
Dual Algorithmic 
Reasoning

ICLR 2023

Danilo Numeroso, Davide Bacciu, Petar Veličković

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Plan for today

1. Overview of neural algorithmic reasoning

2. Ford-Fulkerson refresher

3. Quick paper overview

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Neural algorithmic reasoning

Goal: train GNN to imitate classical algorithms
• Typically for polynomial-time solvable problems

Important question:
If we already have an efficient algorithm for the problem…

why train a GNN?

Classical algorithms are designed with abstraction in mind
• Enforce their inputs to conform to stringent preconditions
• E.g., in routing, that we know traffic patterns perfectly, a priori

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Neural algorithmic reasoning

• Assume we have real-world inputs

…but algorithm only admits abstract inputs

• First try: Manually convert from one input to another

• Issue: Not an easy task, so prone to human error

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Neural algorithmic reasoning

• Assume we have real-world inputs

…but algorithm only admits abstract inputs

• Second try: replace human with NN and apply same algorithm

• Issue: algorithms typically perform discrete optimization
• Doesn’t play nicely w/ gradient-based optimization of NNs

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Neural algorithmic reasoning

•  Second (more fundamental) issue: data efficiency
• Real-world data is often incredibly rich

• We still have to compress it down to scalar values

• Algorithm commits to using this scalar, assuming it's perfect

•  Goal of neural algorithmic reasoning:

Seamless, differentiable pipeline: natural inputs → outputs

•  Use existing algorithm:

• Guide selection of learnable modules

• Intermediate supervision (end-to-end learning rarely works)

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Dual algorithmic reasoning

• Prior work: Multi-task learning on similar algorithms helps
• Joint training improves learning & transfer across related algorithms

• Many algorithms reuse primitives like Bellman–Ford and BFS

• Key idea: use duality information
• Many problems admit primal and dual formulations

• Solving one often reveals the solution to the other

• Train on primal and dual optimization simultaneously

• Main example: max-flow, min-cut

• Results: gains on synthetic algorithmic and real graph tasks

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Plan for today

1. Overview of neural algorithmic reasoning

2. Ford-Fulkerson refresher

3. Quick paper overview

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Min cut

• Graphs are directed and edges have “capacities” (weights)

• We have a special “source” vertex s and “sink” vertex t
• s has only outgoing edges

• t has only incoming edges

ts

4

2

6

3

6

3

3

10

4

4

4

2

2

6

6

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Min cut

• An s-t cut  is a cut which separates s from t

• An edge crosses the cut if it goes from s’s side to t’s side

Edge does not cross the cut; 
it’s going in wrong direction

This cut has cost 4 + 2 + 10 = 16

3

ts

4

3

6

3

3

10
4

4

4

2

2

6

6

2

6

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Max flow

• In addition to a capacity, each edge has a flow
• Unmarked edges in the picture below have flow 0

• Flow on an edge must be less than its capacity

• At each vertex (other than s,t) incoming flow = outgoing flow
3

ts

4

3

6

3

3

10
4

4

4

2

2

6

6

2

6

4

2
1 2

2

1

1

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Max flow

• The value of a flow is:
• The amount of flow going out of s

• Which is equal to the amount of flow going into t

Value of this flow is 4

ts

4

3

6

3

3

10
4

4

4

2

2

6

6

2

6

4

2
1 2

2

1

1

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Max flow

• The value of a flow is:
• The amount of flow going out of s

• Which is equal to the amount of flow going into t

ts

4

3

6

3

3

10
4

4

4

2

2

6

6

4

3
1 3

432

6

Max flow is 11

2

5 1

5

4

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Max-flow min-cut theorem

Value of a max flow from s to t = cost of a min s-t cut

Intuition: in max flow, min cut better fill up; this is the bottleneck

ts

4

3

6

3

3

10
4

4

4

2

2

6

6

4

3
1 3

432

6

2

5 1

5

4

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Ford-Fulkerson algorithm

Outline of algorithm:

• Start with zero flow

• We will maintain a “residual graph” 𝐺𝑓

• Path from s to t in 𝐺𝑓 will give us a way to improve our flow

• Continue until there are no s-t paths left

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Tool: Residual networks

s

a

b

t

4

8

6

3

2
2

2

3

1

1

s

a

b

t
7

5

1

0

Create a new residual network 
from this flow:

1
1

3 2

21

Call the flow 𝑓
Call the graph 𝐺

Call this graph 𝐺𝑓

This forward edge has weight “capacity – flow”

This backward edge has weight “flow”

