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ML for integer programming

Mixed integer linear programs (MILP): 
● Flexible modeling tool for NP-hard combinatorial optimization 
● E.g., scheduling, network design, … 
● Solvers are powerful but very computationally expensive 

Challenge of ML-based heuristics (e.g., last class): 
Supervision is expensive: requires solving NP-hard problems 

This paper: unsupervised learning approach 
via end-to-end differentiable pipeline 
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Overview of approach: DiffILO

1. Relax to probabilistic, continuous equivalent form
2. Convert from constrained optimization to unconstrained
3. Reparameterize so objective is differentiable almost everywhere 

minimize   
subject to 
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1: Relax to probabilistic, continuous equivalent form

Justification of probabilistic form:
● Thm 1 (informal): top is feasible & solvable iff bottom is too
● Thm 2 (informal): opt solution of top ≡ (rounded) solutions of bottom

minimize   
subject to 

minimize
subject to
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2: Convert from constrained to unconstrained

   : jth row of 

            : expected violation of jth constraint

minimize
subject to

minimize

subject to

Independent Bernoullis
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3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
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Density
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3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Instead: relax to continuous RV          such that

1. Apply logit function                                 (inverse of sigmoid)
2. Sample 
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3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Instead: relax to continuous RV          such that

1. Apply logit function                                 (inverse of sigmoid)
2. Sample 
3. Perturb logit:
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3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Instead: relax to continuous RV          such that

1. Apply logit function                                 (inverse of sigmoid)
2. Sample 
3. Perturb logit:
4. Map back to (0,1): 
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3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Surrogate that’s differentiable almost everywhere:

minimize

subject to

minimize

subject to
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Graph neural network

Represent IP with a constraint-variable bipartite graph     (like last class)

minimize   
subject to 
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Graph neural network

Represent IP with a constraint-variable bipartite graph     (like last class)

GNN 
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Graph neural network

Represent IP with a constraint-variable bipartite graph     (like last class)

GNN 

Loss function 

minimize   
subject to 
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Inference

Sample from Bernoullis

Solve (e.g., with Gurobi):

minimize   
subject to
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Training time comparison

240 IPs for training, 60 for validation, 100 for testing

Set
cover

Independent setAuction 
design

Similar to ConPaS (last class)
[Han et al., ICLR’23]
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Objective values
Best known solution
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Overview

● Goal: Learn to solve IPs without supervision or solver labels
a. Reformulate discrete IP as continuous, probabilistic program
b. Add exact penalty to remove constraints
c. Apply relaxed Bernoulli for differentiable sampling

● Resulting objective differentiable almost everywhere
● Unsupervised: fast training
● Improves solver warm starts
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