑏 𝐷= = Δ𝑖
• For any 𝑉 ⊆ ℝ, ℙ 𝑥 𝐷= ∈ 𝑉 ≤ 𝑒"ℙ 𝑥 𝐷=4' ∈ 𝑉 + 𝛿

" #!
$

= optimal given 𝐷!

Density of 𝑥 𝐷!
𝑥

" #!" %
$

= *(!& , )
$

for 𝑡 = (
.
ln /&&(

01
+ 1

Only 𝛿 ∑ℓ34
, &( 𝑒)ℓ mass

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch for 1D special case (max 𝑔 𝑥 = 𝑥 s.t. 𝐴𝑥 ≤ 𝑏(𝐷)):
• For all 𝑖 ∈ ℤ, let 𝐷= be a database with 𝐷=~𝐷=>' & 𝑏 𝐷= = Δ𝑖
• For any 𝑉 ⊆ ℝ, ℙ 𝑥 𝐷= ∈ 𝑉 ≤ 𝑒"ℙ 𝑥 𝐷=4' ∈ 𝑉 + 𝛿

" #!
$

= optimal given 𝐷!

Density of 𝑥 𝐷!
𝑥

" #!" %
$

= *(!& , )
$

for 𝑡 = (
.
ln /&&(

01
+ 1

Only 𝛿 ∑ℓ34
, &( 𝑒)ℓ mass

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch for 1D special case (max 𝑔 𝑥 = 𝑥 s.t. 𝐴𝑥 ≤ 𝑏(𝐷)):
• For all 𝑖 ∈ ℤ, let 𝐷= be a database with 𝐷=~𝐷=>' & 𝑏 𝐷= = Δ𝑖
• For any 𝑉 ⊆ ℝ, ℙ 𝑥 𝐷= ∈ 𝑉 ≤ 𝑒"ℙ 𝑥 𝐷=4' ∈ 𝑉 + 𝛿

" #!
$

= optimal given 𝐷!

Density of 𝑥 𝐷!
𝑥

" #!" %
$

= *(!& , )
$

for 𝑡 = (
.
ln /&&(

01
+ 1

Only 𝛿 ∑ℓ34
, &( 𝑒)ℓ mass, which is ≤ (

0

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch for 1D special case (max 𝑔 𝑥 = 𝑥 s.t. 𝐴𝑥 ≤ 𝑏(𝐷)):
Law of total exp.: 𝔼 𝑔 𝑥(𝐷=) ≤ <=

?
− < @

?
a ℙ 𝑥 𝐷= ≤ 𝑡

≤ 𝑔 𝑥∗ − <@
8?

= 𝑔 𝑥∗ − <@
8
a 𝛼,,' 𝐴 (∀𝑞)

" #!
$

= optimal given 𝐷!

Density of 𝑥 𝐷!
𝑥

" #!" %
$

= *(!& , )
$

for 𝑡 = (
.
ln /&&(

01
+ 1

Only ≤ (
0

mass 

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch: Diagonal matrix 𝐴 with entries 𝑎', … , 𝑎) > 0

Feasible set
𝐴𝒙 ≤ 𝒃(𝐷)

Feasible set 𝐴𝒙 ≤ 𝒃 𝐷5
with 𝐷5~𝐷

Only 𝛿 probability 
mass on 𝒙(𝐷)

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch: Diagonal matrix 𝐴 with entries 𝑎', … , 𝑎) > 0
• 𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ ∑ '

A%
⋅ <
8"
⋅ ln 9$4'

:;
+ 1

Mass 
pushed 
inward

𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ inf
*.'

𝛼*,' 𝐴
# 𝑚 ⋅ <

8"
ln 9$4'

:;
+ 1

Optimal solution 𝒙∗



Lower bound: Proof sketch

Theorem: 𝑔 𝒙∗ − 𝔼 𝑔 𝒙 ≥ inf
*.'

𝛼*,' 𝐴 ⋅ # 𝑚 a <
8"
a ln 9$4'

:;
+ 1

Proof sketch: Diagonal matrix 𝐴 with entries 𝑎', … , 𝑎) > 0
• 𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ ∑ '

A%
a <
8"
a ln 9$4'

:;
+ 1

• 𝛼B,' 𝐴 = sup
𝒖./

𝒖 ': 𝐴0𝒖 B = 1 = ∑ '
A%

• 𝑔 𝒙∗ − 𝔼 𝑔 𝒙(𝐷) ≥ 𝛼B,' 𝐴 a & 𝑚 a <
8"
a ln 9$4'

:;
+ 1
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Experiments with Dow Jones data

Individuals pool money to invest
Amount private except to investment manager

Goal: Minimize variance subject to minimum expected return

Privacy parameter 𝛿

Privacy 
parameter 𝜀

Variance 
increase 

over 
optimal
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Conclusions

Algorithm for linearly-constrained optimization
Solution never violates the constraints

Algorithm’s loss is optimal up to log factors

Future research: What if matrix 𝐴 is private?


