Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model

ICML 2024

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, Qingfu Zhang

Stanford CS/MS&E 331

Motivation

Heuristics underpin many optimization pipelines

• Yet they're manually crafted and domain-specific

Automating their discovery is a core AI challenge

• Design spaces are vast and nonlinear

LLMs enable data-driven heuristic generation

This paper: evolves natural language "thoughts" & code jointly

- Aligns reasoning quality with executable performance
- Lower compute than prior work
 - E.g., FunSearch [Romera-Paredes et al., Nature'24]

High-level approach

Goal: co-evolve natural-language thoughts and code

Search mechanism: Maintain population of heuristics

- Use LLMs + genetic operators (crossover, mutation) for exploration
- Evaluate on problem instances; select top performers

Prompting: Guide reasoning over prior thoughts and codes

Acts as fine-grained in-context learning during evolution

Comparison to prior work:

• EoH evolves both thoughts and code; FunSearch evolves code only

Task: Pack items of varying sizes into fewest bins

Items arrive sequentially

- Must be packed into a bin immediately
- No knowledge of future arrivals

Each bin has fixed capacity (experiments: C = 100)

Heuristic representation:

Natural language "thought":

The heuristic incorporates a weighted average of the utilization ratio, dynamic adjustment, and an exponentially decaying factor, with different parameter settings to minimize the number of used bins.

• Code: def heuristic(item, bins):

item: scalar item size bins: 1D np.array of remaining capacities returns: per-bin scores (higher is better)

•••

• Fitness: 0.0196

Fitness metric:

- **Test instances** [Romera-Paredes et al., Nature'24]: Five Weibull test instances, each with 5000 items
- ℓb = lower bound on opt bin count [Martello & Toth '90]
- n = number of bins used by heuristic
- Fitness = $avg\left(\frac{\ell b}{n}\right)$ across the test instances

Algorithm overview

1. Initialization:

- Generate N initial heuristics
- Use *Initialization Prompt* to produce thoughts + code.

2. Heuristic Generation:

- Apply 5 Evolution Prompts in parallel (5N new heuristics)
 - i. Select parent heuristic(s) to form prompt
 - ii. LLM generates new thought and code
 - iii. Evaluate fitness on test instances
 - iv. Add feasible heuristics to population

3. Population Management:

• Retain top N heuristics by fitness; return to Step 1

Initialization prompt:

- I need help designing a new heuristic that scores a set of bins to assign an item.
- In each step, the item will be assigned to the bin with the maximum score.
- If the rest capacity of a bin equals the maximum capacity, it will not be used.
- The final goal is to minimize the number of used bins.
- Firstly, describe your new heuristic and main steps in one sentence.
- Next, implement it in Python as a function named 'score'.

Evolution prompts

E1 - Diverse Exploration:

• Generate entirely new heuristic ideas from scratch

• E2 - Shared-Idea Variants:

Create new heuristics based on high-performing "themes"

• M1 - Edit:

Modify an existing heuristic

M2 - Parameter Tuning:

Fine-tune numeric settings or thresholds in code

M3 - Simplification:

• Prune unnecessary components or redundant logic

Experimental setup

Baselines:

- First Fit: place item in first bin that fits
- Best Fit: place item in bin w/ least available space
- Published FunSearch heuristic as-is
 - Requires ~1 million queries, as reported by Romera-Paredes et al. [Nature'24]

Problem sizes: 1000-10,000 items

Capacities: C = 100 and C = 500

Each setting: 5 randomly generated instances

Bin packing results

	1k_C100	5k_C100	10k_C100	1k_C500	5k_C500	10k_C500
First Fit	5.32%	4.40%	4.44%	4.97%	4.27%	4.28%
Best Fit	4.87%	4.08%	4.09%	4.50%	3.91%	3.95%
FunSearch	3.78%	0.80%	0.33%	6.75%	1.47%	0.74%
EoH (ours)	2.24%	0.80%	0.61%	2.13%	0.78%	0.61%

Metric: average gap to lower bound [Martello & Toth '90]

Additional problems (see paper)

- Traveling Salesman Problem (TSP)
- Permutation Flow-Shop Scheduling (FSSP)
 - n jobs must be processed on m machines
 - Jobs must follow same processing order
 - **Input:** $n \times m$ processing-time matrix
 - Output: permutation over machines for each job to follow
 - Goal: minimize makespan (total processing time)
- Guided Local Search for TSP and FSSP
 - Local search moves like swap cities/jobs, relocate cities/jobs
 - When local search stalls, reshape the costs to escape local minima
 - EoH learns a cost-update heuristic

Takeaways

Core idea: For automated heuristic design, co-evolve

- 1. Natural-language thoughts, and
- 2. Executable code for heuristic design

Integrates reasoning & implementation, unlike code-only Outperforms FunSearch with far fewer LLM queries

Generalization:

Maintains good performance across unseen distributions