
Optimizing Solution-Samplers for
Combinatorial Problems:

The Landscape of Policy-Gradient Methods
NeurIPS’23

Constantine Caramanis, Dimitris Fotakis, Alkis Kalavasis, Vasilis
Kontonis, Christos Tzamos

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Gradient descent for combinatorial opt

• Common pipeline (e.g., several papers from this quarter):
1. Train NN whose parameters define a distribution over solutions
2. Optimize expected cost via gradients

• Works well, but lacks theory explaining why

• Challenges:
• Naïve exponential-size simplexes guarantee convexity
• But compact parameterizations often have bad landscapes

• Q: Design polynomial-size, well-behaved distribution families
where gradient descent provably finds near-optimal solutions?

• This paper: yes, with applications to several CO problems

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Setup

• Instances 𝐼 ∈ ℐ with common solution space 𝑆
• Prior distribution ℛ over train/test inputs

• Cost function 𝐿 ⋅ ; 𝐼 : 𝑆 → ℝ (assume efficient to evaluate)
• E.g., for max cut: 𝐿 𝑠 ; 𝐼 = −(cut weight)

• Results hold even for blackbox/oracle access to 𝐿

• Distribution 𝑝 ⋅ ; 𝐼, 𝒘 over solutions with trainable 𝒘 ∈ 𝒲

• Loss function ℒ 𝒘 = 𝔼𝐼∼ℛ,𝑠∼𝑝 ⋅ ;𝐼,𝒘 𝐿 𝑠 ; 𝐼

• Goal: find 𝒘 so that ℒ 𝒘 is close to opt = 𝔼𝐼∼ℛ min
𝑠∈𝑆

𝐿 𝑠 ; 𝐼

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Gradient descent dynamics

• Algorithm is fixed: gradient descent
• Many other algorithms you could imagine (see, e.g., Remark 7)
• Choose gradient descent because it’s very common

• At each iteration (𝒕):
1. Sample an instance 𝐼 ∼ 𝑅 (or a minibatch)
2. Sample solutions 𝑠1, … , 𝑠𝑚 ∼ 𝑝 ⋅ ; 𝐼, 𝒘𝑡

3. Query costs 𝑐𝑘 = 𝐿 𝐼, 𝑠𝑘
4. Form a policy-gradient estimate 𝒈𝑡 and update 𝒘𝑡+1 ← 𝒘𝑡 + 𝜂𝑡𝒈𝑡

𝒈𝑡 ≈
1

𝑚
෍

𝑘=1

𝑚

𝑐𝑘 ∇𝒘 log 𝑝 𝑠𝑘 ; 𝐼, 𝒘𝑡

Stanford CS/MS&E 331

This paper: How to regularize loss

This paper: Form of the distribution

https://vitercik.github.io/ai4algs_25/

Key desiderata

• Distribution over all 𝑠, 𝐼 needs exponentially many params

• Neural parameterizations are compressed representations
• ℐ = # bits to represent instance

• Three desiderata:
• Complete: some ഥ𝒘 achieves ℒ ഥ𝒘 ≤ opt + 𝜖

• Compressed: Description size of 𝒲 is 𝒲 = poly ℐ ,
1

𝜖

• Efficiency: first-order methods reach 2𝜖-opt loss in poly 𝒲 ,
1

𝜖
 steps

• Does not imply P=NP: sampling may still be hard
• In practice, approximate samplers often work well

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Key assumptions

Feature mappings 𝜓𝑆 𝑠 ∈ ℝ𝑛𝑋 , 𝜓ℐ 𝐼 ∈ ℝ𝑛𝑍

1. Boundedness: 𝜓𝑆 𝑠 2 ≤ 𝐷𝑆, 𝜓ℐ 𝐼 2 ≤ 𝐷ℐ for all 𝑠, 𝐼

2. Bilinear cost structure 𝐿 𝑠, 𝐼 = 𝜓𝑆 𝑠 ⊤𝑀𝜓ℐ 𝐼 with 𝑀 𝐹 ≤ 𝐶
• Example in future slides

• 𝑀 is unknown (results hold even for blackbox/oracle access to 𝐿)

