Stanford MS&E/CS 331:

Diffusion models for neural combinatorial optimization

Ellen Vitercik*

October 28, 2025

These lecture notes provide a short introduction to discrete diffusion models. We ground the
discussion in the context of the paper DIFUSCO by Sun and Yang [2], which uses diffusion to find
high-quality solutions to combinatorial problems such as the traveling salesman problem (TSP)
and maximum independent set.

1 Motivation: Probabilistic neural combinatorial optimization

To ground the motivation in probabilistic neural combinatorial optimization (NCO), we assume
sample access to a distribution D over combinatorial problem instances s, such as Erdés—Rényi
graphs in graph-based optimization tasks. For each instance s, the space of candidate solutions is
denoted by X, = {0,1}", representing binary decision vectors such as edge selections in a TSP
tour.

Probabilistic NCO solvers define a parameterized distribution gg(| s) over candidate solutions,
where @ denotes the trainable parameters of a neural network. The goal is to learn pg so that it
assigns high probability to high-quality solutions for each problem instance.

To train such a model, we draw a finite training set of problem instances S ~ D™, each labeled
with an optimal solution **. The learning objective is to maximize the likelihood of these labeled
solutions, or equivalently, to minimize the negative log-likelihood:

L(®) =" ~loggo (x| 5).
seS

The diffusion-based approach frames this process as learning to reverse a structured corruption
procedure. Each ground-truth solution &** is progressively corrupted through a multi-step noise
process (the forward encoder) that eventually transforms it into a sample drawn from the uniform
distribution over {0, I}N . A neural network is then trained to invert this corruption, step by step,
effectively denoising the data to recover the clean solution (the reverse decoder). At inference time,
the model begins from uniform noise and iteratively denoises it to generate high-quality solutions
for new problem instances.

2 Forward encoder

Given an optimal solution xyg = x**, the forward diffusion process begins by introducing random
corruption to obtain a noised version 1. Each bit of xq is independently flipped with probability
(1 and remains unchanged with probability 1 — ;.

*These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

To formalize this process, we first represent xg € {0,1}"V as a one-hot matrix &g € {0, 1}/V*2,

where each row encodes whether the corresponding bit is 0 or 1:
. [1,0], if zo[i] =0,
' 0,1], if zo[i] = 1.

We then define the transition probability matrix

_(1=-B B
Ql_(b1 1—ﬁ1>’

which specifies the probability of either retaining or flipping each bit during the corruption step.
Multiplying the one-hot representation by this matrix yields the conditional probabilities for
each bit after the first noising step:

[1— B, 1], if zoli] =0,
[ﬁh 1- /Bl]v if !TO[Z] =1.

Finally, the corrupted sample x; is drawn from a categorical distribution defined by these
probabilities: x1 ~ g(x1 | ®g, s) = Cat(x1;p = £oQ1), meaning that for each index 1,

P = jOQh p[la :] =

. 0, with probability pli, 0],
xifi] =
1, with probability p[i, 1].

This step constitutes the first stage of the forward (noising) process, which then proceeds
iteratively for timesteps t = 2,3,...,T. At each step, we begin with a binary vector «; 1 € {0,1}"V
and construct its one-hot representation &;_; € {0, 1}N X2 A timestep-dependent transition matrix
Q; € R?*2 is then defined using the scalar noise parameter f3;:

Be 1-5
Each bit of x;—; is then randomly flipped according to this matrix by sampling

Qt=<l_5t Bt), where By > By > -+ > fr.

xy ~ g | 2i—1,5) = Cat(xy;p = Ti—1Qy). (1)

Thus, Q; controls the level of corruption introduced at each timestep, with larger 3; values corre-
sponding to higher noise.

By composing the transitions across multiple steps, the marginal distribution of the noised
variable can be expressed as

q(xi | o, 5) = q(m; | ™, 5) = Cat(xy;p = 20Q) (2)

where Q; = Q1Q3 - - - Q¢. The sequence f,. .., fr is chosen such that

T

[[a-8)~0

t=1

ensuring that after sufficiently many timesteps, the distribution ¢(xr | x**,s) approaches the
uniform distribution over {0,1}". This property guarantees that the forward process gradually
destroys information in the original solution until only pure noise remains, providing the foundation
for learning its reverse denoising process.

