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ML for integer programming

Mixed integer linear programs (MILP):
* Flexible modeling tool for NP-hard combinatorial optimization

 E.g., scheduling, network design, ...

Solvers:
» Typically solved using Branch-and-Bound (e.g., used by Gurobi)

« Can be very computationally expensive

Motivation for ML-based heuristics:
* Learn heuristics to find high-quality primal solutions quickly
» Guide solver's search to accelerate convergence to good solutions
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(Binary) integer linear program

minimize Cc-X
subjectto Ax < Db
x € {0,1}"

(Paper generalizes beyond binary)
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"Predict-and-Search” framework

1. Learn model/distribution pg(x | M)

* O: trainable parameters
« M: MILP
 x: solution

2. Use prediction to reduce MILP search space
3. Solve reduced MILP with standard solver

This paper focuses on Step 1:
How to train an effective prediction model

Stanford CS/MS&E 331



https://vitercik.github.io/ai4algs_25/

Contrastive Predict-and-Search (ConPaS)

Existing models are often trained with, e.g., BCE loss
* May not provide a sufficiently discriminative signal

This paper: Train a model to contrast:
1. Positive/high-quality solutions
2. Negative/low-quality/infeasible solutions

Contribution: New contrastive learning strategy for MILPs
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ConPaS framework

Training data collection

MILP instances for training Positive samples: Dataset | Supervised Predict-and-Search
Solve the instance to ame | contrastive learning (Han et al., 2022):
min clx For each . . ] ) ) . )
Az <b instance | | ©Ptain optimal and near- =-—u to predict optimal 1. Predict scores for variables
s.t. x < . . = . : . . .
z € {0,1}7 x Rn—1 »| | optimal solutions. »| solution |Testing| 2. Fix some variables greedily
based on scores

Negative samples:
Obtain infeasible or low-
quality solutions that are
similar to each positive
sample.

3. Search for the unfixed
variables while allowing to
change a few fixed ones

* Positive examples: Solve each instance M (e.g., with Gurobi)

 Collect (e.g., < 50) solutions with opt/near-opt objective value
* Forms a set§)!

» Key question: How to generate negative examples?
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Negative examples: Variant ConPaS-Inf

Goal: Collect infeasible solutions similar to positive samples

Method (for each x, € )

* Randomly perturb ~10% of binary variables to get x’
* Check if x" is infeasible (using solver)
e |f infeasible, add to set $}
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Negative examples: Variant ConPaS-LQ

Goal: Collect low-quality solutions similar to positive samples

Method (for each x, € §)"), solve and add to set 5}’ :

e , )
maximize C-Xx

subjectto Ax'<b
ey = x|, < k
1

\_ J
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Contrastive loss

* GNN predicts a score vector pg(x | M)
* Loss is weighted by solutlon quality

L(6) = 2 57 Z 2(0 | x,, M)

xp€5
ex (xppe(xp | M)>
p
T( X | M)
X pg(X| M)
Z%e&,’{”u{xp} exp( (X M) )

* 7(x | M) inverse proportional to obj when feasible; constant else

2(0 | x,,M ) = log
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Graph representation

IP represented as bipartite graph

max 9x; + 5x, + 6x3 + 4x,

S.t.

6x; + 3x, + 5x3 + 2x, <10 (cy)

X3 + X4 <10 (Cz)
—xl ~+ XB S O (CB)
—x2 + X4 S O (C4-)

X1,X5, X3, %4 € 10,1}

Constraints

Variables

o’

e
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Graph representation

IP represented as bipartite graph

« Edge feature: constraint coefficient

- Example node features:

» Constraints:
 Cosine similarity with objective
 Tightin LP solution?

* Variables:

« Objective coefficient
 Solution value equals upper/lower bound?

Constraints

Variables

o’

e
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Predict-and-search

1. Select ky variables with smallest pg(x; | M ); call them X,
2. Select k, variables with largest pg(x; | M ); call them X,
3. Fix all variablesin X, to 0, X; to 1
4. Define: \
B(X,y, X1, A) = {x e {0,1}" : 2 xX; + 2 (1—x;) <Al
Xi€EXp Xi€EXq J
5. Solve:

minimize C'X
subjectto Ax < b,x € B(X,y, X1,A)
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Performance measure: Primal gap

[I\/Iinimize C-X subjectto Ax < b,x € {0,1}" ]

« x*: optimal solution
* [P solvers iteratively find better and better feasible solutions

* Primal bound: Objective value of best feasible solution so far
¢ Often called the "incumbent" solutionX; c-x* <c-X%x

* Dual bound: Objective value of the LP relaxation solution x;p
cCc-Xp<cC-X"

C:X—C-XLp

* Primal gap: P
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Sample of results

Best open-source solver (see comparison with Gurobi in appendix)
Prior work [Nair et al., '20; Han et al., '22]
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Summary

ConPaS: New ML-based framework for MILP heuristics

Contribution: A novel contrastive learning strategy
» Key Idea: Use "hard negatives" (infeasible or low-quality)
* Learn a more discriminative models
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