
Differentiable
integer linear programming

ICLR’25
Zijie Geng , Jie Wang, Xijun Li, Fangzhou Zhu,

Jianye Hao, Bin Li, Feng Wu

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

ML for integer programming

Mixed integer linear programs (MILP):
● Flexible modeling tool for NP-hard combinatorial optimization
● E.g., scheduling, network design, …
● Solvers are powerful but very computationally expensive

Challenge of ML-based heuristics (e.g., last class):
Supervision is expensive: requires solving NP-hard problems

This paper: unsupervised learning approach
via end-to-end differentiable pipeline

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Overview of approach: DiffILO

1. Relax to probabilistic, continuous equivalent form
2. Convert from constrained optimization to unconstrained
3. Reparameterize so objective is differentiable almost everywhere

minimize
subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

1: Relax to probabilistic, continuous equivalent form

Justification of probabilistic form:
● Thm 1 (informal): top is feasible & solvable iff bottom is too
● Thm 2 (informal): opt solution of top ≡ (rounded) solutions of bottom

minimize
subject to

minimize
subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Overview of approach: DiffILO

1. Relax to probabilistic, continuous equivalent form
2. Convert from constrained optimization to unconstrained
3. Reparameterize so objective is differentiable almost everywhere

minimize
subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

2: Convert from constrained to unconstrained

 : jth row of

 : expected violation of jth constraint

minimize
subject to

minimize

subject to

Independent Bernoullis

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Overview of approach: DiffILO

1. Relax to probabilistic, continuous equivalent form
2. Convert from constrained optimization to unconstrained
3. Reparameterize so objective is differentiable almost everywhere

minimize
subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Instead: relax to continuous RV such that

Density

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Instead: relax to continuous RV such that

1. Apply logit function (inverse of sigmoid)

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Instead: relax to continuous RV such that

1. Apply logit function (inverse of sigmoid)
2. Sample

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Instead: relax to continuous RV such that

1. Apply logit function (inverse of sigmoid)
2. Sample
3. Perturb logit:

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Instead: relax to continuous RV such that

1. Apply logit function (inverse of sigmoid)
2. Sample
3. Perturb logit:
4. Map back to (0,1):

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

3: Reparameterize so objective is differentiable a.e.

Challenge to applying SGD:
Very messy to differentiate!

Surrogate that’s differentiable almost everywhere:

minimize

subject to

minimize

subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Graph neural network

Represent IP with a constraint-variable bipartite graph (like last class)

minimize
subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Graph neural network

Represent IP with a constraint-variable bipartite graph (like last class)

GNN

minimize
subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Graph neural network

Represent IP with a constraint-variable bipartite graph (like last class)

GNN

Loss function

minimize
subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Inference

Sample from Bernoullis

Solve (e.g., with Gurobi):

minimize
subject to

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Training time comparison

240 IPs for training, 60 for validation, 100 for testing

Set
cover

Independent setAuction
design

Similar to ConPaS (last class)
[Han et al., ICLR’23]

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Objective values
Best known solution

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

Overview

● Goal: Learn to solve IPs without supervision or solver labels
a. Reformulate discrete IP as continuous, probabilistic program
b. Add exact penalty to remove constraints
c. Apply relaxed Bernoulli for differentiable sampling

● Resulting objective differentiable almost everywhere
● Unsupervised: fast training
● Improves solver warm starts

Stanford CS/MS&E 331

https://vitercik.github.io/ai4algs_25/

