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What is a position paper?
Stakes out a clear viewpoint or agenda

Argues for a research direction, not just results

Synthesizes evidence; may include light experiments

Aims to shift how the field thinks/works
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Motivation

Central question: How do LLMs reason?
* Determine how models compute, not just what they predict

Why now?
e Scaling is hitting limits: diminishing returns on larger models
« Empirical success outpaces theory: can't explain how models reason
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Motivation

Framework for algorithmic understanding of GenAl should address:

* What algorithms can GenAl learn?

* How does this depend on model size, training data, ...?7

* Provable guarantees for any such algorithmic abilities?
Agentic systems to implement specific algorithms?
« How to set algorithmic objectives for training and fine-tuning?
* How to create a repository of algorithmic abilities?
* How to study selection/composition of these components?
« How to design architectures w/ specific algorithmic capacities?
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AlgEval: Framework for future research

Task: given computational task, e.g., shortest path to goal?

Hypothesis-driven approach:

1. Identify candidate algorithms
e List possible algorithmic strategies (e.g., BFS, DFS, ...)

2. Test model behavior and internals
« Compare attention patterns, representations, etc. to candidates

3. Verify mechanisms empirically (accuracy, ...)

4. Connect findings to theory
 Relate observed mechanisms to formal algorithmic properties

5. Use insights to refine models (training, architecture, ...)
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Why algorithmic reasoning tasks?

 Core idea: study LLMs on tasks with known solutions
* Enables comparison between learned vs ground-truth algorithms

* Avoid ambiguous benchmarks
« Many NLP tasks don't have a single “correct” strategy

* Design tasks with transparent computational structure
 E.g., graph traversal, arithmetic, logical inference, sorting

« Control task complexity (input size, branching factor, ...)
* Diagnose generalization (unknown input scales, ...)

* Algorithms have interpretable intermediate states/primitives
 Allows layerwise analysis of progress toward the correct algorithm
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From primitives to algorithms

Low-level operations that compose into full algorithms

* E.g., memory retrieval and updates, copying, comparisons, ...
* Circuits and attention heads often implement specific primitives

Broad question: can LLMs truly reason compositionally?
 Evidence mixed — some successes, many failures

Goal: establish methods to study/induce composition
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Methods: representation and attention

« Motivation: uncover how models transform information

* Representational analysis
* Treats layer activations as high-dimensional state spaces
 Uses similarity measures to compare layers, track internal geometry

 Attention analysis
* Interprets attention weights as message-passing between tokens
 Layer-wise attention reveals what elements influence each other

* Integration of the two views
 Attention explains where information moves
* Representations explain how information changes in form
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Methods: subgraphs and circuits

Goal: causal understanding of model mechanisms
* |dentify which internal structures implement algorithmic steps

Subgraph and circuit discovery
* Represent TF as computation graph over neurons/attention heads
* Extract functional subgraphs corresponding to algorithmic operations
 View multi-hop token interactions as message passing over graphs
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Case study: Graph navigation ?\@
w @

 Task: goal-directed navigation on a graph. Prompt:
 Textual description of rooms (nodes) and connections (edges)
« “Can you get to W from lobby?” — answer Yes or No

* Ground-truth algorithms for comparison:
* Classical search methods e.g., BFS, DFS, and Dijkstra

* Hypothesis under test:
 Each layer might correspond to one step in a search algorithm
 Attention weights reveal which nodes are being “visited” at each step

e Models: Llama-3.1-8B and Llama-3.1-70B-Instruct
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Case study: Graph navigation L R
w @ W

 Attention heatmaps from goal token to all nodes

* Attention seems to peak at sibling
* Mechanistically: local decision test? “Goal here or its neighbor?”
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Case study: Graph navigation g@\@
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* Define IV': token-token similarity matrix at layer i
_ . . / . T
* U; , = activation vector for room token x,V, = u; ,u;

» Choose e; = (x,y) with the highest similarity in I
« Construct LLM's "trajectory”: concatenate e; across all layers
* Generate ground-truth rollouts: all BFS, DFS sequences

« Compare LLM vs. algorithmic paths using:
Longest subsequence of correctly ordered steps (w/ gaps)

* Findings: low overlap — 0.18 match (BFS), 0.24 match (DFS)
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Case study: Graph navigation
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Case study: Graph navigation
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Case study: Graph navigation
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New directions: inference-time compute

Motivation: reasoning need not occur in one feedforward pass
» Chain-of-thought, explicit tree search, agentic frameworks, ...

Fit for AlgEval:
Sequential outputs easier to analyze than high-dim states

Key research questions:
« Which computations offloaded to inference vs. embedded in model?
« Can scaling inference-time compute outperform scaling model size?
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New directions: RL + alg reasoning

RL can shape how models discover and store algorithms
* RL may yield emergent algorithmic behaviors beyond imitation

E.g., reasoning models show reasoning emergence via RL
* DeepSeek displays backtracking-like behavior/“aha moments”

Key research question: Does RL teach new algorithms
or amplify ones already latent in pretraining data?
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