
Evolution of Heuristics:
Towards Efficient Automatic Algorithm
Design Using Large Language Model

ICML 2024

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun
Wang, Zhichao Lu, Qingfu Zhang

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Motivation

Heuristics underpin many optimization pipelines
• Yet they’re manually crafted and domain-specific

Automating their discovery is a core AI challenge
• Design spaces are vast and nonlinear

LLMs enable data-driven heuristic generation

This paper: evolves natural language “thoughts” & code jointly
• Aligns reasoning quality with executable performance
• Lower compute than prior work

• E.g., FunSearch [Romera-Paredes et al., Nature’24]

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

High-level approach

Goal: co-evolve natural-language thoughts and code

Search mechanism: Maintain population of heuristics
• Use LLMs + genetic operators (crossover, mutation) for exploration
• Evaluate on problem instances; select top performers

Prompting: Guide reasoning over prior thoughts and codes
• Acts as fine-grained in-context learning during evolution

Comparison to prior work:
• EoH evolves both thoughts and code; FunSearch evolves code only

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Example: Online bin packing

Task: Pack items of varying sizes into fewest bins

Items arrive sequentially
• Must be packed into a bin immediately

• No knowledge of future arrivals

Each bin has fixed capacity (experiments: 𝐶 = 100)

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Example: Online bin packing

Heuristic representation:
• Natural language “thought”:

The heuristic incorporates a weighted average of the utilization ratio,
dynamic adjustment, and an exponentially decaying factor, with
different parameter settings to minimize the number of used bins.

• Code: def heuristic(item, bins):
 """
 item: scalar item size
 bins: 1D np.array of remaining capacities
 returns: per-bin scores (higher is better)

…

• Fitness: 0.0196
Stanford CS/MS&E 331

Example: Online bin packing

Fitness metric:

• Test instances [Romera-Paredes et al., Nature’24]:

Five Weibull test instances, each with 5000 items

• ℓ𝑏 = lower bound on opt bin count [Martello & Toth ‘90]

• 𝑛 = number of bins used by heuristic

• Fitness = avg
ℓ𝑏

𝑛
 across the test instances

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Algorithm overview

1. Initialization:
• Generate 𝑁 initial heuristics
• Use Initialization Prompt to produce thoughts + code.

2. Heuristic Generation:
• Apply 5 Evolution Prompts in parallel (5𝑁 new heuristics)

i. Select parent heuristic(s) to form prompt
ii. LLM generates new thought and code
iii. Evaluate fitness on test instances
iv. Add feasible heuristics to population

3. Population Management:
• Retain top N heuristics by fitness; return to Step 1

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Example: Online bin packing

Initialization prompt:
• I need help designing a new heuristic that scores a set of

bins to assign an item.
• In each step, the item will be assigned to the bin with the

maximum score.
• If the rest capacity of a bin equals the maximum capacity, it

will not be used.
• The final goal is to minimize the number of used bins.
• Firstly, describe your new heuristic and main steps in one

sentence.
• Next, implement it in Python as a function named ’score’.

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Evolution prompts

• E1 – Diverse Exploration:
• Generate entirely new heuristic ideas from scratch

• E2 – Shared-Idea Variants:
• Create new heuristics based on high-performing “themes”

• M1 – Edit:
• Modify an existing heuristic

• M2 – Parameter Tuning:
• Fine-tune numeric settings or thresholds in code

• M3 – Simplification:
• Prune unnecessary components or redundant logic

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Experimental setup

Baselines:
• First Fit: place item in first bin that fits
• Best Fit: place item in bin w/ least available space
• Published FunSearch heuristic as-is

• Requires ~1 million queries, as reported by Romera-Paredes et al. [Nature’24]

Problem sizes: 1000–10,000 items

Capacities: C = 100 and C = 500

Each setting: 5 randomly generated instances

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Bin packing results

Metric: average gap to lower bound [Martello & Toth ‘90]

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Additional problems (see paper)

Stanford CS/MS&E 331

• Traveling Salesman Problem (TSP)

• Permutation Flow-Shop Scheduling (FSSP)
• 𝑛 jobs must be processed on 𝑚 machines
• Jobs must follow same processing order
• Input: 𝑛 ×𝑚 processing-time matrix
• Output: permutation over machines for each job to follow
• Goal: minimize makespan (total processing time)

• Guided Local Search for TSP and FSSP
• Local search moves like swap cities/jobs, relocate cities/jobs
• When local search stalls, reshape the costs to escape local minima
• EoH learns a cost-update heuristic

https://vitercik.github.io/ai4algs_25/

Takeaways

Core idea: For automated heuristic design, co-evolve

1. Natural-language thoughts, and

2. Executable code for heuristic design

Integrates reasoning & implementation, unlike code-only

Outperforms FunSearch with far fewer LLM queries

Generalization:

Maintains good performance across unseen distributions

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

	Slide 1: Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model
	Slide 2: Motivation
	Slide 3: High-level approach
	Slide 4: Example: Online bin packing
	Slide 5: Example: Online bin packing
	Slide 6: Example: Online bin packing
	Slide 7: Algorithm overview
	Slide 8: Example: Online bin packing
	Slide 9: Evolution prompts
	Slide 10
	Slide 11: Experimental setup
	Slide 12: Bin packing results
	Slide 13: Additional problems (see paper)
	Slide 14: Takeaways

