Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Methods

NeurlPS'23

Constantine Caramanis, Dimitris Fotakis, Alkis Kalavasis, Vasilis Kontonis, Christos Tzamos

Stanford CS/MS&E 331

Gradient descent for combinatorial opt

- Common pipeline (e.g., several papers from this quarter):
 - 1. Train NN whose parameters define a distribution over solutions
 - 2. Optimize expected cost via gradients
- Works well, but lacks theory explaining why
- Challenges:
 - Naïve **exponential-size** simplexes guarantee convexity
 - But compact parameterizations often have bad landscapes
- Q: Design polynomial-size, well-behaved distribution families where gradient descent **provably** finds near-optimal solutions?
- This paper: yes, with applications to several CO problems

Setup

- Instances $I \in \mathcal{I}$ with common solution space S
 - Prior distribution ${\mathcal R}$ over train/test inputs
- Cost function $L(\cdot; I): S \to \mathbb{R}$ (assume efficient to evaluate)
 - E.g., for max cut: L(s; I) = -(cut weight)
 - Results hold even for blackbox/oracle access to L
- Distribution $p(\cdot; I, \mathbf{w})$ over solutions with trainable $\mathbf{w} \in \mathcal{W}$
- Loss function $\mathcal{L}(\mathbf{w}) = \mathbb{E}_{I \sim \mathcal{R}, S \sim p(\cdot; I, \mathbf{w})}[L(s; I)]$
- **Goal:** find w so that $\mathcal{L}(w)$ is close to opt $= \mathbb{E}_{I \sim \mathcal{R}} \left[\min_{s \in S} L(s; I) \right]$

Gradient descent dynamics

- Algorithm is fixed: gradient descent
 - Many other algorithms you could imagine (see, e.g., Remark 7)
 - Choose gradient descent because it's very common
- At each iteration (t):
 - 1. Sample an instance $I \sim R$ (or a minibatch)
 - 2. Sample solutions $s_1, ..., s_m \sim p(\cdot; I, \mathbf{w}_t)$
 - 3. Query costs $c_k = L(I, s_k)$

4. Form a policy-gradient estimate \boldsymbol{g}_t and update $\boldsymbol{w}_{t+1} \leftarrow \boldsymbol{w}_t + \eta_t \boldsymbol{g}_t$

$$g_t \approx \frac{1}{m} \sum_{k=1}^{\infty} c_k \nabla_w \log p(s_k; I, w_t)$$
This paper: How to regularize loss

This paper: Form of the distribution

Key desiderata

- Distribution over all (s, I) needs exponentially many params
- Neural parameterizations are compressed representations
 - [I] = # bits to represent instance
- Three desiderata:
 - Complete: some \overline{w} achieves $\mathcal{L}(\overline{w}) \leq \text{opt} + \epsilon$
 - Compressed: Description size of \mathcal{W} is $[\mathcal{W}] = \text{poly}([\mathcal{I}], \frac{1}{\epsilon})$
 - **Efficiency:** first-order methods reach 2ϵ -opt loss in poly $([\mathcal{W}], \frac{1}{\epsilon})$ steps
- Does not imply P=NP: sampling may still be hard
 - In practice, approximate samplers often work well

Key assumptions

Feature mappings $\psi_S(s) \in \mathbb{R}^{n_X}, \psi_{\mathcal{I}}(I) \in \mathbb{R}^{n_Z}$

- 1. Boundedness: $\|\psi_S(s)\|_2 \le D_S$, $\|\psi_J(I)\|_2 \le D_J$ for all s, I
- 2. Bilinear cost structure $L(s,I) = \psi_S(s)^T M \psi_J(I)$ with $||M||_F \leq C$
 - Example in future slides
 - M is unknown (results hold even for blackbox/oracle access to L)
- 3. Variance preserves features when $s \sim \text{Unif}(S)$
 - For all $\boldsymbol{v} \in \mathbb{R}^{n_X}$, $\operatorname{Var}_{s \sim \operatorname{Unif}(S)}[\boldsymbol{v} \cdot \psi_S(s)] \ge \alpha \|\boldsymbol{v}\|_2$
 - Ensures gradients of optimization objective are not vanishing
- 4. Polynomial scaling $n_X, n_Z, D_S, D_J, C \leq \text{poly}([\mathcal{I}]), \alpha \geq 1/\text{poly}([\mathcal{I}])$

