
Stanford MS&E/CS 331:

Diffusion models for neural combinatorial optimization

Ellen Vitercik∗

October 28, 2025

These lecture notes provide a short introduction to discrete diffusion models. We ground the
discussion in the context of the paper DIFUSCO by Sun and Yang [2], which uses diffusion to find
high-quality solutions to combinatorial problems such as the traveling salesman problem (TSP)
and maximum independent set.

1 Motivation: Probabilistic neural combinatorial optimization

To ground the motivation in probabilistic neural combinatorial optimization (NCO), we assume
sample access to a distribution D over combinatorial problem instances s, such as Erdős–Rényi
graphs in graph-based optimization tasks. For each instance s, the space of candidate solutions is
denoted by Xs = {0, 1}N , representing binary decision vectors such as edge selections in a TSP
tour.

Probabilistic NCO solvers define a parameterized distribution qθ(x | s) over candidate solutions,
where θ denotes the trainable parameters of a neural network. The goal is to learn pθ so that it
assigns high probability to high-quality solutions for each problem instance.

To train such a model, we draw a finite training set of problem instances S ∼ Dn, each labeled
with an optimal solution xs∗. The learning objective is to maximize the likelihood of these labeled
solutions, or equivalently, to minimize the negative log-likelihood:

L(θ) =
∑
s∈S

− log qθ (x
s∗ | s) .

The diffusion-based approach frames this process as learning to reverse a structured corruption
procedure. Each ground-truth solution xs∗ is progressively corrupted through a multi-step noise
process (the forward encoder) that eventually transforms it into a sample drawn from the uniform
distribution over {0, 1}N . A neural network is then trained to invert this corruption, step by step,
effectively denoising the data to recover the clean solution (the reverse decoder). At inference time,
the model begins from uniform noise and iteratively denoises it to generate high-quality solutions
for new problem instances.

2 Forward encoder

Given an optimal solution x0 = xs∗, the forward diffusion process begins by introducing random
corruption to obtain a noised version x1. Each bit of x0 is independently flipped with probability
β1 and remains unchanged with probability 1− β1.

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

To formalize this process, we first represent x0 ∈ {0, 1}N as a one-hot matrix x̃0 ∈ {0, 1}N×2,
where each row encodes whether the corresponding bit is 0 or 1:

x̃0[i, :] =

{
[1, 0], if x0[i] = 0,

[0, 1], if x0[i] = 1.

We then define the transition probability matrix

Q1 =

(
1− β1 β1
β1 1− β1

)
,

which specifies the probability of either retaining or flipping each bit during the corruption step.
Multiplying the one-hot representation by this matrix yields the conditional probabilities for

each bit after the first noising step:

p = x̃0Q1, p[i, :] =

[1− β1, β1], if x0[i] = 0,

[β1, 1− β1], if x0[i] = 1.

Finally, the corrupted sample x1 is drawn from a categorical distribution defined by these
probabilities: x1 ∼ q(x1 | x0, s) = Cat(x1;p = x̃0Q1), meaning that for each index i,

x1[i] =

0, with probability p[i, 0],

1, with probability p[i, 1].

This step constitutes the first stage of the forward (noising) process, which then proceeds
iteratively for timesteps t = 2, 3, . . . , T . At each step, we begin with a binary vector xt−1 ∈ {0, 1}N
and construct its one-hot representation x̃t−1 ∈ {0, 1}N×2. A timestep-dependent transition matrix
Qt ∈ R2×2 is then defined using the scalar noise parameter βt:

Qt =

(
1− βt βt

βt 1− βt

)
, where β1 > β2 > · · · > βT .

Each bit of xt−1 is then randomly flipped according to this matrix by sampling

xt ∼ q(xt | xt−1, s) = Cat(xt;p = x̃t−1Qt). (1)

Thus, Qt controls the level of corruption introduced at each timestep, with larger βt values corre-
sponding to higher noise.

By composing the transitions across multiple steps, the marginal distribution of the noised
variable can be expressed as

q(xt | x0, s) = q(xt | xs∗, s) = Cat(xt;p = x̃0Q̄t) (2)

where Q̄t = Q1Q2 · · ·Qt. The sequence β1, . . . , βT is chosen such that

T∏
t=1

(1− βt) ≈ 0,

ensuring that after sufficiently many timesteps, the distribution q(xT | xs∗, s) approaches the
uniform distribution over {0, 1}N . This property guarantees that the forward process gradually
destroys information in the original solution until only pure noise remains, providing the foundation
for learning its reverse denoising process.