3. Variance preserves features when 𝑠 ∼ Unif(𝑆)
• For all 𝒗 ∈ ℝ𝑛𝑋, Var𝑠∼Unif 𝑆 𝒗 ⋅ 𝜓𝑆 𝑠 ≥ 𝛼 𝒗 2

• Ensures gradients of optimization objective are not vanishing

4. Polynomial scaling 𝑛𝑋, 𝑛𝑍, 𝐷𝑆, 𝐷ℐ , 𝐶 ≤ poly ℐ , 𝛼 ≥ 1/poly ℐ

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Example: Max-cut

Diagonal degree matrix: 𝐷 =

2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

Adjacency matrix: 𝐴 =

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

Laplacian: 𝐿𝐺 = 𝐷 − 𝐴 =

2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

Stanford CS/MS&E 331

1

2

3

4

https://vitercik.github.io/ai4algs_25/

Example: Max-cut

• For 𝑛-node graph, max-cut equivalent to: max
𝒔∈ ±1 𝑛

1

4
𝒔⊤𝐿𝐺𝒔

• For any 𝒔 ∈ ±1 𝑛, 𝜓𝑆 𝒔 = 𝒔𝒔⊤ ♭ ∈ ℝ𝑛2

• 𝜓ℐ 𝐺 = 𝐿𝐺
♭ ∈ ℝ𝑛2

1. Boundedness: 𝜓𝑆 𝒔 2, 𝜓ℐ 𝐺 2 ≤ poly ℐ = poly 𝑛

2. Bilinear cost: Define 𝑀 =
−1

4
⋅ 𝐼𝑛2

𝐿 𝑠, 𝐼 = 𝜓ℐ 𝐺 ⊤𝑀𝜓𝑆 𝒔 = −
1

4
𝐿𝐺

♭ ⊤ 𝒔𝒔⊤ ♭

3. Variance preservation: Var𝒔∼Unif ±1 𝑛 𝒗 ⋅ 𝒔 = 𝒗 2
2

Stanford CS/MS&E 331

Flatten to ℝ𝑛2

https://vitercik.github.io/ai4algs_25/

Solution sampler: Obstacle 1

• Goal in mind: sample ∝ exp −𝜏 ⋅ 𝜓𝑆 𝑠 ⊤𝑀𝜓ℐ 𝐼
• 𝜏: temperature; as 𝜏 → ∞, samples solutions with small loss
• But 𝑀 is unknown (results hold even for blackbox/oracle access to 𝐿)

• Natural candidate: 𝑝 𝑠 ; 𝐼, 𝑊 ∝ exp 𝜓𝑆 𝑠 ⊤𝑊𝜓ℐ 𝐼

• In GD, is 𝑊𝑡 moving in the direction of ഥ𝑊 = −𝜏𝑀 with 𝜏 → ∞?
• Yes: ∇𝑊ℒ 𝑊 ⋅ 𝑀 ≥ 0, so moving in the direction of −𝑀 decreases loss

• But no finite optimizer; infimum only reached as 𝑊 → ∞

• Conflicts with “efficiency” desideratum:

“First-order methods reach 2𝜖-opt loss in poly 𝒲 ,
1

𝜖
 steps”

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Solution 1: Add entropy regularization

• Natural candidate: 𝑝 𝑠 ; 𝐼, 𝑊 ∝ exp 𝜓𝑆 𝑠 ⊤𝑊𝜓ℐ 𝐼

• Make loss landscape more benign by adding regularizer
• Goal: make the landscape “quasar-convex”

• 𝑓 is 𝛾-quasar-convex wrt minimizer 𝑥∗ on domain 𝐷 if, ∀𝑥 ∈ 𝐷
∇𝑓 𝑥 ⋅ 𝑥 − 𝑥∗ ≥ 𝛾 𝑓 𝑥 − 𝑓 𝑥∗ , 𝛾 ∈ 0,1

• Gradient always points somewhat toward 𝑥∗

• Role of 𝛾:
• Measures how strongly the gradient “leans” toward the optimum
• Larger 𝜸 ⇒ faster progress for gradient descent

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Solution 1: Add entropy regularization

• Natural candidate: 𝑝 𝑠 ; 𝐼, 𝑊 ∝ exp 𝜓𝑆 𝑠 ⊤𝑊𝜓ℐ 𝐼

• Make loss landscape more benign by adding regularizer

• Negative entropy: 𝐻 𝑊 = 𝔼𝐼∼ℛ,𝑠∼𝑝 ⋅ ;𝐼,𝑊 log 𝑝 𝑠 ; 𝐼, 𝑊

• Regularized objective: ℒ𝜆 𝑊 = ℒ 𝑊 + 𝜆𝐻 𝑊

• Paper shows:
• ഥ𝑊 = −

𝑀

𝜆
 is a minimizer of ℒ𝜆

• Sampling from 𝑝 𝑠 ; 𝐼, ഥ𝑊 yields 𝟐𝝐-opt loss for 𝜆 = poly 𝜖,
1

𝐷𝑆
,

1

𝐷ℐ
, …

• So GD will eventually converge to a 2𝜖-opt loss
• But quasar-convexity parameter 𝛾 may be very small ⇒ slow rates