Example: Max-cut

Diagonal degree matrix:

Adjacency matrix:

Laplacian:

$$D = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$L_G = D - A = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{pmatrix}$$

Example: Max-cut

- For n-node graph, max-cut equivalent to: $\max_{s \in \{\pm 1\}^n} \frac{1}{4} \mathbf{s}^{\mathsf{T}} L_G \mathbf{s}$
- For any $s \in \{\pm 1\}^n$, $\psi_S(s) = (ss^{\mathsf{T}})^{\mathsf{b}} \in \mathbb{R}^{n^2}$
- $\psi_{\mathcal{I}}(G) = L_G^{\ \ \ } \in \mathbb{R}^{n^2}$
- 1. Boundedness: $\|\psi_S(\mathbf{s})\|_2$, $\|\psi_{\mathcal{I}}(G)\|_2 \leq \text{poly}([\mathcal{I}]) = \text{poly}(n)$
- 2. Bilinear cost: Define $M = \frac{-1}{4} \cdot I_{n^2}$

$$L(s,I) = \psi_{\mathcal{I}}(G)^{\mathsf{T}} M \psi_{S}(s) = -\frac{1}{4} (L_{G}^{\mathsf{b}})^{\mathsf{T}} (ss^{\mathsf{T}})^{\mathsf{b}}$$

3. Variance preservation: $Var_{s \sim Unif(\{\pm 1\}^n)}[\boldsymbol{v} \cdot \boldsymbol{s}] = \|\boldsymbol{v}\|_2^2$

Solution sampler: Obstacle 1

- Goal in mind: sample $\propto \exp(-\tau \cdot \psi_S(s)^{\top} M \psi_J(I))$
 - τ : temperature; as $\tau \to \infty$, samples solutions with small loss
 - But M is **unknown** (results hold even for blackbox/oracle access to L)
- Natural candidate: $p(s; I, W) \propto \exp(\psi_S(s)^T W \psi_J(I))$
- In GD, is W_t moving in the direction of $\overline{W} = -\tau M$ with $\tau \to \infty$?
 - Yes: $\nabla_W \mathcal{L}(W) \cdot M \ge 0$, so moving in the direction of -M decreases loss
- But no finite optimizer; infimum only reached as $||W|| \to \infty$
- Conflicts with "efficiency" desideratum: "First-order methods reach 2ϵ -opt loss in poly $([\mathcal{W}], \frac{1}{\epsilon})$ steps"

Solution 1: Add entropy regularization

- Natural candidate: $p(s; I, W) \propto \exp(\psi_S(s)^T W \psi_J(I))$
- Make loss landscape more benign by adding regularizer
 - Goal: make the landscape "quasar-convex"
- f is γ -quasar-convex wrt minimizer x^* on domain D if, $\forall x \in D$ $\nabla f(x) \cdot (x x^*) \ge \gamma \big(f(x) f(x^*) \big), \qquad \gamma \in [0,1]$
- Gradient always points somewhat toward x^*
- Role of γ :
 - Measures how strongly the gradient "leans" toward the optimum
 - Larger $\gamma \Rightarrow$ faster progress for gradient descent

