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Motivation: Algorithms with Predictions

For many problems (vertex cover, knapsack, …),
classic fast algorithms give constant-factor approximations:
• For minimization, (algorithm’s output cost) ≤ 𝜌 ⋅ OPT, for 𝜌 ≥ 1

• For minimization, (algorithm’s output value) ≥
1

𝜌
⋅ OPT, for 𝜌 ≥ 1

Improvements usually requires much slower algorithms

Key insight: Many applications have rich historical data
• Goal: Use this data to predict structure of near-optimal solutions
• But predictions may be infeasible, lead to costly mistakes, …
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Background: Apx alg for vertex cover

• Input: graph 𝐺 = (𝑉, 𝐸)

• Goal: find 𝐶 ⊆ 𝑉 s.t. every edge has at least one endpoint in 𝐶
• Objective: minimize 𝐶   

Algorithm:

1. Initialize cover 𝐶 ← ∅, matching 𝑀 ← ∅

2. While there’s an uncovered edge 𝑢, 𝑣 ∈ 𝐸:
i. Add both endpoints: 𝐶 ← 𝐶 ∪ {𝑢, 𝑣}
ii. Add 𝑢, 𝑣  to matching: 𝑀 ← 𝑀 ∪ 𝑢, 𝑣
iii. Delete all edges in 𝐸 incident to 𝑢 or 𝑣

3. Output 𝐶
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Background: Apx alg for vertex cover

2. While there’s an uncovered edge 𝑢, 𝑣 ∈ 𝐸:
i. Add both endpoints: 𝐶 ← 𝐶 ∪ {𝑢, 𝑣}
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Thm: 2-approximation algorithm 𝐶 ≤ 2 ⋅ OPT
• The edges in 𝑀 are disjoint (no shared endpoints)

• Any vertex cover must have at least one endpoint per edge in 𝑀
• ⇒ 𝑀 ≤ OPT

• Algorithm selects both endpoints of every edge in 𝑀 :
• ⇒ 𝐶 = 2 𝑀 ≤ 2 ⋅ OPT
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Setup: Selection problems

Universe of items: 𝑛 = 1, … , 𝑛  each with weight 𝑤 𝑖 ≥ 0

Feasible solutions: subsets 𝑋 ⊆ [𝑛], feasible set 𝒳

Objective:
• Minimization: pick 𝑋 ∈ 𝒳 minimizing 𝑤 𝑋 ≔  σ𝑖∈𝑋 𝑤 𝑖
• Maximization: pick 𝑋 ∈ 𝒳 maximizing 𝑤 𝑋 ≔  σ𝑖∈𝑋 𝑤 𝑖

Many classical NP-hard problems fit this template:
• Set cover, TSP, Steiner tree, Knapsack, …
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Predictions and error model

Prediction is simply a subset of items, ෠𝑋 ⊆ [𝑛]
• Need not be feasible

To measure prediction quality, compare ෠𝑋 to optimum 𝑋∗

• False positives: items predicted but not truly in opt 𝜂+ = 𝑤 ෠𝑋 ∖ 𝑋∗

• False negatives: 𝜂− = 𝑤 𝑋∗ ∖ ෠𝑋

Predictions may come from data:
• E.g., ERM, probabilistic neural model, …
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Main result: Minimization

• Suppose we have a 𝜌-approximation algorithm 𝐴 

• Algorithm with prediction ෠𝑋:

1. Discount predicted items ഥ𝑤 𝑖 = ቊ
0,  𝑖 ∈ ෠𝑋
𝑤(𝑖), else

2. Return 𝑋 = 𝐴 ഥ𝑤  

• Guarantee:
𝑤(𝑋)

𝑤(𝑋∗)
≤ min 𝜌, 1 +

𝜂+ + 𝜌 − 1 𝜂−

𝑤 𝑋∗

• Perfect prediction ⇒ optimal solution

• Bad prediction ⇒ still fall back to the 𝜌-approximation
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Proof of 
𝑤(𝑋)

𝑤(𝑋∗)
≤ 1 +

𝜂++ 𝜌−1 𝜂−

𝑤 𝑋∗

Stanford CS/MS&E 331

By construction, 𝑤 𝑋 ∖ ෠𝑋 = ഥ𝑤 𝑋

                                               ≤ 𝜌 ⋅ OPTഥ𝒘

                                               ≤ 𝜌 ⋅ ഥ𝑤 𝑋∗

                                               = 𝜌 ⋅ 𝑤 𝑋∗ ∖ ෠𝑋

As a result, 𝑤 𝑋  = 𝑤 𝑋 ∩ ෠𝑋 + 𝑤 𝑋 ∖ ෠𝑋

                               ≤ 𝑤 𝑋 ∩ ෠𝑋 + 𝜌 ⋅ 𝑤 𝑋∗ ∖ ෠𝑋

                               = 𝑤 𝑋 ∩ ෠𝑋 + 𝑤 𝑋∗ ∖ ෠𝑋 + 𝜌 − 1 ⋅ 𝑤 𝑋∗ ∖ ෠𝑋

                               ≤ 𝑤 ෠𝑋 + 𝑤 𝑋∗ ∖ ෠𝑋 + 𝜌 − 1 ⋅ 𝑤 𝑋∗ ∖ ෠𝑋

As a result, 𝑤 𝑋

≤ 𝑤 ෠𝑋 + 𝑤 𝑋∗ ∖ ෠𝑋 + 𝜌 − 1 ⋅ 𝑤 𝑋∗ ∖ ෠𝑋
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= 𝑤 ෠𝑋 ∪ 𝑋∗ = 𝑤 𝑋∗ + 𝑤 ෠𝑋 ∖ 𝑋∗

𝜂+ 𝜂−

Run this algorithm and 𝜌-approximation algorithm 𝐴 𝒘  in parallel, output better solution
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Implications for vertex cover

Hardness: Under Unique Games Conjecture,

no (2 − 𝜖)-approximation is possible

Learning-augmented algorithm: approximation ratio

1 +
𝜂+ + 𝜂−

OPT
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Additional results

Additional minimization problems:
• Min-weight Steiner tree

• Min-weight perfect matching
• Poly-time with 𝑂 𝑉 ⋅ 𝐸  runtime

• Linear-time 2-approximation algorithm

Similar results for maximization problems
• Max-weight clique

• Max-weight independent set

• Knapsack
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Overview

Key idea: Adapt fast classic algorithms
• Turn any 𝜌-approximation into a prediction-aware algorithm

Smooth improvement with prediction quality:
• Approximation ratio improves as 𝜂+, 𝜂− → 0, yet never worse than 𝜌

Broad applicability:
• Vertex cover, Steiner tree, matching, independent set, knapsack, …
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