Differentiable integer linear programming

ICLR'25

Zijie Geng, Jie Wang, Xijun Li, Fangzhou Zhu, Jianye Hao, Bin Li, Feng Wu

ML for integer programming

Mixed integer linear programs (MILP):

- Flexible modeling tool for NP-hard combinatorial optimization
- E.g., scheduling, network design, ...
- Solvers are powerful but very computationally expensive

Challenge of ML-based heuristics (e.g., last class): Supervision is expensive: requires solving NP-hard problems

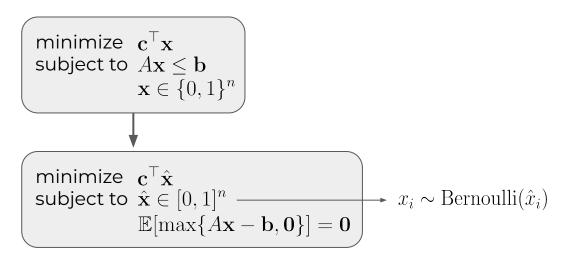
This paper: unsupervised learning approach via end-to-end differentiable pipeline

Overview of approach: DiffILO

```
\begin{array}{c} \text{minimize} \quad \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} \quad A\mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \in \{0,1\}^n \end{array}
```

- 1. Relax to **probabilistic, continuous** equivalent form
- 2. Convert from constrained optimization to unconstrained
- 3. Reparameterize so objective is **differentiable** almost everywhere

1: Relax to probabilistic, continuous equivalent form



Justification of probabilistic form:

- Thm 1 (informal): top is feasible & solvable iff bottom is too
- Thm 2 (informal): opt solution of top ≡ (rounded) solutions of bottom

Overview of approach: DiffILO

```
\begin{array}{ll} \text{minimize} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & A\mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \in \{0,1\}^n \end{array}
```

- 1. Relax to **probabilistic, continuous** equivalent form
- 2. Convert from constrained optimization to unconstrained
- 3. Reparameterize so objective is **differentiable** almost everywhere

2: Convert from constrained to unconstrained

```
minimize \mathbf{c}^{\top}\hat{\mathbf{x}}
subject to \hat{\mathbf{x}} \in [0,1]^n
\mathbb{E}[\max\{A\mathbf{x} - \mathbf{b}, \mathbf{0}\}] = \mathbf{0}
          \hat{\phi}_j(\hat{\mathbf{x}}) = \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})}[\max\{\mathbf{a}_j^\top \mathbf{x} - b_j, 0\}] : \text{expected violation of } \mathbf{j}^{\text{th}} \text{ constraint } \text{Independent Bernoullis}
```

minimize
$$\mathbf{c}^{\top}\hat{\mathbf{x}} + \mu \sum_{j=1}^{m} \hat{\phi}_{j}(\hat{\mathbf{x}})$$
 subject to $\hat{\mathbf{x}} \in [0,1]^{n}$

Overview of approach: DiffILO

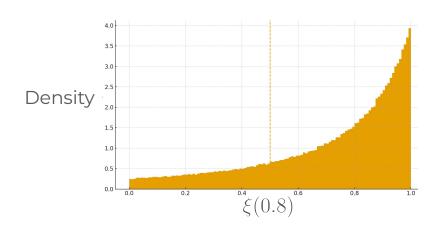
```
minimize \mathbf{c}^{\top}\mathbf{x} subject to A\mathbf{x} \leq \mathbf{b} \mathbf{x} \in \{0,1\}^n
```

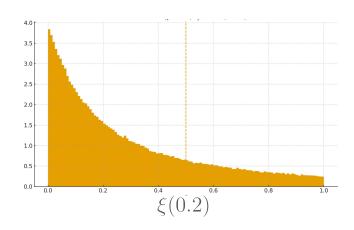
- 1. Relax to **probabilistic, continuous** equivalent form
- 2. Convert from constrained optimization to unconstrained
- 3. Reparameterize so objective is **differentiable** almost everywhere

Challenge to applying SGD: $\nabla_{\hat{\mathbf{x}}} \hat{\phi}_j(\hat{\mathbf{x}}) = \nabla_{\hat{\mathbf{x}}} \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})} [\max\{\mathbf{a}_j^\top \mathbf{x} - b_j, 0\}]$

Challenge to applying SGD: $\nabla_{\hat{\mathbf{x}}} \hat{\phi}_j(\hat{\mathbf{x}}) = \nabla_{\hat{\mathbf{x}}} \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})} [\max\{\mathbf{a}_j^\top \mathbf{x} - b_j, 0\}]$ Very messy to differentiate!

