OptiMUS-0.3:
Using LLMs to model and solve

optimization problems at scale

Journal version of ICML'24 paper

Ali AhmadiTeshnizi, Wenzhi Gao, Herman Brunborg, Shayan
Talaei, Connor Lawless, Madeleine Udell

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Automating the modeling bottleneck

Integer programming powers decision-making in operations
« E.g., power system scheduling, medical resource allocation, ...

Expertise barrier [Gurobi '23]:
* 81% of Gurobi users hold advanced degrees
« 49% have formal training in operations research

Small firms, municipalities, NGOs lack modeling expertise
* Leads to missed opportunities in efficiency

Goal: automate modeling to democratize optimization

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Challenges

* Long problem descriptions
 Real specs can span dozens of pages — more modeling errors

 Large problem data
* Industrial problems involve massive data tables

 Hallucination
e LLMs invent constraints or APl calls
« Hard to detect: code may run but model logic is wrong

* Poor model quality
* Solve time depends on formulation structure
* LLMs rarely exploit modeling tricks used by experts

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Dataset

355 problems: 287 easy LPs, 68 hard LP/MILPs

 Easy: short text, scalar params
« Hard: long, multi-dimensional

Each instance includes text, LaTeX, code, and solution
Covers domains like scheduling, routing, energy, and retail

Guarded release to prevent leakage

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Components of an integer program

R)
maximize C-Z

subjectto Az < b

Some variables must be integral
_ 5 y

 Parameters: c,A, b
* Clauses: Objective, constraints

e Variables: z

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

OptiMUS pipeline

--

Targets

{ Variables] [Constraints} [Objective }

Extract _ Error i Extract ___ Error Formulate - Error Code —o—): Exaerfgte
Parameters | Correction | Targets Correction Clauses | correction | Targets : Debug

* LLMs at every stage

* Human + solver feedback:
* Guide iterative LLM corrections and debugging for reliability

Stanford CS/MS&E 331. Figure by Connor Lawless.

https://vitercik.github.io/ai4algs_25/

'0 OptiMUS Logout [+

1 Description
Problem Description

We are trying to figure out where to place a bike rental hub (a place where users park their cars and have bicycles available for
2 Parameters
rental). We have a set of potential hub locations L, and a set of customers we want to service C. Each customer i has cost cosT(j, j)
to be serviced by placing a hub at location j. Each hub | costs HUB_COST(]) to build, and each hub can service at most MAX _USERS

3 I potential customers. Our goal is to minimize the cost of servicing all the customers. Every customer should be serviced.
Clauses

4 Formulation

5 Coding
6 Data
7 Testing ’

bi - Random Analyze
O Have Feedback? gurobipy ¥z

Made with @ at Udell Lab
Stanford CS/MS&E 331. Figure by Connor Lawless.

https://vitercik.github.io/ai4algs_25/

Description

Parameters

Clauses

Formulation

5 Coding
6 Data
7 Testing

o Have Feedback?

Made with @ at Udell Lab

Objective

Minimize the total cost of servicing all customers, wl -

Minimize \sum_{I \in L} (HubCost_| \cdot HubPlaced_I) +
\sum_{i \in c} \sum_{j \in L} (ServiceCost_{ij} \cdot
serviced_{ij})

Confidence: 5! 5 e

Constraints

Each customer must be serviced by at least one hu -

\sum_{j \in L} serviced]i,j] \geq1, \quad \foralli \in C

Confidence: 5!5 L]

Each hub can service at most MaxUsers potential ¢t -

\sum_{i \in c} \text{Serviced}_{ij} \leq \text{MaxUsers} \cdot
\text{HubPlaced} _j, \quad \forall j \in L

Confidence: 5[5 |

Minimize Z(HubCost; - HubPlaced;) + Z Z(Se'r’uiceCOE
leL ieC jeL

Z Serviced[i,j] > 1, Vie C

jEL

Z Serviced; ; < MaxUsers - HubPlaced;, Vj e L
ieC

Stanford CS/MS&E 331. Figure by Connor Lawless.

https://vitercik.github.io/ai4algs_25/

Objective

Description
1 model.setObjective(gp.quicksum(HubCost[1l] * HubPlaced[1] for 1
L. i in L) + gp.quicksum(ServiceCost[i, j] * Serviced[i, j] for
Minimize E (HubCost; - HubPlaced;) + E E (ServiceC i in C for j in L), gp.GRB.MINIMIZE)
Parameters = i€C jeL
- Confidence: 5[5 .]
Clauses
. Constraints
Formulation
1~ for i in C:
. Lo . 2 model.addConstr(gp.quicksum(Serviced[i, j] for j in L) >= 1
Coding E :SET’U?,CQd[Z,j] >1, VieC , hame=f"customer_serviced_{i}")
jeL
- i 3 D
6 Data Confidence: 5/5
1~ for j in range(len(L)):
7 Testing . . 2 model.addConstr(gp.quicksum(Serviced[i, j] for i in range
E Serv1ced1',j < MaxUsers - HubPlacedj, Vj e L (len(C))) <= MaxUsers * HubPlaced[j], name
icC =f"hub_service_capacity_{j}")

- Confidence: 5’5 O

0 Have Feedback?

Made with @ at Udell Lab 1~ for i in range(len(C)):
2~ for j in range(len(L)):