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Obstacle 2: Vanishing gradients

For quasar-convexity, we want
∇ℒ𝜆 𝑊 ⋅ 𝑊 − ഥ𝑊 ≥ 𝛾 ℒ𝜆 𝑊 − ℒ𝜆

ഥ𝑊

Paper proves:
∇ℒ𝜆 𝑊 ⋅ 𝑊 − ഥ𝑊 = Var 𝜓𝑆 𝑠 ⊤ 𝑊 − ഥ𝑊 𝜓ℐ 𝐼 = Var(𝑌)

Problem: variance term can be tiny near ഥ𝑊, so 𝛾 may be small
• Sampler is a softmax over scores: 𝑝 𝑠 ; 𝐼, 𝑊 ∝ exp 𝜓𝑆 𝑠 ⊤𝑊𝜓ℐ 𝐼
• As 𝑊 grows, softmax concentrates on argmax of 𝜓𝑆 𝑠 ⊤𝑊𝜓ℐ 𝐼
• So RV 𝑌 becomes almost deterministic, so Var 𝑌 → 0

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Solution 2: Fast/slow mixture generators

New generator family: mix two exponential-family samplers
𝒫 = 1 − 𝛽∗ 𝑝 ⋅ ; 𝐼, 𝑊 + 𝛽∗𝑝 ⋅ ; 𝐼, 𝜌∗𝑊

Fast component: 𝑝 ⋅ ; 𝐼, 𝑊

• Drives convergence toward minimizer ഥ𝑊 = −
𝑀

𝜆

Slow component: 𝑝 ⋅ ; 𝐼, 𝜌∗𝑊 with small 𝜌∗

• Stays close to the uniform distribution over solutions
• Key use of assumption: variance preservation under uniform dist

• Guarantees a lower bound on variance

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Gradient descent dynamics

At each iteration (𝒕):
1. Sample an instance 𝐼 ∼ 𝑅 (or a minibatch)
2. Sample solutions 𝑠1, … , 𝑠𝑚 ∼ 𝑝 ⋅ ; 𝐼, 𝒘𝑡

3. Query costs 𝑐𝑘 = 𝐿 𝐼, 𝑠𝑘
4. Form a policy-gradient estimate and update 𝒘𝑡+1 ← 𝒘𝑡 + 𝜂𝑡𝒈𝑡

𝒈𝑡 ≈
1

𝑚
෍

𝑘=1

𝑚

𝑐𝑘 ∇𝒘 log 𝑝 𝑠𝑘 ; 𝐼, 𝒘𝑡

 Complete: some ഥ𝒘 achieves ℒ ഥ𝒘 ≤ opt + 𝜖

 Compressed: Description size of 𝒲 is 𝒲 = poly ℐ , 1/𝜖

 Efficiency: GD reaches 2𝜖-opt loss in poly 𝒲 , 1/𝜖 steps

Stanford CS/MS&E 331

This paper: Replace with entropy-regularized loss

This paper: Exponential mixture

https://vitercik.github.io/ai4algs_25/

Overview

• (Under assumptions) exist solution samplers that are:
• Complete (near-optimal solutions exist)
• Compressed (poly-sized parameterization)
• Efficiently optimizable (GD finds 𝜖-opt in poly steps)

• Two key landscape obstacles:
• Minimizers at infinity
• Vanishing gradients near good solutions

• Two corresponding fixes:
• Entropy-regularized loss → finite, quasar-convex minimizer
• Fast/slow exponential mixture → non-vanishing gradients

• Results apply to several canonical CO problems

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

	Slide 1: Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Methods
	Slide 2: Gradient descent for combinatorial opt
	Slide 3: Setup
	Slide 4: Gradient descent dynamics
	Slide 5: Key desiderata
	Slide 6: Key assumptions
	Slide 7: Example: Max-cut
	Slide 8: Example: Max-cut
	Slide 9: Solution sampler: Obstacle 1
	Slide 10: Solution 1: Add entropy regularization
	Slide 11: Solution 1: Add entropy regularization
	Slide 12: Obstacle 2: Vanishing gradients
	Slide 13: Solution 2: Fast/slow mixture generators
	Slide 14: Gradient descent dynamics
	Slide 15: Overview

