Contrastive Predict-and-Search for Mixed Integer Linear Programs

ICML'24

Taoan Huang, Aaron Ferber, Arman Zharmagambetov, Yuandong Tian, Bistra Dilkina

Stanford CS/MS&E 331

ML for integer programming

Mixed integer linear programs (MILP):

- Flexible modeling tool for NP-hard combinatorial optimization
- E.g., scheduling, network design, ...

Solvers:

- Typically solved using Branch-and-Bound (e.g., used by Gurobi)
- Can be very computationally expensive

Motivation for ML-based heuristics:

- Learn heuristics to find high-quality primal solutions quickly
- Guide solver's search to accelerate convergence to good solutions

(Binary) integer linear program

```
minimize c \cdot x

subject to Ax \leq b

x \in \{0,1\}^n

(Paper generalizes beyond binary)
```

"Predict-and-Search" framework

- 1. Learn model/distribution $p_{\theta}(x \mid M)$
 - θ : trainable parameters
 - *M*: MILP
 - x: solution
- 2. Use prediction to **reduce** MILP search space
- 3. Solve **reduced MILP** with standard solver

This paper focuses on Step 1:

How to train an effective prediction model

Contrastive Predict-and-Search (ConPaS)

Existing models are often trained with, e.g., BCE loss

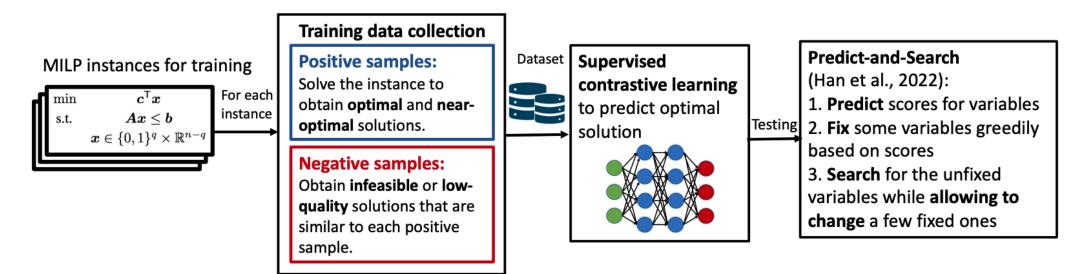
• May not provide a sufficiently discriminative signal

This paper: Train a model to *contrast:*

- 1. Positive/high-quality solutions
- 2. Negative/low-quality/infeasible solutions

Contribution: New contrastive learning strategy for MILPs

ConPaS framework



- Positive examples: Solve each instance M (e.g., with Gurobi)
 - Collect (e.g., ≤ 50) solutions with opt/near-opt objective value
 - Forms a set \mathcal{S}_p^M
- **Key question:** How to generate negative examples?

Negative examples: Variant ConPaS-Inf

Goal: Collect infeasible solutions similar to positive samples

Method (for each $x_p \in \mathcal{S}_p^M$):

- Randomly perturb ~10% of binary variables to get x^\prime
- Check if x' is infeasible (using solver)
- If infeasible, add to set \mathcal{S}_n^M

Negative examples: Variant ConPaS-LQ

Goal: Collect low-quality solutions similar to positive samples

Method (for each $x_p \in \mathcal{S}_p^M$), solve and add to set \mathcal{S}_n^M :

maximize
$$c \cdot x'$$
 subject to $Ax' \leq b$ $\|x_p - x'\|_1 \leq k$

Contrastive loss

- GNN predicts a score vector $p_{\theta}(x \mid M)$
- Loss is weighted by solution quality

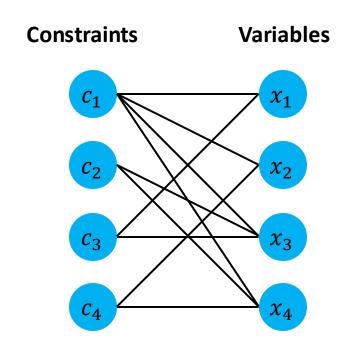
$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{M} \frac{-1}{|\mathcal{S}_{p}^{M}|} \sum_{\boldsymbol{x}_{p} \in \mathcal{S}_{p}^{M}} \ell(\boldsymbol{\theta} \mid \boldsymbol{x}_{p}, M)$$

$$\ell(\boldsymbol{\theta} \mid \boldsymbol{x}_{p}, M) = \log \frac{\exp\left(\frac{\boldsymbol{x}_{p}^{\mathsf{T}} p_{\boldsymbol{\theta}}(\boldsymbol{x}_{p} \mid M)}{\tau(\boldsymbol{x}_{p} \mid M)}\right)}{\sum_{\widetilde{\boldsymbol{x}} \in \mathcal{S}_{n}^{M} \cup \{\boldsymbol{x}_{p}\}} \exp\left(\frac{\widetilde{\boldsymbol{x}}^{\mathsf{T}} p_{\boldsymbol{\theta}}(\widetilde{\boldsymbol{x}} \mid M)}{\tau(\widetilde{\boldsymbol{x}} \mid M)}\right)}$$

