
What learning algorithm is in-
context learning?

Investigations with linear models
ICLR 2023

Ekin Akyürek, Dale Shuurmans, Jacob Andreas, Tengyu Ma,
Denny Zhuo

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Discussions: No laptops, tablets, phones

• Strict rule I feel very passionately about

• No PSETs; active discussion essential for learning

• Demoralizing when student presenters face inattentive class
• You’ll thank me when you’re presenting!

• Rule applies to auditors and non-auditors

• Printouts of the paper will be provided during my preview
• Recycled (and recyclable) paper; main body only

• Please bring printout to the next class for paper discussion

Stanford CS/MS&E 331

Motivation

• In-context learning (ICL): transformer trained to produce map
• Input: sequences 𝑥1, 𝑓 𝑥1 , 𝑥2, 𝑓 𝑥2 , … , 𝑥𝑛

• Output: prediction of 𝑓 𝑥𝑛

• This paper: algorithmic reasoning as a lens to understand ICL

• Algorithmic task: regression
• 𝒙 ∈ ℝ𝑑 , 𝑓 𝒙 ∈ ℝ

• ICL isn’t learning a regressor; rather a regression algorithm
• ICL doesn’t explicitly specify inner learning procedure

• Procedure exists only implicitly through transformer’s parameters

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Motivation

Goal: move toward algorithmic understanding of ICL

Motivating questions:

• What algorithms are implementable by transformers?

• Can we understand what algorithm it’s using?

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Contributions

Theory: Transformers can implement
• Gradient descent updates
• Closed-form ridge regression updates

Behavior: ICL matches:
• OLS on noiseless data
• Ridge regression under noisy data

• Minimum Bayes risk predictor

Mechanism: Hidden states encode meaningful quantities
• Encoding is non-linear, revealed by probe models

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

ICL training objective

Learning setup (linear regression):
• ℱ = {𝑓𝒘 𝒙 = 𝒘⊤𝒙 ∣ 𝒘 ∈ ℝ𝑑}
• Loss function ℒ 𝑦, 𝑦′ = 𝑦 − 𝑦′ 2

• Distribution 𝑝(𝑓) over ℱ
• Distribution 𝑝(𝒙) over ℝ𝑑

Transformer 𝑇𝜽 with trainable parameters 𝜽
• Train 𝑇𝜽 to be an in-context learner:

argmin
𝜽

𝔼
𝒙1,…,𝒙𝑛∼𝑝(𝒙)

𝑓∼𝑝 𝑓

෍

𝑖=1

𝑛

ℒ 𝑓 𝒙𝑖 , 𝑇𝜽 𝒙1, 𝑓 𝒙1 , 𝒙2, 𝑓 𝒙2 , … , 𝒙𝑖

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Linear regression: Refresher

Inputs 𝑋 = [𝒙1, 𝒙2, … , 𝒙𝑛] and 𝒚 = 𝑦1, … , 𝑦𝑛

Regularized linear regression objective:

argmin
𝒘

෍

𝑖=1

𝑛

ℒ 𝒘⊤𝒙𝑖 , 𝑦𝑖 + 𝜆 𝒘 2
2

𝜆 = 0: Ordinary least-squares regression (OLS)

𝜆 > 0: Ridge regression

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Outline

1. Theory

2. Empirics

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Implementation primitives

• Need simple building blocks for algorithm implementation

• Four primitives: mov, mul, div, aff
• mov: copy values between hidden state positions

• mul: matrix multiplication from hidden state entries

• div: entry-wise division of hidden state entries

• aff: affine transform combining hidden state subsets

• Lemma: each primitive implementable by a transformer layer

Read Arithmetic Write

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Gradient descent in a transformer

argmin
𝒘

෍

𝑖=1

𝑛

ℒ 𝒘⊤𝒙𝑖 , 𝑦𝑖 + 𝜆 𝒘 2
2

One-step of gradient descent:
𝒘′ = 𝒘 − 2𝛼(𝒙𝑖𝒘⊤𝒙𝑖 − 𝑦𝑖𝒙𝑖 + 𝜆𝒘)

Theorem: transformer can implement this with
• Constant number of layers
• 𝑂 𝑑 hidden space (where 𝒙, 𝒘 ∈ ℝ𝑑)

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Closed-form regression by a transformer

• OLS solution 𝒘∗ = 𝑋⊤𝑋 −1𝑋⊤𝒚; for simplicity, set 𝜆 = 0

• Iterative algorithm (suitable for a layer of a transformer):
1. Define 𝑃0 = 𝟎 ∈ ℝ𝑑×𝑑; 𝒒0 = 𝟎 ∈ ℝ𝑑

