Stanford MS&E/CS 331: Constraint satisfaction programming

Ellen Vitercik*

October 2, 2025

In this lecture, we continue our effort to establish a common language for discussing
optimization problems, with a particular focus on the discrete setting. In the previous class,
we introduced integer linear programs, which take the following general form:

maximize ¢’z
subject to Ax < b
x>0
x; € Z for some or all j € [n].

While ILPs capture a broad range of problems through linear inequalities and an ex-
plicit objective function, constraint satisfaction programming (CSP) provides a more natu-
ral framework for many classic combinatorial problems such as graph coloring, sudoku, and
3SAT. CSPs are best suited for problems where constraints are expressed as logical or struc-
tural relations. Table 1 summarizes some of the key distinctions between these two modeling
frameworks.

CSPs play a central role in many real-world applications. For example, NASA has devel-
oped and deployed the open-source EUROPA system, a planning and scheduling framework
that has been used across multiple space mission applications. In another domain, chip
design verification relies heavily on SAT formulations. Hardware verification problems can
often be reduced to these satisfiability problems, allowing SAT solvers to automatically check
the correctness of complex circuit designs. These solvers can detect design flaws before a
chip is fabricated.

1 General form of a CSP

As a running example in this section, we will use the (NP-hard) max-cut problem. Given a
graph G = (V, E), a cut in a graph is a subset of its vertices S C V. The weight of a cut
w(S) is the number of edges that cross S to V '\ S. The goal of this problem is to find a cut
with maximum weight.

A CSP can be described formally as an instance I = (X,D,C). The set X contains
the variables of the problem. For example, in the max-cut problem we introduce a variable
X, € X for every vertex v € V.

Each variable X € X is associated with a domain of possible values, specified by the
mapping D(X). For example, in max-cut, the domain is binary: D(X,) = 0,1, where the

*These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

Integer Programming CSspP

Variables Integers (often real-valued bounds) Finite domain elements
Constraints Linear inequalities/equations Arbitrary relations over tuples
Objective Explicit linear function Maximize satisfied constraints
Natural lens Numeric optimization Logical /structural feasibility

Table 1: Integer programming versus constraint satisfaction programming.

value indicates which side of the cut vertex v belongs to. An assignment « then chooses a
value a(X) from D(X) for every variable X € X.

The third component, C, is the set of constraints. Each constraint C' € C is defined by a
scope, which is a tuple of variables s = (X,..., X}), together with a relation, which is a
set RC C D(X,) x - -+ x D(X},) describing the allowable joint assignments to those variables.
In the max-cut example, for each edge (u,v) € E, we add a constraint with scope (X,, X,)
and relation {(0,1),(1,0)}. This constraint is satisfied precisely when u and v are assigned
to opposite sides of the cut.

The overall goal of a CSP is to find an assignment that satisfies as many constraints as
possible, ideally all of them.

2 Example: 3SAT

A classic example of a constraint satisfaction problem is 3SAT. The problem is defined over
Boolean variables (Xj,...,X,). A literal is either a variable X; itself or its negation —.X;,
and we denote literals by ¢;. A clause is the disjunction (logical OR) of three literals, such
as X7V Xy VX3, The goal of 3SAT is to find an assignment of truth values to the variables
that maximizes the number of satisfied clauses, or, in the decision version, to determine
whether all clauses can be satisfied simultaneously.

We can express 3SAT naturally in the CSP framework. Each variable X; has the domain
2(X;) = {0,1}, where we interpret 1 = True and 0 = False. For each clause (¢; VV £; V {}),
we define a constraint C' with scope s¢ = (X, X, Xk). The associated relation is

R = {(u,v,w) € 0,1% | eval(f;,u) V eval({;,v) V eval(;, w) = 1},
where the evaluation function eval enforces the semantics of literals:
eval(X,1) =1, eval(X,0)=0, eval(—-X,1)=0, eval(-X,0)=1.

An assignment « satisfies a constraint C' precisely when the tuple (a(X;), a(X;), a(Xy)) lies
in R®. For example, consider the clause X; V =X ; V X}). The only falsifying assignment is
(0,1,0), so the relation is R® = {0,1}*\ {(0,1,0)}.

	General form of a CSP
	Example: 3SAT