3 Reverse decoder

The objective of the reverse diffusion process is to learn how to invert the noise introduced during
the forward process. Formally, we aim to model the conditional distribution ¢(x;—1 | @, s), which
describes how a partially denoised solution @;_1 can be sampled given the current noisy state x;
and the problem instance s.

To derive this quantity, we first consider the distribution conditioned on both the problem
instance and its corresponding optimal solution: (s, z**). Applying Bayes’ rule gives:

q (wt | Ti—1, xs*a S) q (mt—l | ms*v 5)

q (@ | 2, 5)

q(xi-1 | @, ™, 5) =
Note that each state x; depends only on its immediate predecessor x;—; and not on earlier states

given a1, so the expression simplifies to:

q(wy | 1) g (@i | 2™, 5) 3)
q (x| T,)

Q(mtfl | ta8*a 8) =

Here, the denominator ¢ (z; | %%, s) acts as a normalization constant since it does not depend on
Ti_1.

Squinting our eyes and pattern matching with Equations (1) and (2), we can write this condi-
tional distribution explicitly:

Q] © fioQt—l) @)

T0Qr®,
where ® denotes element-wise multiplication. (For a full derivation, see the online notes by Beckham

[1].)
This expression gives the exact posterior distribution over x;_; given the current state x; and
the clean data x**. However, during inference we do not have access to the true clean solution x**,

so we must marginalize over all possible ground-truth solutions:

q(xi—1 | o, %", 5) = Cat <$t1; p=

q(Ti—1 | T4, 5) = Zq (@1 | Tt 2™, 8) q (™ | 21, 8) = Ews*wq(w5*|wt,s) [q (-1 | ¢, %", 5)] .

xrs*

Of course, at test time, we do not have access to the true posterior distribution g(z** | x4, s).
Instead, we approximate it using a learned model pg(x®* | x¢, s), where 6 are the parameters of a
neural network. This leads to the following approximation:

Q(wt—l \ :ct,s) ~ Ews*Npe(ms*|act,s)[Q(iEt—1 \ xy, 8)] = %(iﬂt—l ! wt,S)-

To evaluate this expectation without summing over an exponentially large space of possible solu-
tions, we apply Bayes’ rule and the Markov property of the diffusion process:

Q(fct | Ti—1, ms*a S) Q(int—l | ms*a S):|

Go(xi-1 | T4, 8) = Egorpg (@) [q(xy | %%,)

Q(il?t ’ xt—l) Q(Cct—l \ %, 3)]

— E:ES*Npg(wS*\mt,S) |: q(wt ‘ IES*, S)

q(ze—1 | =™, S)]

= J—]E Sk ~y Sk
Q(wt ‘ Ty l) xS* ~pg(x |mt,s)|: Q(mt | 325*,8)

Then, this expectation is approximated using a single Monte Carlo sample. In particular, we draw
one sample xg ~ pg(xg | ¢, s) and compute:

Q(iﬂt—l ! Zo, 3)

qo(@i_1 | @, 8) =~ q(xy | 1) - .
A AT

Substituting the expressions for the categorical distributions from Equations (3) and (4), we obtain:
~ T ~ ~
Ty © fcoQt—1>
ToQi®]
This learned approximation enables the model to sample plausible denoised configurations at
each timestep without requiring access to the true optimal solution a®*.

go(xi—1 | x4, s) = Cat (wm; p=

4 Training the decoder

The goal of the decoder is to reconstruct the clean solution ** from a noisy input (x;, s), where
x; represents a corrupted version of a problem instance s. In the context of specific combinatorial
optimization problems, this prediction task takes on different interpretations:

e TSP: The target % indicates whether each edge in the graph is part of the optimal tour.

e Maximum independent set (MIS): The target ** identifies which vertices belong to
the largest subset of mutually non-adjacent nodes. In this case, each entry of x** specifies
whether a given vertex is included in the independent set.