2. For 𝑖 = 1, … , 𝑛:
i. Compute 𝑃𝑖 = 𝑃𝑖−1 + 𝒙𝑖𝒙𝑖

⊤ and its inverse

𝑃𝑖
−1 = 𝑃𝑖−1 + 𝒙𝑖𝒙𝑖

⊤ −1
= 𝑃𝑖−1

−1 −
1

1 + 𝒙𝑖𝑃𝑖−1
−1 𝒙𝑖

𝑃𝑖−1
−1 𝒙𝑖 𝑃𝑖−1

−1 𝒙𝑖
⊤

ii. Compute 𝒒𝑖 = 𝒒𝑖−1 + 𝑦𝑖𝒙𝑖

• Return 𝒘∗ = 𝑃𝑛
−1𝒒𝑛

Main point: storing 𝑃𝑖−1
−1 in the hidden state,

update can be calculated with primitives mov, mul, div, aff

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Closed-form regression by a transformer

Theorem: transformer can compute 𝑃𝑖, 𝑃𝑖
−1, 𝒒𝑖 with

• Constant number of layers

• 𝑂 𝑑2 hidden space (where 𝒙, 𝒘 ∈ ℝ𝑑)

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Outline

1. Theory

2. Empirics

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

What computation does ICL perform?

Behavioral metrics to quantify the extent two algorithms agree:

• Given learning algorithm 𝒜:
• Input dataset 𝐷 = 𝒙1, 𝑦1, … , 𝒙𝑛, 𝑦𝑛 , output prediction 𝒜 𝐷 𝒙 ∈ ℝ

• Squared prediction difference:

SPD 𝒜1, 𝒜2 = 𝔼
𝐷

𝒙′∼𝑝 𝒙

𝒜1 𝐷 𝒙′ − 𝒜2 𝐷 𝒙′ 2

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

What computation does ICL perform?

Behavioral metrics to quantify the extent two algorithms agree:

• Given learning algorithm 𝒜:
• Input dataset 𝐷 = 𝒙1, 𝑦1, … , 𝒙𝑛, 𝑦𝑛 , output prediction 𝒜 𝐷 𝒙 ∈ ℝ

• If 𝑇𝜽 learning a linear function, what are the function’s weights?

• Sample a set 𝐷′ = 𝒙1
′ , … , 𝒙𝑚

′ ∼ 𝑝 𝒙 of test points

• “Implicit weights” of 𝒜: ෝ𝒘𝒜 = argmin
ෝ𝒘

σ𝑖=1
𝑚 ෝ𝒘⊤𝒙𝑖

′ − 𝒜 𝐷 𝒙𝑖
′ 2

• ImplicitLinearWeightsDifference 𝒜1, 𝒜2 = 𝔼 ෝ𝒘𝒜1
− ෝ𝒘𝒜2 2

2

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Experimental setup: Noiseless setting

• Each in-context training dataset consists of 40 𝒙, 𝑦 pairs

• 𝑝 𝒙 = 𝒩 𝟎, 𝐼 , 𝑝 𝒘 = 𝒩 𝟎, 𝐼 over ℝ8

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

ICL matches OLS on noiseless data

𝒜1 𝒜2

Ordinary least squares (OLS) Transformer

Ridge regression with
regularization parameter λ = 0.1

Transformer

Ridge regression with λ = 0.5 Transformer

1 step of GD with learning rate
α = 0.01

Transformer

1 pass of SGD with α = 0.01 Transformer

1 step of GD with α = 0.02 Transformer

1 pass of SGD with α = 0.03 Transformer

3-nearest neighbors (weighted) Transformer

3-nearest neighbors (unweighted) Transformer

OLS y

Ridge regression with λ = 0.1 y

Transformer y

In-context examples

1 𝑑
⋅

S
q

u
a

re
d

P
re

d
ic

ti
o

n
D

if
fe

re
n

c
e

(𝐴
1

,𝐴
2

)

in-context examples

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

ICL matches OLS on noiseless data

𝒜1 𝒜2

Ordinary least squares (OLS) Transformer

Ridge regression with
regularization parameter λ = 0.1

Transformer

1 step of GD with learning rate α
= 0.01

Transformer

1 pass of SGD with α = 0.01 Transformer

1 step of GD with α = 0.02 Transformer

1 pass of SGD with α = 0.03 Transformer

In-context examples

Im
p

li
ci

tL
in

e
a

rW
e

ig
h

ts
D

if
fe

re
n

ce
(𝐴

1
,𝐴

2
)

