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Plan for today

1. Overview of neural algorithmic reasoning

2. Ford-Fulkerson refresher

3. Quick paper overview
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Neural algorithmic reasoning

Goal: train GNN to imitate classical algorithms
• Typically for polynomial-time solvable problems

Important question:
If we already have an efficient algorithm for the problem…

why train a GNN?

Classical algorithms are designed with abstraction in mind
• Enforce their inputs to conform to stringent preconditions
• E.g., in routing, that we know traffic patterns perfectly, a priori
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Neural algorithmic reasoning

• Assume we have real-world inputs

…but algorithm only admits abstract inputs

• First try: Manually convert from one input to another

• Issue: Not an easy task, so prone to human error
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Neural algorithmic reasoning

• Assume we have real-world inputs

…but algorithm only admits abstract inputs

• Second try: replace human with NN and apply same algorithm

• Issue: algorithms typically perform discrete optimization
• Doesn’t play nicely w/ gradient-based optimization of NNs
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Neural algorithmic reasoning

•  Second (more fundamental) issue: data efficiency
• Real-world data is often incredibly rich

• We still have to compress it down to scalar values

• Algorithm commits to using this scalar, assuming it's perfect

•  Goal of neural algorithmic reasoning:

Seamless, differentiable pipeline: natural inputs → outputs

•  Use existing algorithm:

• Guide selection of learnable modules

• Intermediate supervision (end-to-end learning rarely works)
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Dual algorithmic reasoning

• Prior work: Multi-task learning on similar algorithms helps
• Joint training improves learning & transfer across related algorithms

• Many algorithms reuse primitives like Bellman–Ford and BFS

• Key idea: use duality information
• Many problems admit primal and dual formulations

• Solving one often reveals the solution to the other

• Train on primal and dual optimization simultaneously

• Main example: max-flow, min-cut

• Results: gains on synthetic algorithmic and real graph tasks
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Min cut

• Graphs are directed and edges have “capacities” (weights)

• We have a special “source” vertex s and “sink” vertex t
• s has only outgoing edges

• t has only incoming edges
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Min cut

• An s-t cut  is a cut which separates s from t

• An edge crosses the cut if it goes from s’s side to t’s side

Edge does not cross the cut; 
it’s going in wrong direction

This cut has cost 4 + 2 + 10 = 16
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Max flow

• In addition to a capacity, each edge has a flow
• Unmarked edges in the picture below have flow 0

• Flow on an edge must be less than its capacity

• At each vertex (other than s,t) incoming flow = outgoing flow
3
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Max flow

• The value of a flow is:
• The amount of flow going out of s

• Which is equal to the amount of flow going into t

Value of this flow is 4
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Max flow

• The value of a flow is:
• The amount of flow going out of s

• Which is equal to the amount of flow going into t
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Max-flow min-cut theorem

Value of a max flow from s to t = cost of a min s-t cut

Intuition: in max flow, min cut better fill up; this is the bottleneck

ts

4

3

6

3

3

10
4

4

4

2

2

6

6

4

3
1 3

432

6

2

5 1

5

4

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Ford-Fulkerson algorithm

Outline of algorithm:

• Start with zero flow

• We will maintain a “residual graph” 𝐺𝑓

• Path from s to t in 𝐺𝑓 will give us a way to improve our flow

• Continue until there are no s-t paths left
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Tool: Residual networks
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Call the flow 𝑓
Call the graph 𝐺

Call this graph 𝐺𝑓

This forward edge has weight “capacity – flow”

This backward edge has weight “flow”

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Tool: Residual networks
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Backwards edges are the amount that’s been used
Forward edges are the amount that’s left
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Tool: Augmenting paths

• Path s → t in residual network is called an augmenting path

• If there’s an augmenting path, can increase flow along path
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Tool: Augmenting paths

• Easy case: every edge on the path in 𝐺𝑓 is a forward edge
• Just increase the flow on all the edges! 
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Tool: Augmenting paths

• Harder case: there are backward edges in the path
• Here’s a slightly different example of a flow:  
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Tool: Augmenting paths

• Harder case: there are backward edges in the path
• Here’s a slightly different example of a flow:  
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Ford-Fulkerson Algorithm

1. 𝑓 ← all zero flow

2. 𝐺𝑓 ← 𝐺 

3. while t is reachable from s in 𝐺𝑓

1. Find a path P from s to t in 𝐺𝑓                              // e.g., use DFS or BFS
2. 𝑓 ← increaseFlow(P, f)
3. update 𝐺𝑓 

4. return f

Correctness follows from max-flow min-cut theorem
E.g., see lecture notes on course webpage
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Dual algorithmic reasoning (DAR)

Encode–Process–Decode neural execution [Veličković, Blundell ’21]

1. Encoding network: Node/edge features → latent space

2. Processor networks: Learn Ford–Fulkerson w/ 2 processors
• Processor 1: Learns to find augmenting paths
• Processor 2: Performs flow updates and predicts min s–t cut

3. Decoding network: Convert latent states to path, flow, cut

Training with hints:
• Supervise each intermediate state (augmenting paths, flows)
• Provides step-wise signals to reduce error propagation
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Real-world experiments

• Goal: Test if DAR transfers to real-world data

• Apply pretrained DAR models to brain vessel graphs
• Task: classify vessel types

• Method: Reuse synthetic-trained processor networks
• Retrain encoders on physical features

• Learned flow dynamics act as meaningful graph embeddings
• Dual DAR embeddings outperform baselines

• Take-away:

Dual reasoning yields richer, flow-aware representations
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