• $\tau(x \mid M)$ inverse proportional to obj when feasible; constant else

Graph representation

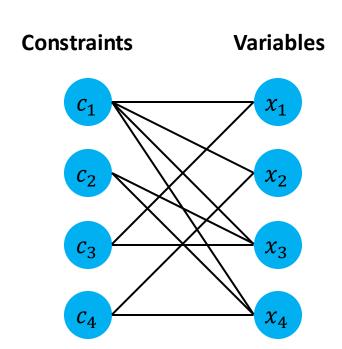
IP represented as bipartite graph



Graph representation

IP represented as bipartite graph

- Edge feature: constraint coefficient
- Example node features:
 - Constraints:
 - Cosine similarity with objective
 - Tight in LP solution?
 - Variables:
 - Objective coefficient
 - Solution value equals upper/lower bound?



Predict-and-search

- 1. Select k_0 variables with **smallest** $p_{\theta}(x_i \mid M)$; call them \mathcal{X}_0
- 2. Select k_1 variables with **largest** $p_{\theta}(x_i \mid M)$; call them \mathcal{X}_1
- 3. Fix all variables in \mathcal{X}_0 to 0, \mathcal{X}_1 to 1
- 4. Define:

$$B(\mathcal{X}_0, \mathcal{X}_1, \Delta) = \left\{ x \in \{0, 1\}^n : \sum_{x_i \in \mathcal{X}_0} x_i + \sum_{x_i \in \mathcal{X}_1} (1 - x_i) \le \Delta \right\}$$

5. Solve:

minimize
$$c \cdot x$$

subject to $Ax \leq b, x \in B(X_0, X_1, \Delta)$

Performance measure: Primal gap

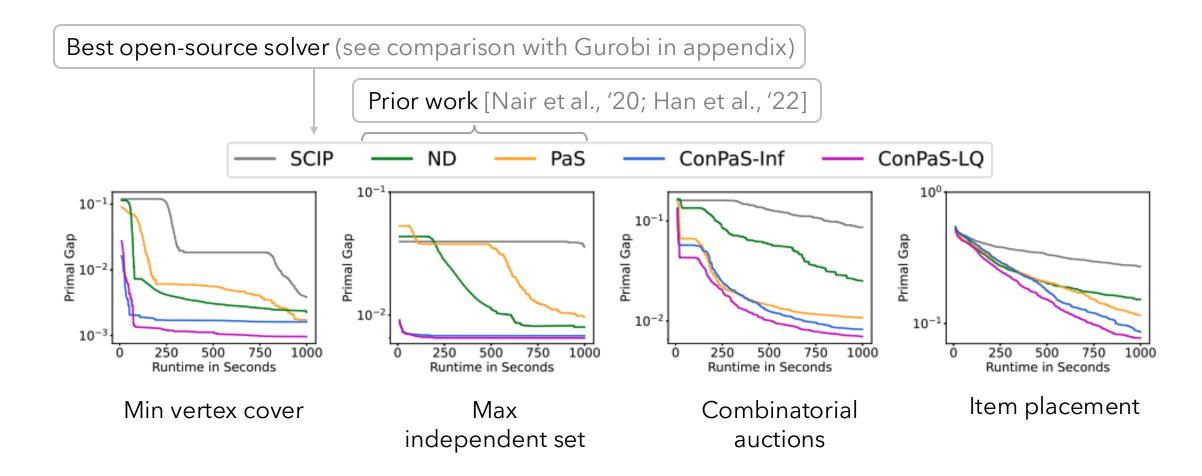
Minimize $c \cdot x$ subject to $Ax \leq b$, $x \in \{0,1\}^n$

- x^* : optimal solution
- IP solvers iteratively find better and better feasible solutions
- Primal bound: Objective value of best **feasible solution** so far
 - Often called the "incumbent" solution \widehat{x} ; $c \cdot x^* \leq c \cdot \widehat{x}$
- ullet Dual bound: Objective value of the LP relaxation solution $x_{
 m LP}$

•
$$c \cdot x_{\text{LP}} \leq c \cdot x^*$$

• Primal gap:
$$\frac{c \cdot \widehat{x} - c \cdot x_{\text{LP}}}{|c \cdot \widehat{x}|}$$

Sample of results



Summary

ConPaS: New ML-based framework for MILP heuristics

Contribution: A novel contrastive learning strategy

- **Key Idea:** Use "hard negatives" (infeasible or low-quality)
- Learn a more discriminative models