Challenge to applying SGD: $\nabla_{\hat{\mathbf{x}}} \hat{\phi}_j(\hat{\mathbf{x}}) = \nabla_{\hat{\mathbf{x}}} \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})} [\max\{\mathbf{a}_j^\top \mathbf{x} - b_j, 0\}]$ Very messy to differentiate!

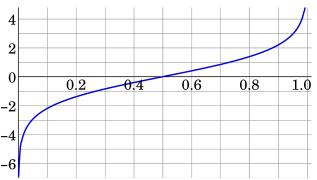




Challenge to applying SGD: $\nabla_{\hat{\mathbf{x}}} \hat{\phi}_j(\hat{\mathbf{x}}) = \nabla_{\hat{\mathbf{x}}} \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})} [\max\{\mathbf{a}_j^\top \mathbf{x} - b_j, 0\}]$ Very messy to differentiate!

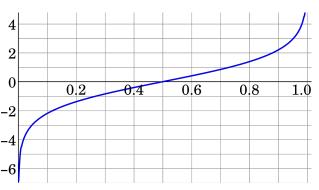
Instead: relax to continuous RV $\xi(\hat{x}_i)$ such that $\mathbb{P}[\xi(\hat{x}_i) > 0.5] = \hat{x}_i$

1. Apply logit function $\tau(\hat{x}_i) = \log \frac{\hat{x}_i}{1 - \hat{x}_i}$ (inverse of sigmoid)



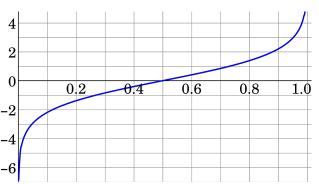
Challenge to applying SGD: $\nabla_{\hat{\mathbf{x}}} \hat{\phi}_j(\hat{\mathbf{x}}) = \nabla_{\hat{\mathbf{x}}} \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})} [\max\{\mathbf{a}_j^\top \mathbf{x} - b_j, 0\}]$ Very messy to differentiate!

- 1. Apply logit function $\tau(\hat{x}_i) = \log \frac{\hat{x}_i}{1 \hat{x}_i}$ (inverse of sigmoid) 2. Sample $\epsilon \sim U(0,1)$



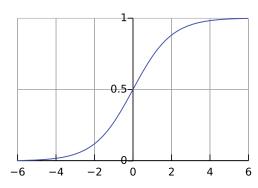
Challenge to applying SGD: $\nabla_{\hat{\mathbf{x}}} \hat{\phi}_j(\hat{\mathbf{x}}) = \nabla_{\hat{\mathbf{x}}} \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})} [\max\{\mathbf{a}_j^\top \mathbf{x} - b_j, 0\}]$ Very messy to differentiate!

- 1. Apply logit function $\tau(\hat{x}_i) = \log \frac{\hat{x}_i}{1 \hat{x}_i}$ (inverse of sigmoid) 2. Sample $\epsilon \sim U(0,1)$
- 3. Perturb logit: $\tau(\hat{x}_i) + \tau(\epsilon)$



Challenge to applying SGD: $\nabla_{\hat{\mathbf{x}}} \hat{\phi}_i(\hat{\mathbf{x}}) = \nabla_{\hat{\mathbf{x}}} \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})} [\max\{\mathbf{a}_i^\top \mathbf{x} - b_i, 0\}]$ Very messy to differentiate!

- 1. Apply logit function $\tau(\hat{x}_i) = \log \frac{\hat{x}_i}{1 \hat{x}_i}$ (inverse of sigmoid) 2. Sample $\epsilon \sim U(0,1)$
- 3. Perturb logit: $\tau(\hat{x}_i) + \tau(\epsilon)$
- 4. Map back to (0,1): $\xi(\hat{x}_i; \epsilon) = \sigma(\tau(\hat{x}_i) + \tau(\epsilon))$



Challenge to applying SGD: $\nabla_{\hat{\mathbf{x}}} \hat{\phi}_j(\hat{\mathbf{x}}) = \nabla_{\hat{\mathbf{x}}} \mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})} [\max\{\mathbf{a}_j^\top \mathbf{x} - b_j, 0\}]$ Very messy to differentiate!