Solution 1: Add entropy regularization

- Natural candidate: $p(s; I, W) \propto \exp(\psi_S(s)^T W \psi_J(I))$
- Make loss landscape more benign by adding regularizer
- Negative entropy: $H(W) = \mathbb{E}_{I \sim \mathcal{R}, s \sim p(\cdot; I, W)}[\log p(s; I, W)]$
- Regularized objective: $\mathcal{L}_{\lambda}(W) = \mathcal{L}(W) + \lambda H(W)$
- Paper shows:
 - $\overline{W} = -\frac{M}{\lambda}$ is a minimizer of \mathcal{L}_{λ}
 - Sampling from $p(s; I, \overline{W})$ yields 2ϵ -opt loss for $\lambda = \text{poly}\left(\epsilon, \frac{1}{D_S}, \frac{1}{D_I}, \dots\right)$
- So GD will eventually converge to a 2ϵ -opt loss
 - But quasar-convexity parameter γ may be very small \Rightarrow **slow rates**

Obstacle 2: Vanishing gradients

For quasar-convexity, we want $\nabla \mathcal{L}_{\lambda}(W) \cdot (W - \overline{W}) \geq \gamma \left(\mathcal{L}_{\lambda}(W) - \mathcal{L}_{\lambda}(\overline{W}) \right)$

Paper proves:

$$\nabla \mathcal{L}_{\lambda}(W) \cdot (W - \overline{W}) = \operatorname{Var}[\psi_{S}(s)^{\top}(W - \overline{W})\psi_{J}(I)] = \operatorname{Var}(Y)$$

Problem: variance term can be tiny near \overline{W} , so γ may be small

- Sampler is a softmax over scores: $p(s; I, W) \propto \exp(\psi_S(s)^T W \psi_J(I))$
- As ||W|| grows, softmax concentrates on argmax of $\psi_S(s)^T W \psi_J(I)$
- So RV Y becomes almost deterministic, so $Var(Y) \rightarrow 0$

Solution 2: Fast/slow mixture generators

New generator family: mix two exponential-family samplers $\mathcal{P} = \{(1 - \beta^*)p(\cdot; I, W) + \beta^*p(\cdot; I, \rho^*W)\}$

Fast component: $p(\cdot; I, W)$

• Drives convergence toward minimizer $\left(\overline{W} = -\frac{M}{\lambda}\right)$

Slow component: $p(\cdot; I, \rho^*W)$ with small ρ^*

- Stays close to the **uniform** distribution over solutions
- Key use of assumption: variance preservation under uniform dist
 - Guarantees a lower bound on variance

Gradient descent dynamics

At each iteration (t):

- 1. Sample an instance $I \sim R$ (or a minibatch)
- 2. Sample solutions $s_1, ..., s_m \sim p(\cdot; I, \mathbf{w}_t)$
- 3. Query costs $c_k = L(I, s_k)$

This paper: Exponential mixture

4. Form a policy-gradient estimate and update $w_{t+1} \leftarrow w_t + \eta_t g_t$

$$g_t \approx \frac{1}{m} \sum_{k=1}^{m} c_k \nabla_w \log p(s_k; I, w_t)$$

This paper: Replace with entropy-regularized loss

- **Complete:** some \overline{w} achieves $\mathcal{L}(\overline{w}) \leq \text{opt} + \epsilon$
- **Compressed:** Description size of \mathcal{W} is $[\mathcal{W}] = \text{poly}([\mathcal{I}], 1/\epsilon)$
- **Efficiency:** GD reaches 2ϵ -opt loss in poly([\mathcal{W}], $1/\epsilon$) steps

Overview

- (Under assumptions) exist solution samplers that are:
 - Complete (near-optimal solutions exist)
 - Compressed (poly-sized parameterization)
 - Efficiently optimizable (GD finds ϵ -opt in poly steps)
- Two key landscape obstacles:
 - Minimizers at infinity
 - Vanishing gradients near good solutions
- Two corresponding fixes:
 - Entropy-regularized loss → finite, quasar-convex minimizer
 - Fast/slow exponential mixture \rightarrow non-vanishing gradients
- Results apply to several canonical CO problems