Stanford CS/MS&E 331. Figure by Connor Lawless.

https://vitercik.github.io/ai4algs_25/

0 O pti MUS Logout [+

I Description
Full Code Results

D Parameters : :
import json

import numpy as np Run Successful!

import gurobipy as gp Status: Optimal (2)
Objective Value: 24.0000
Runtime: 0.0122
Iteration Count: 11

3 Clauses) i
with open("tmpData/sPXhplSzuKSM8ELe2ddp/data.json", "r") as f:

data = json.load(f)

co~NOYUT A WN

ServiceCost = data["Cost"]
L = list(Crange(data["L"1))
MaxUsers = data["MaxUsers"]
C = list(range(data["C"1))

4 Formulation Variables:

HubPlaced[Q] :
HubCost = data["HubCost"]

HubPlaced[1]:

5 Coding & Dafine modsl HubPlaced[2]:
model = .Model('model"’
gp-Model() HubPlaced[3]:
W, HubPlaced[4]:
6 Data # ====== Define variables ======
HubPlaced = model.addVars(len(L), name='HubPlaced', vtype=gp.GRB.BINARY) Serviced[0,0]:
Serviced = model .addVars(len(C), len(L), name='Serviced', vtype=gp.GRB.BINARY)
Serviced[0,1]:
e constraints === :
. N SEEaL Serviced[0,2]:
7 Testing

for i in C:

Serviced[0,3]:

Synthesize Full Code from Clause Codes Run Code Fix Code

O Have Feedback?

Made with ¥ at Udell Lab

Stanford CS/MS&E 331. Figure by Connor Lawless.

https://vitercik.github.io/ai4algs_25/

Error correction

« Goal: Mitigate hallucinations
* Typical errors: wrong parameters, redundant constraints, invalid code

* Two correction layers:
 Reflective prompts: LLM self-checks and revises outputs
« Confidence-based feedback: uncertain results flagged for user review

* Reflective prompting process:

* Analyzed errors at every modeling stage
» Designed targeted reflective prompts for each error type

* Substantially lowers modeling error rates

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Are units the same for both sides of this
constraint?

(Pa+$a)'da'(1+€g-%)Ema,‘#aEA?

... Left-hand side (LHS):

- (pa +®,) represents the new price for article a, which is in
euros (€).

- d, represents the sales forecast (demand) for article a for
the next twelve months at the current price, which is in units
of the article.

- (14—Eﬂ*§E) is a unitless factor ...

Therefore, the unit of the left-hand side is: euros (€) = units
of the article

Right-hand side (RHS):

- m, represents the maximum production volume for article a,
which is in units of the article (e.g., number of shirts,
pants, etc.).

The unit of the right-hand side is: units of the article

... this inconsistency suggests an error in the formulation of
Constraint 5. To correct this, we should ... here is the
corrected constraint:

da-(1+eq-—2) <mg,Vac A

Pa

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

ldentitying special problems

Common Problem Type Detected

It seems like your problem is an instance of Traveling Salesman
Problem (TSP). Consider using one of the relevant specific-purpose
solvers instead of OptiMUS.

This problem matches the Traveling Salesman Problem (TsP)
because it involves finding the most efficient route to visit a set of
locations (schools) and returning to the starting point, while ensuring
each location is visited only once. The objective is to minimize the
total travel distance or cost, which is a defining feature of the TSP.

Stanford CS/MS&E 331. Figure by Connor Lawless.

https://vitercik.github.io/ai4algs_25/

Structure detection agent

» Goal: Identity and exploit special structures
* Enhances solver performance and simplifies formulations

e« Common structures:

 Special Ordered Sets (SOS)
e Indicator and semi-continuous variables
e Piecewise-linear constraints

* Appearin ~10% of NLP4LP problems
* Method:

* [terates through known structures
* LLM decides whether structure applies, then reformulates

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

LLM NL4OPT NLP4LP IndustryOR

Methods based on direct prompting

Standard GPT-40 47.3% 33.2% 28.0%
Standard ol > 95% 68.8% 44.0%
Reflexion GPT-4o0 53.0% 42.6% -

Methods based on fine-tuning LLMs
LLMOPT Qwenl.5-14B | 93.0%* 83.8%" 46.0%*

ORLM Deepseek-Math | 86.5%* 72.9%" 38.0%*
Methods based on agentic frameworks

CoE GPT-40 64.2% 49.2% —

OptiMUS-0.2 GPT-40 78.8% 68.0% -

OptiMUS-0.3 GPT-40 86.6% 73.7% 37.0%

OptiMUS-0.3 ol = 80.6% 46.0%

Takeaways:

« Decomposition frameworks out-perform LLMs alone
» Especially with cheaper models

 Fine-tuning adds a performance increase
« But OptiMUS is competitive without fine-tuning

nfor MS&E 331

https://vitercik.github.io/ai4algs_25/

	Slide 1: OptiMUS-0.3: Using LLMs to model and solve optimization problems at scale
	Slide 2: Automating the modeling bottleneck
	Slide 3: Challenges
	Slide 4: Dataset
	Slide 5: Components of an integer program
	Slide 6: OptiMUS pipeline
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Error correction
	Slide 12
	Slide 13: Identifying special problems
	Slide 14: Structure detection agent
	Slide 15

