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Plan for today

1. Overview of neural algorithmic reasoning
2. Ford-Fulkerson refresher
3. Quick paper overview
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Neural algorithmic reasoning

Goal: train GNN to imitate classical algorithms
* Typically for polynomial-time solvable problems

Important question:
It we already have an efficient algorithm for the problem...

why train a GNN?

Classical algorithms are designed with abstraction in mind

 Enforce their inputs to conform to stringent preconditions
 E.g., in routing, that we know traffic patterns perfectly, a priori
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Neural algorithmic reasoning

* Assume we have real-world inputs
...but algorithm only admits abstract inputs

e First try: Manually convert from one input to another
* Issue: Not an easy task, so prone to human error
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Natural input > Abstract input > Algorithm’s output
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Neural algorithmic reasoning

* Assume we have real-world inputs
...but algorithm only admits abstract inputs

« Second try: replace human with NN and apply same algorithm

* ssue: algorithms typically perform discrete optimization
* Doesn’t play nicely w/ gradient-based optimization of NNs
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Natural input > Abstract input > Algorithm’s output

nfor MS&E 331


https://vitercik.github.io/ai4algs_25/

Neural algorithmic reasoning

« Second (more fundamental) issue: data efficiency
 Real-world data is often incredibly rich
» We still have to compress it down to scalar values
 Algorithm commits to using this scalar, assuming it's perfect
* Goal of neural algorithmic reasoning:

Seamless, differentiable pipeline: natural inputs — outputs

« Use existing algorithm:
» Guide selection of learnable modules
* Intermediate supervision (end-to-end learning rarely works)
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Dual algorithmic reasoning

* Prior work: Multi-task learning on similar algorithms helps

« Joint training improves learning & transfer across related algorithms
* Many algorithms reuse primitives like Bellman-Ford and BFS

 Key idea: use duality information
* Many problems admit primal and dual formulations
 Solving one often reveals the solution to the other
* Train on primal and dual optimization simultaneously

* Main example: max-flow, min-cut
 Results: gains on synthetic algorithmic and real graph tasks
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Min cut

* Graphs are directed and edges have “capacities” (weights)

* We have a special “source” vertex s and “sink” vertex t
* s has only outgoing edges
 t has only incoming edges
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Min cut

* An s-t cut is a cut which separates s fromt
* An edge crosses the cut if it goes from s's side to t's side

Thiscuthascost4 +2+10=16

Edge does not cross the cut;
it's going in wrong direction
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Max flow

* In addition to a capacity, each edge has a flow
* Unmarked edges in the picture below have flow 0

* Flow on an edge must be less than its capacity
At each vertex (other than s,t) incoming flow = outgoing flow
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Max flow

e The value of a flow is:

* The amount of flow going out of s
« Which is equal to the amount of flow going into t

Value of this flow is 4 10
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Max flow

e The value of a flow is:

* The amount of flow going out of s
« Which is equal to the amount of flow going into t

Max flow is 11
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Max-flow min-cut theorem

Value of a max flow from s to t = cost of a min s-t cut

Intuition: in max flow, min cut better fill up; this is the bottleneck
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Ford-Fulkerson algorithm

Outline of algorithm:
e Start with zero flow
* We will maintain a “residual graph” G
» Path from s to tin G¢ will give us a way to improve our flow
« Continue until there are no s-t paths left
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Tool: Residual networks

This forward edge has weight “capacity - flow”

This backward edge has weight “flow”

Call the flow f
Call the graph G

Create a new residual network
from this flow: Call this graph G,
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Tool: Residual networks

Backwards edges are the amount that's been used
Forward edges are the amount that's left

Call the flow f
Call the graph G

Create a new residual network
from this flow: Call this graph G,
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Tool: Augmenting paths

* Path s = tin residual network is called an augmenting path
* If there's an augmenting path, can increase flow along path

Call the flow f
Call the graph G Call this graph Gy
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Tool: Augmenting paths

» Easy case: every edge on the path in G is a forward edge
* Justincrease the flow on all the edges!

Call the flow f v
Call the graph G Call this graph Gy
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Tool: Augmenting paths

* Harder case: there are backward edges in the path
* Here's a slightly different example of a flow:

Call the flow f
Call the graph G Call this graph Gy
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Tool: Augmenting paths

* Harder case: there are backward edges in the path
* Here's a slightly different example of a flow:

We add
flow here

Call the flow f
Call the graph G We add Call this graph Gy

flow here

We remove flow here, since augmenting path is going backwards along this edge
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Ford-Fulkerson Algorithm

1. f « all zero flow

2. Gf — G
3. while tisreachable from sin Gf

1. Find a path Pfrom s totin Gy
2. f < increaseFlow(P, f)
3. update G¢

4. returnf

// e.g., use DFS or BFS

Correctness follows from max-flow min-cut theorem
E.qg., see lecture notes on course webpage
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Dual algorithmic reasoning (DAR)

Encode-Process-Decode neural execution [velickovi¢, Blundell '21]

1. Encoding network: Node/edge features — latent space

2. Processor networks: Learn Ford-Fulkerson w/ 2 processors

* Processor 1: Learns to find augmenting paths
* Processor 2: Performs flow updates and predicts min s-t cut

3. Decoding network: Convert latent states to path, flow, cut

Training with hints:
« Supervise each intermediate state (augmenting paths, flows)
 Provides step-wise signals to reduce error propagation
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Real-world experiments

* Goal: Test if DAR transfers to real-world data
* Apply pretrained DAR models to brain vessel graphs

 Task: classity vessel types

* Method: Reuse synthetic-trained processor networks
 Retrain encoders on physical features

* Learned flow dynamics act as meaningful graph embeddings
* Dual DAR embeddings outperform baselines

» Take-away:
Dual reasoning yields richer, flow-aware representations
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