Sun and Yang [2] implement the decoder as an anisotropic graph neural network (AGNN), which
performs directed message passing along the edges of the graph. Each edge aggregates information
from its incident vertices and propagates messages that capture local structure and directionality.
The initialization of node and edge embeddings depends on the problem type:

e TSP: Sun and Yang [2] study TSP when the city locations are embedded in two-dimensional
Euclidean space. Edge features include the pairwise Euclidean distances between nodes and
their corresponding labels from a;. Node features consist of the 2D coordinates of the cities.

e MIS: Node features are initialized using their labels in x; and the edges do not have initial
embeddings.

In both cases, the denoising timestep ¢ is encoded using a sinusoidal positional embedding, which
allows the model to modulate its behavior based on the current noise level. The decoder is trained
using a cross-entropy loss.

5 Decoding Strategies

At test time, after completing T" denoising steps on a problem instance s, the model produces
a final distribution gg(x** | «1,s) over candidate solutions. Individual samples drawn from this
distribution are not guaranteed to be feasible solutions to the underlying combinatorial problem.
Consequently, task-specific decoding heuristics are applied to convert the probabilistic outputs into
valid solutions.

TSP. Let ¢; and ¢ denote the Euclidean coordinates of cities ¢ and j. The diffusion model assigns
a probability mass to each edge (i,), indicating the likelihood that it is part of the optimal tour.
To generate a feasible tour:

e Edges are ranked according to the ratio of their predicted probability mass to their Euclidean

distance, i.e.,
probability mass on (i, j)

lei = ¢

e A greedy decoding algorithm sequentially inserts edges in this ranked order while avoiding
conflicts such as premature cycles or degree violations.

e A few rounds of 2-opt local search are optionally applied to refine the resulting tour by
iteratively swapping edges to reduce the total travel distance.

MIS. For MIS, decoding proceeds analogously: nodes are ranked according to their predicted
probability mass, and a greedy selection process is used to add vertices to the independent set
as long as doing so does not introduce adjacency conflicts.

Sampling decoding. To further enhance solution quality, multiple decoding runs can be per-
formed in parallel, each initialized with a different random noise sample xp. This sampling
decoding strategy allows the model to explore distinct regions of the solution space and select the
best outcome according to the problem’s objective function.

6 Experiments

6.1 TSP

FEach TSP instance consists of a set of cities uniformly sampled from the unit square, with edge
weights corresponding to Euclidean distances. To reduce computational complexity on large graphs,
each node is connected only to its k nearest neighbors (50 for TSP-500 and 100 for TSP-1000 and
TSP-10000). During training, 7" = 1000 diffusion steps are used. During testing, two settings
are compared: a 50-step l-sample policy for greedy decoding, and a 10-step 16-sample policy for
sampling decoding. Figure 1 (a screenshot of Table 2 by Sun and Yang [2]) presents the main
comparison against state-of-the-art neural and heuristic baselines.

6.2 MIS

The MIS experiments are on two classes of graphs: SATLIB graphs, derived from Boolean satisfi-
ability (SAT) instances, and Erdés—Rényi (ER) random graphs. In the ER-[700-800] benchmark,
each graph contains between 700 and 800 nodes, with a connection probability of 0.15. Training is
again performed with 7' = 1000 diffusion steps. For SATLIB graphs, the authors use two inference
modes: a 50-step 1-sample policy for greedy decoding and a 50-step 4-sample policy for sampling
decoding. For ER graphs, they use a 50-step 1-sample policy for greedy decoding and a 20-step
8-sample policy for sampling decoding. Figure 1 (a screenshot of Table 3 by Sun and Yang [2])
presents the main comparison against state-of-the-art neural and heuristic baselines.

