Approximation Algorithms for Combinatorial Optimization with Predictions

ICLR'25

Antonios Antoniadis, Marek Eliáš, Adam Polak, Moritz Venzin

Stanford CS/MS&E 331

Motivation: Algorithms with Predictions

For many problems (vertex cover, knapsack, ...), classic fast algorithms give constant-factor **approximations**:

- For minimization, (algorithm's output cost) $\leq \rho \cdot \mathsf{OPT}$, for $\rho \geq 1$
- For minimization, (algorithm's output value) $\geq \frac{1}{\rho} \cdot \text{OPT}$, for $\rho \geq 1$

Improvements usually requires much slower algorithms

Key insight: Many applications have rich historical data

- Goal: Use this data to **predict** structure of **near-optimal** solutions
- But predictions may be infeasible, lead to costly mistakes, ...

Outline

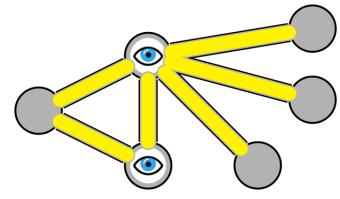
- 1. Motivation
- 2. Background: Approximation algorithm example
- 3. Paper setup
- 4. Main result: Algorithm with predictions

Background: Apx alg for vertex cover

- Input: graph G = (V, E)
- **Goal:** find $C \subseteq V$ s.t. every edge has at least one endpoint in C
 - Objective: minimize |C|

Algorithm:

- 1. Initialize cover $C \leftarrow \emptyset$, matching $M \leftarrow \emptyset$ Just for analysis
- 2. While there's an uncovered edge $(u, v) \in E$:
 - i. Add both endpoints: $C \leftarrow C \cup \{u, v\}$
 - ii. Add (u, v) to matching: $M \leftarrow M \cup \{(u, v)\}$
 - iii. Delete all edges in $\it E$ incident to $\it u$ or $\it v$
- 3. Output C



Background: Apx alg for vertex cover

- 2. While there's an uncovered edge $(u, v) \in E$:
 - i. Add both endpoints: $C \leftarrow C \cup \{u, v\}$
 - ii. Add (u, v) to matching: $M \leftarrow M \cup \{(u, v)\}$
 - iii. Delete all edges in E incident to u or v
- 3. Output C

Thm: 2-approximation algorithm $|C| \le 2 \cdot OPT$

- The edges in *M* are **disjoint** (no shared endpoints)
 - Any vertex cover must have at least one endpoint per edge in M
 - $\Rightarrow |M| \leq OPT$
- Algorithm selects **both endpoints** of every edge in |M|:
 - $\Rightarrow |C| = 2|M| \le 2 \cdot OPT$

Outline

- 1. Motivation
- 2. Background: Approximation algorithm example
- 3. Paper setup
- 4. Main result: Algorithm with predictions

Setup: Selection problems

Universe of items: $[n] = \{1, ..., n\}$ each with weight $w(i) \ge 0$

Feasible solutions: subsets $X \subseteq [n]$, feasible set \mathcal{X}

Objective:

- Minimization: pick $X \in \mathcal{X}$ minimizing $w(X) := \sum_{i \in X} w(i)$
- Maximization: pick $X \in \mathcal{X}$ maximizing $w(X) \coloneqq \sum_{i \in X} w(i)$

Many classical NP-hard problems fit this template:

• Set cover, TSP, Steiner tree, Knapsack, ...

Predictions and error model

Prediction is simply a subset of items, $\hat{X} \subseteq [n]$

Need not be feasible

To measure **prediction quality**, compare \hat{X} to optimum X^*

- False positives: items predicted but not truly in opt $\eta^+ = w(\hat{X} \setminus X^*)$
- False negatives: $\eta^- = w(X^* \setminus \widehat{X})$

Predictions may come from data:

• E.g., ERM, probabilistic neural model, ...