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Tool: Residual networks

s

a

b

t

4

8

6

3

2
2

2

3

1

1

s

a

b

t
7

5

1

0

Create a new residual network 
from this flow:

1
1

3 2

21

Call the flow 𝑓
Call the graph 𝐺

Call this graph 𝐺𝑓

Backwards edges are the amount that’s been used
Forward edges are the amount that’s left

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Tool: Augmenting paths

• Path s → t in residual network is called an augmenting path

• If there’s an augmenting path, can increase flow along path

s t
7

5

1
1

1

3
2

21

Call this graph 𝐺𝑓

s t

6

3

2

2

2

3

1

1

Call the flow 𝑓
Call the graph 𝐺

4

8

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Tool: Augmenting paths

• Easy case: every edge on the path in 𝐺𝑓 is a forward edge
• Just increase the flow on all the edges! 

s t
7

5

1
1

1

3
2

21

Call this graph 𝐺𝑓

s t

6

3

2

2

2

3

1

1

Call the flow 𝑓
Call the graph 𝐺

4

8

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Tool: Augmenting paths

• Harder case: there are backward edges in the path
• Here’s a slightly different example of a flow:  

s t
2

5

3
1

3

1
2

1

s t

6

3

2

2

0

1

1

1
4

3

Call this graph 𝐺𝑓

Call the flow 𝑓
Call the graph 𝐺

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Tool: Augmenting paths

• Harder case: there are backward edges in the path
• Here’s a slightly different example of a flow:  

s t
2

5

3
1

3

1
2

1

s t

6

3

2

2

01

4

3

Call this graph 𝐺𝑓

Call the flow 𝑓
Call the graph 𝐺

We add 
flow here

We add 
flow here

We remove flow here, since augmenting path is going backwards along this edge

2
0

1

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Ford-Fulkerson Algorithm

1. 𝑓 ← all zero flow

2. 𝐺𝑓 ← 𝐺 

3. while t is reachable from s in 𝐺𝑓

1. Find a path P from s to t in 𝐺𝑓                              // e.g., use DFS or BFS
2. 𝑓 ← increaseFlow(P, f)
3. update 𝐺𝑓 

4. return f

Correctness follows from max-flow min-cut theorem
E.g., see lecture notes on course webpage

Stanford CS 161

https://stanford-cs161.github.io/winter2025/


Plan for today

1. Overview of neural algorithmic reasoning

2. Ford-Fulkerson refresher

3. Quick paper overview

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Dual algorithmic reasoning (DAR)

Encode–Process–Decode neural execution [Veličković, Blundell ’21]

1. Encoding network: Node/edge features → latent space

2. Processor networks: Learn Ford–Fulkerson w/ 2 processors
• Processor 1: Learns to find augmenting paths
• Processor 2: Performs flow updates and predicts min s–t cut

3. Decoding network: Convert latent states to path, flow, cut

Training with hints:
• Supervise each intermediate state (augmenting paths, flows)
• Provides step-wise signals to reduce error propagation

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/


Real-world experiments

• Goal: Test if DAR transfers to real-world data

• Apply pretrained DAR models to brain vessel graphs
• Task: classify vessel types

• Method: Reuse synthetic-trained processor networks
• Retrain encoders on physical features

• Learned flow dynamics act as meaningful graph embeddings
• Dual DAR embeddings outperform baselines

• Take-away:

Dual reasoning yields richer, flow-aware representations

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

	Slide 1: Dual Algorithmic Reasoning
	Slide 2: Plan for today
	Slide 3: Neural algorithmic reasoning
	Slide 4: Neural algorithmic reasoning
	Slide 5: Neural algorithmic reasoning
	Slide 6: Neural algorithmic reasoning
	Slide 7: Dual algorithmic reasoning
	Slide 8: Plan for today
	Slide 9: Min cut
	Slide 10: Min cut
	Slide 11: Max flow
	Slide 12: Max flow
	Slide 13: Max flow
	Slide 14: Max-flow min-cut theorem
	Slide 15: Ford-Fulkerson algorithm
	Slide 16: Tool: Residual networks
	Slide 17: Tool: Residual networks
	Slide 18: Tool: Augmenting paths
	Slide 19: Tool: Augmenting paths
	Slide 20: Tool: Augmenting paths
	Slide 21: Tool: Augmenting paths
	Slide 22: Ford-Fulkerson Algorithm
	Slide 23: Plan for today
	Slide 24: Dual algorithmic reasoning (DAR)
	Slide 25: Real-world experiments