1

𝑑
⋅ SquaredPredictionDifference(OLS, 𝑦)

Experimental setup: Noisy setting

• Each in-context training dataset consists of 40 pairs
[𝒙1, 𝒘⊤𝒙1 + 𝜖1 , 𝒙2, 𝒘⊤𝒙2 + 𝜖2 , …]

• 𝑝 𝒙 = 𝒩 𝟎, 𝐼 over ℝ8

• 𝑝 𝝐 = 𝒩 𝟎, 𝜎2𝐼

• 𝑝 𝒘 = 𝒩 𝟎, 𝜏2𝐼

Ridge regression with 𝜆 =
𝜎2

𝜏2 returns min Bayes risk predictor

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

σ2/τ2 0 1/16 1/9 1/4 4/9

(OLS, Transformer) 1.25E-05 1.34E-04 3.96E-04 1.51E-03 4.13E-03

(Ridge(1/16), Transformer) 1.1E-04 3.29E-05 1.12E-04 8.24E-04 2.92E-03

(Ridge(1/9), Transformer) 3.49E-04 9.65E-05 3.86E-05 4.5E-04 2.15E-03

(Ridge(1/4), Transformer) 1.69E-03 8.64E-04 4.39E-04 3.3E-05 6.81E-04

(Ridge(4/9), Transformer) 4.83E-03 3.09E-03 2.21E-03 7.52E-04 6.1E-05

(A
1

,
A

2
)

Squared prediction difference

Noisy setting: ICL matches minimum Bayes risk predictor

Does 𝑇𝜽 encode meaningful quantities?

• What are quantities we’d expect a regression alg to compute?
• Examples: 𝒘𝑂𝐿𝑆 , 𝑋⊤𝒚, where

𝑋 =
∣ ∣

𝒙1 ⋯ 𝒙𝑛

∣ ∣

 and 𝑦 =
𝒘⊤𝒙1

⋮
𝒘⊤𝒙𝑛

• We’ll call these “probes” 𝒗 ∈ ℝ𝑘 [Alain, Bengio, ‘17]

• Let 𝐻 ℓ be the transformer’s hidden states at layer ℓ

• Question: is 𝒗 “encoded” in 𝐻 ℓ ?
• i.e., is it some simple function of 𝐻 ℓ ?

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Does 𝑇𝜽 encode meaningful quantities?

Probing model: ෝ𝒗 = 𝑓 𝒔⊤𝐻 ℓ where:

• 𝒔 is a learned weight vector

• 𝑓 is a learned function. Two experiments:
• 𝑓 is linear

• 𝑓 is a 2-layer MLP

• Train to minimize loss 𝒗 − ෝ𝒗 2
2

• Train a different 𝒔 and 𝑓 for each sequence length and layer

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Probing results

Phase transitions:
around layers 7 and 12

Probes encoded non-linearly

Summary

• Goal: move toward an algorithmic understanding of ICL

• Theory: Transformers can implement

• Gradient descent updates

• Closed-form ridge regression updates

• Behavior: ICL matches:

• OLS on noiseless data

• Minimum Bayes risk predictor under noisy data

• Mechanism: Hidden states encode meaningful quantities

• Encoding is non-linear, revealed by probe models

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

	Slide 1: What learning algorithm is in-context learning? Investigations with linear models
	Slide 2: Discussions: No laptops, tablets, phones
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Contributions
	Slide 6: ICL training objective
	Slide 7: Linear regression: Refresher
	Slide 8: Outline
	Slide 9: Implementation primitives
	Slide 10: Gradient descent in a transformer
	Slide 11: Closed-form regression by a transformer
	Slide 12: Closed-form regression by a transformer
	Slide 13: Outline
	Slide 14: What computation does ICL perform?
	Slide 15: What computation does ICL perform?
	Slide 16: Experimental setup: Noiseless setting
	Slide 17: ICL matches OLS on noiseless data
	Slide 18: ICL matches OLS on noiseless data
	Slide 19: Experimental setup: Noisy setting
	Slide 20: Squared prediction difference
	Slide 21: Does cap T sub bold italic theta encode meaningful quantities?
	Slide 22: Does cap T sub bold italic theta encode meaningful quantities?
	Slide 23: Probing results
	Slide 24: Summary