Outline

- 1. Motivation
- 2. Background: Approximation algorithm example
- 3. Paper setup
- 4. Main result: Algorithm with predictions

Main result: Minimization

- ullet Suppose we have a ho-approximation algorithm A
- Algorithm with prediction \hat{X} :
 - 1. Discount predicted items $\overline{w}(i) = \begin{cases} 0, & i \in \widehat{X} \\ w(i), & \text{else} \end{cases}$
 - 2. Return $X = A(\overline{w})$
- Guarantee:

$$\frac{w(X)}{w(X^*)} \le \min \left\{ \rho, 1 + \frac{\eta^+ + (\rho - 1)\eta^-}{w(X^*)} \right\}$$

- Perfect prediction ⇒ optimal solution
- Bad prediction \Rightarrow still fall back to the ρ -approximation

Proof of
$$\frac{w(X)}{w(X^*)} \le 1 + \frac{\eta^+ + (\rho - 1)\eta^-}{w(X^*)}$$

By construction,
$$w(X \setminus \hat{X}) = \overline{w}(X)$$

 $\leq \rho \cdot \text{OPT}_{\overline{w}}$
 $\leq \rho \cdot \overline{w}(X^*)$
 $= \rho \cdot w(X^* \setminus \hat{X})$

As a result,
$$w(X) = w(X \cap \hat{X}) + w(X \setminus \hat{X})$$

$$\leq w(X \cap \hat{X}) + \rho \cdot w(X^* \setminus \hat{X})$$

$$= w(X \cap \hat{X}) + w(X^* \setminus \hat{X}) + (\rho - 1) \cdot w(X^* \setminus \hat{X})$$

$$\leq w(\hat{X}) + w(X^* \setminus \hat{X}) + (\rho - 1) \cdot w(X^* \setminus \hat{X})$$

Stanford CS/MS&E 331

Proof of
$$\frac{w(X)}{w(X^*)} \le 1 + \frac{\eta^+ + (\rho - 1)\eta^-}{w(X^*)}$$

As a result,
$$w(X) \le w(\hat{X}) + w(X^* \setminus \hat{X}) + (\rho - 1) \cdot w(X^* \setminus \hat{X})$$
$$= w(\hat{X} \cup X^*) = w(X^*) + w(\hat{X} \setminus X^*)$$

Therefore,
$$w(X) \le w(X^*) + \underline{w(\hat{X} \setminus X^*)} + (\rho - 1) \cdot \underline{w(X^* \setminus \hat{X})}$$

$$\frac{\eta^+}{\eta^-}$$

Guarantee:
$$\frac{w(X)}{w(X^*)} \le \min \left\{ \rho, 1 + \frac{\eta^+ + (\rho - 1)\eta^-}{w(X^*)} \right\}$$

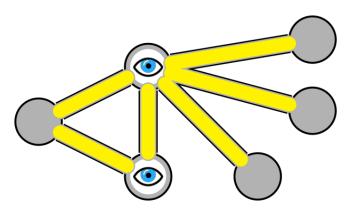
Run this algorithm and ρ -approximation algorithm A(w) in parallel, output better solution

Implications for vertex cover

Hardness: Under Unique Games Conjecture, no $(2 - \epsilon)$ -approximation is possible

Learning-augmented algorithm: approximation ratio

$$1 + \frac{\eta^+ + \eta^-}{OPT}$$



Additional results

Additional minimization problems:

- Min-weight Steiner tree
- Min-weight perfect matching
 - Poly-time with $O(|V| \cdot |E|)$ runtime
 - Linear-time 2-approximation algorithm

Similar results for maximization problems

- Max-weight clique
- Max-weight independent set
- Knapsack

Overview

Key idea: Adapt fast classic algorithms

• Turn any ρ -approximation into a **prediction-aware** algorithm

Smooth improvement with prediction quality:

• Approximation ratio improves as $\eta^+, \eta^- \to 0$, yet never worse than ρ

Broad applicability:

• Vertex cover, Steiner tree, matching, independent set, knapsack, ...