TSP-500 TSP-1000 TSP-10000
CEGRRTTENT LAEE LENGTH| GAP| TIME /] |LENGTH] GAP] TIME | |LENGTH| GAP| TIME /]
CONCORDE ExAcT 16.55* — 37.66m| 23.12% — 6.65h N/A N/A N/A
GUROBI EXACT 16.55 0.00% 45.63h N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) HEURISTICS 16.55 0.00% 46.28m| 23.12 0.00% 2.57h | 71.77* — 8.8h
LKH-3 (LESS TRAILS) HEURISTICS 16.55 0.00% 3.03m | 23.12 0.00% 7.73m | 71.79 — 51.27m
FARTHEST INSERTION HEURISTICS 18.30 10.57% (5 25.72 11.25% 0Os 80.59 12.29% 6s
AM RL+G 20.02 20.99% 1.5lm | 31.15 34.75% 3.18m | 141.68 97.39% 5.99m
GCN SL+G 29.72 79.61% 6.67m | 48.62 110.29% 28.52m| N/A N/A N/A
POMO+EAS-EMB RL+AS+G 19.24 16.25% 12.80h N/A N/A N/A N/A N/A N/A
POMO+EAS-TAB RL+AS+G 24.54 48.22% 11.61h| 49.56 114.36% 63.45h N/A N/A N/A
DIMES RL+G 18.93 14.38% 0.97m | 26.58 14.97% 2.08m | 86.44 20.44% 4.65m
DIMES RL+AS+G 17.81 7.61% 2.10h 24.91 7.74% 4.49h 80.45 12.09% 3.07h
OuRrs (DIFUSCO) SL+G7¥ 18.35 10.85% 3.61lm | 26.14 13.06% 11.86m| 98.15 36.75% 28.51m
Ours (DIFUSCO) SL+G71+2-0OPT 16.80 1.49% 3.65m | 23.56 1.90% 12.06m| 73.99 3.10% 35.38m
EAN RL+S+2-0PT 23.75 43.57% 57.76m| 47.73 106.46% 5.39h N/A N/A N/A
AM RL+BS 19.53 18.03% 21.99m| 29.90 29.23% 1.64h | 129.40 80.28% 1.81h
GCN SL+BS 30.37 83.55% 38.02m| 51.26 121.73% 51.67m| N/A N/A N/A
DIMES RL+S 18.84 13.84% 1.06m | 26.36 14.01% 2.38m | 85.75 19.48% 4.80m
DIMES RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h 80.42 12.05% 3.12h
Ours (DIFUSCO) SL+S 17.23 4.08% 11.02m| 25.19 8.95% 46.08m| 95.52 33.09% 6.59h
OuRrs (DIFUSCO) SL+S+2-0PT 16.65 0.57% 11.46m| 23.45 1.43% 48.09m| 73.89 2.95% 6.72h
Figure 1: TSP results by Sun and Yang [2].
SATLIB ER-[700-800]

METHOD TypE Size1 Gapl| TIME] SizEft Gapr| TIME]

KAMIS HEURISTICS 425.96* — 37.58m 44.87 — 52.13m

GUROBI ExAcCT 425.95 0.00% 26.00m 41.38 7.78% 50.00m

INTEL SL+G 420.66 1.48% 23.05m 34.86 22.31% 6.06m

INTEL SL+TS N/A N/A N/A 38.80 13.43% 20.00M

DGL SL+TS N/A N/A N/A 37.26 16.96% 22.71m

LwD RL+S 422.22 0.88% 18.83m 41.17 8.25% 6.33m

DIMES RL+G 421.24 1.11% 24.17m 38.24 14.78% 6.12m

DIMES RL+S 423.28 0.63% 20.26m 42.06 6.26% 12.0lm

OURS SL+G 424.50 0.34% 8.76m 38.83 12.40% 8.80m

OURS SL+S 425.13 0.21% 23.74m 41.12 8.36% 26.67Tm

References

Figure 2: MIS results by Sun and Yang [2].

[1] Christopher Beckham. My notes on discrete denoising diffusion models (D3PMs). https:
//beckham.nz/2022/07/11/d3pms.html, April 2023. Accessed: 2025-10-27.

[2] Zhiging Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial
optimization. In Conference on Neural Information Processing Systems (NeurIPS), 2023.

https://beckham.nz/2022/07/11/d3pms.html
https://beckham.nz/2022/07/11/d3pms.html

	Motivation: Probabilistic neural combinatorial optimization
	Forward encoder
	Reverse decoder
	Training the decoder
	Decoding Strategies
	Experiments
	TSP
	MIS