Surrogate that's differentiable almost everywhere:

$$\mathbb{E}_{\mathbf{x} \sim p(\cdot | \hat{\mathbf{x}})}[\max\{\mathbf{a}_i^{\top} \mathbf{x} - b_j, 0\}] \approx \mathbb{E}_{\epsilon}[\max\{\mathbf{a}_i^{\top} \xi(\hat{\mathbf{x}}; \epsilon) - b_j, 0\}] := \hat{\varphi}_j(\hat{\mathbf{x}})$$

$$\left(\begin{array}{c} \text{minimize } \mathbf{c}^{\top} \hat{\mathbf{x}} + \mu \sum_{j=1}^{m} \hat{\phi}_{j}(\hat{\mathbf{x}}) \\ \text{subject to } \hat{\mathbf{x}} \in [0,1]^{n} \end{array} \right)$$

Graph neural network

```
\begin{array}{ll} \text{minimize} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & A\mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \in \{0,1\}^n \end{array}
```

Represent IP with a constraint-variable bipartite graph $\mathcal G$ (like last class)

Graph neural network

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & A\mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \in \{0,1\}^n \end{array}$$

Represent IP with a constraint-variable bipartite graph \mathcal{G} (like last class)

$$\mathsf{GNN}\,f_{\theta}(\mathcal{G}) = \hat{\mathbf{x}} \in [0,1]^n$$

Graph neural network

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & A\mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \in \{0,1\}^n \end{array}$$

Represent IP with a constraint-variable bipartite graph \mathcal{G} (like last class)

$$\mathsf{GNN}\,f_{\theta}(\mathcal{G}) = \hat{\mathbf{x}} \in [0,1]^n$$

Loss function
$$\mathcal{L}(\theta; \mathcal{G}) = \mathbf{c}^{\top} f_{\theta}(\mathcal{G}) + \mu \sum_{j=1} \hat{\varphi}_{j}(f_{\theta}(\mathcal{G}))$$

Inference

Sample from Bernoullis $\mathbf{x}' \sim p(\cdot \mid f_{\theta}(\mathcal{G}))$

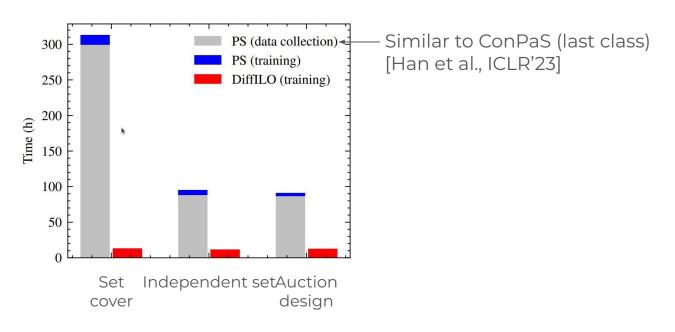
Solve (e.g., with Gurobi):

minimize
$$\mathbf{c}^{\top}\mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}$
$$\sum_{i:x_i'=0} x_i + \sum_{i:x_i'=1} (1-x_i) \leq \Delta$$

$$\mathbf{x} \in \{0,1\}^n$$

Training time comparison

240 IPs for training, 60 for validation, 100 for testing



Stanford CS/MS&E 331

Objective values

	Best known solution								
	SC (min, BKS: 86.45)			IS (max, BKS:684.14)			CA (max, BKS:22272.55)		
	10s	100s	1000s	10s	100s	1000s	10s	100s	1000s
Gurobi	1031.39	87.09	86.52	682.02	684.12	684.13	22090.76	22242.58	22272.03
PS+Gurobi	131.87	125.26	125.26	684.13	684.13	684.13	22140.65	22243.12	22272.47
DiffILO+Gurobi	95.65	86.78	86.48	684.00	684.12	684.14	22177.82	22260.48	22272.55

Overview

- Goal: Learn to solve IPs without supervision or solver labels
 - a. Reformulate discrete IP as continuous, probabilistic program
 - b. Add exact penalty to remove constraints
 - c. Apply relaxed Bernoulli for differentiable sampling
- Resulting objective differentiable almost everywhere
- Unsupervised: fast training
- Improves solver warm starts