
Stanford MS&E/CS 331: Integer programming formulations

Ellen Vitercik∗

September 30, 2025

A goal of this week’s lectures is to pin down a common language for discussing opti-
mization problems, especially in the discrete setting. This common framework allows us to
talk about optimization at a useful level of abstraction, focusing on two central paradigms:
integer programming (IP) and constraint satisfaction programming (CSP). Grounding our
discussions in IP and CSP enables us to design machine learning methods that yield broadly
applicable tools for solving diverse optimization problems.

Integer programming has many applications across science and engineering, including
scheduling, routing, planning, manufacturing, and finance. This lecture will cover how to
formulate discrete optimization problems as integer programs.

At a high level, there are three basic components of an optimization problem:

1. Decision variables: these variables describe choices that are under our control.

2. Objective function: this is the criterion we want to minimize (for example, minimiz-
ing cost) or maximize (for example, maximizing profit).

3. Constraints: these are limitations restricting our choices for the decision variables.

An integer linear program (the focus of this module) is an optimization problem where
the objective function is linear, each constraint is a linear inequality or equality, and some
decision variables must be integer-valued, which typically makes the optimization problem
NP-hard.

1 Examples

We will start with a variety of different examples before discussing integer programming
more abstractly.

1.1 Minimum vertex cover (MVC)

A vertex cover of a graph G = (V,E) is a subset S ⊆ V such that every edge (i, j) ∈ E is
incident to a vertex in S, i.e., i ∈ S, j ∈ S, or both. In the MVC problem, the goal is to
find the smallest vertex cover.

We will begin by identifying the three basic components of this optimization problem:

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

1. Decision variables: for each vertex i ∈ V , we define the decision variable

xi =

{
1 if i is in the vertex cover

0 else.

2. Objective function: since our goal is to minimize the size of the vertex cover, our
objective function is to minimize ∑

i∈V

xi,

which is a linear function.

3. Constraints: We must design the constraints so that if an assignment of the decision
variables x1, . . . , x|V | satisfies the constraints, then {i : xi = 1} is a vertex cover. To do
so, we will add the constraint xi + xj ≥ 1 for all edges (i, j) ∈ E. This ensures that for
every edge, xi = 1 and/or xj = 1.

Putting these ingredients together, we have the MVC integer program:

minimize
∑
i∈V

xi

subject to xi + xj ≥ 1 for all (i, j) ∈ E
xi ∈ {0, 1} for all i ∈ V.

1.2 Maximum independent set (MIS)

The maximum independent set integer program is very similar to the MVC integer program.
A set S ⊆ V is an independent set if no vertices in S are connected by an edge. In the MIS
problem, the goal is to find the largest independent set. At this point, I’d recommend trying
to write the MIS integer program yourself before reading further.

As before, we will identify the three basic components of this integer program:

1. Decision variables: for each vertex i ∈ V , we define the decision variable

xi =

{
1 if i is in the independent set

0 else.

2. Objective function: Since we aim to maximize the size of the independent set, our
goal will be to maximize ∑

i∈V

xi.

3. Constraints: Finally, we must define the constraints so that if x1, . . . , x|V | satisfy the
constraints, then {i : xi = 1} is an independent set. To this end, we add the constraint
xi+xj ≤ 1 for all (i, j) ∈ E. This constraint ensures that for every edge, either xi = 1,
xj = 1, or xi = xj = 0.

Putting these pieces together, we get the MIS integer program: MIS integer program:

maximize
∑
i∈V

xi

subject to xi + xj ≤ 1 for all (i, j) ∈ E
xi ∈ {0, 1} for all i ∈ V.

2

1.3 Warehouse location

We wrap up this section with an integer program for a more practical problem [1]. The
manager of a company that produces some goods must decide which of n warehouses to
open to meet the demands of m customers. Her decision depends on the following values:

• If the manager chooses to open warehouse i ∈ [n], she must pay a fixed cost fi ≥ 0.

• The company has committed to meeting the demand dj ≥ 0 of each consumer j ∈ [m].
This is the number of units of the company’s product that the consumer demands.

• Finally, there is a transportation cost of cij ≥ 0 to ship each unit of the good from
warehouse i to customer j.

The manager’s goal is to minimize their total operating and transportation costs while en-
suring that all of the customers’ demands are fulfilled. We now identify the three basic
components of this optimization problem:

1. Decision variables: there are two types of decision variables. For each warehouse
i ∈ [n], we define the decision variable

yi =

{
1 if warehouse i is opened

0 else.

Moreover, we define the decision variable xij to be the number of units that are sent
from warehouse i to customer j. For simplicity, this amount may be fractional, so we
will only require that xij ≥ 0.

2. Objective function: the goal is to minimize the total transportation and opening
costs, i.e.,

n∑
i=1

m∑
j=1

cijxij︸ ︷︷ ︸
Transportation costs

+
n∑

i=1

fiyi︸ ︷︷ ︸
Opening costs

.

3. Constraints: there are several categories of constraints. First, we require that xij ≥ 0
and yi ∈ {0, 1}. Second, for each customer j ∈ [m], the total amount of goods sent to
them—across all n warehouses—must equal their demand, meaning that

n∑
i=1

xij = dj.

Finally, goods can only be shipped from a warehouse if that warehouse is open—a
relationship we must enforce between the xij and yi variables. If yi = 0, warehouse i is
not opened, so it cannot ship any goods to any customers, meaning that

yi = 0 ⇒
m∑
j=1

xij = 0. (1)

3

Meanwhile, if yi = 1, warehouse i can ship any number of units to the customers, and
the total amount it ships should only be constrained by the total demand. In other
words,

yi = 1 ⇒
m∑
j=1

xij ≤
m∑
j=1

dj. (2)

We can encode Equations (1) and (2) with the following constraint:

m∑
j=1

xij ≤ yi

m∑
j=1

dj.

Putting these pieces together, we obtain the warehouse location integer program:

maximize
n∑

i=1

m∑
j=1

cijxij +
n∑

i=1

fiyi

subject to
n∑

i=1

xij = dj for all j ∈ [m]

m∑
j=1

xij ≤ yi

m∑
j=1

dj for all i ∈ [n]

xij ≥ 0 for all i ∈ [n], j ∈ [m]
yi ∈ {0, 1} for all i ∈ [n].

2 General form of an integer program

In general, an integer program can be written in the following general form:

maximize
x1,...,xn

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for all i ∈ [m]

xj ≥ 0 for all j ∈ [n]
xj ∈ Z for some or all j ∈ [n].

An equality constraint
n∑

j=1

aijxj = bi

can be written using two inequality constraints:

n∑
j=1

aijxj ≤ bi and −
n∑

j=1

aijxj ≤ −bi.

Moreover, if we aim to minimize a linear objective
∑

cjxj, we can simply maximize −
∑

cjxj.

4

It is typical to write integer programs using vector and matrix notation, with b =
(b1, . . . , bm), c = (c1, . . . , cn), and

A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 .

The integer program is written as

maximize cTx
subject to Ax ≤ b

x ≥ 0
xj ∈ Z for some or all j ∈ [n].

(3)

3 Linear programming

If we ignore the integrality constraint in Equation (3), we obtain the integer program’s linear
programming relaxation:

maximize cTx
subject to Ax ≤ b

x ≥ 0.
(4)

Unlike integer programs, linear programs are efficiently solvable. The following is an impor-
tant fact that underpins how IP solvers operate.

Fact 3.1. Let x∗
IP be the optimal solution to Equation (3) and let x∗

LP be the optimal solution
to Equation (4). Then cTx∗

LP ≥ cTx∗
IP.

This fact follows from the observation that we can only improve the solution to this
maximization problem by removing the integrality constraints.

4 Integer programming solvers

Modern integer programming solvers such as Gurobi are powered by the branch-and-bound
algorithm [2]. This framework is used in real-world, high-stakes applications: the NFL relies
on it to generate full season schedules, airlines use it for flight and crew planning, and power
grid operators depend on it for deciding which generators to run and when.

Branch-and-bound organizes the problem into a search tree of subproblems (created by
fixing or bounding variables). At each node, the solver computes a bound by solving the LP
relaxation of that subproblem. If the LP solution is fractional, the solver branches—fixing
a variable to 0 or 1—and continues exploring. Each relaxation provides a bound on the
best possible solution in that subtree. By maintaining the best incumbent (the best integer
solution found so far), the solver can prune subtrees whose bounds cannot improve on it,
dramatically shrinking the search space.

In practice, solvers also employ a range of accelerators: heuristics to quickly generate
good incumbents, warm starts that exploit existing solutions or predictions, and extensive
parameter tuning, including cutting planes, heuristics, and parallelism.

5

References

[1] Stephen P Bradley, Arnoldo C Hax, and Thomas L Magnanti. Applied mathematical
programming. Addison-Wesley, 1977.

[2] Ailsa H Land and Alison G Doig. An automatic method of solving discrete programming
problems. Econometrica, pages 497–520, 1960.

6

	Examples
	Minimum vertex cover (MVC)
	Maximum independent set (MIS)
	Warehouse location

	General form of an integer program
	Linear programming
	Integer programming solvers