2

3 Reverse decoder

The objective of the reverse diffusion process is to learn how to invert the noise introduced during
the forward process. Formally, we aim to model the conditional distribution q(xt−1 | xt, s), which
describes how a partially denoised solution xt−1 can be sampled given the current noisy state xt

and the problem instance s.
To derive this quantity, we first consider the distribution conditioned on both the problem

instance and its corresponding optimal solution: (s,xs∗). Applying Bayes’ rule gives:

q (xt−1 | xt,x
s∗, s) =

q (xt | xt−1,x
s∗, s) q (xt−1 | xs∗, s)

q (xt | xs∗, s)
.

Note that each state xt depends only on its immediate predecessor xt−1 and not on earlier states
given xt−1, so the expression simplifies to:

q (xt−1 | xt,x
s∗, s) =

q (xt | xt−1) q (xt−1 | xs∗, s)

q (xt | xs∗, s)
. (3)

Here, the denominator q (xt | xs∗, s) acts as a normalization constant since it does not depend on
xt−1.

Squinting our eyes and pattern matching with Equations (1) and (2), we can write this condi-
tional distribution explicitly:

q (xt−1 | xt,x
s∗, s) = Cat

(
xt−1; p =

x̃tQ
⊤
t ⊙ x̃0Q̄t−1

x̃0Q̄tx̃⊤
t

)
, (4)

where⊙ denotes element-wise multiplication. (For a full derivation, see the online notes by Beckham
[1].)

This expression gives the exact posterior distribution over xt−1 given the current state xt and
the clean data xs∗. However, during inference we do not have access to the true clean solution xs∗,
so we must marginalize over all possible ground-truth solutions:

q(xt−1 | xt, s) =
∑
xs∗

q (xt−1 | xt,x
s∗, s) q (xs∗ | xt, s) = Exs∗∼q(xs∗|xt,s)[q (xt−1 | xt,x

s∗, s)] .

Of course, at test time, we do not have access to the true posterior distribution q(xs∗ | xt, s).
Instead, we approximate it using a learned model pθ(x

s∗ | xt, s), where θ are the parameters of a
neural network. This leads to the following approximation:

q(xt−1 | xt, s) ≈ Exs∗∼pθ(xs∗|xt,s)[q(xt−1 | xt,x
s∗, s)] := qθ(xt−1 | xt, s).

To evaluate this expectation without summing over an exponentially large space of possible solu-
tions, we apply Bayes’ rule and the Markov property of the diffusion process:

qθ(xt−1 | xt, s) = Exs∗∼pθ(xs∗|xt,s)

[
q(xt | xt−1,x

s∗, s) q(xt−1 | xs∗, s)

q(xt | xs∗, s)

]

= Exs∗∼pθ(xs∗|xt,s)

[
q(xt | xt−1) q(xt−1 | xs∗, s)

q(xt | xs∗, s)

]

= q(xt | xt−1)Exs∗∼pθ(xs∗|xt,s)

[
q(xt−1 | xs∗, s)

q(xt | xs∗, s)

]
.

3

Then, this expectation is approximated using a single Monte Carlo sample. In particular, we draw
one sample x0 ∼ pθ(x0 | xt, s) and compute:

qθ(xt−1 | xt, s) ≈ q(xt | xt−1) ·
q(xt−1 | x0, s)

q(xt | x0, s)
.

Substituting the expressions for the categorical distributions from Equations (3) and (4), we obtain:

qθ(xt−1 | xt, s) = Cat

(
xt−1; p =

x̃tQ
⊤
t ⊙ x̃0Q̄t−1

x̃0Q̄tx̃⊤
t

)
.

This learned approximation enables the model to sample plausible denoised configurations at
each timestep without requiring access to the true optimal solution xs∗.

4 Training the decoder

The goal of the decoder is to reconstruct the clean solution xs∗ from a noisy input (xt, s), where
xt represents a corrupted version of a problem instance s. In the context of specific combinatorial
optimization problems, this prediction task takes on different interpretations:

• TSP: The target xs∗ indicates whether each edge in the graph is part of the optimal tour.

• Maximum independent set (MIS): The target xs∗ identifies which vertices belong to
the largest subset of mutually non-adjacent nodes. In this case, each entry of xs∗ specifies
whether a given vertex is included in the independent set.

Sun and Yang [2] implement the decoder as an anisotropic graph neural network (AGNN), which
performs directed message passing along the edges of the graph. Each edge aggregates information
from its incident vertices and propagates messages that capture local structure and directionality.
The initialization of node and edge embeddings depends on the problem type:

• TSP: Sun and Yang [2] study TSP when the city locations are embedded in two-dimensional
Euclidean space. Edge features include the pairwise Euclidean distances between nodes and
their corresponding labels from xt. Node features consist of the 2D coordinates of the cities.

• MIS: Node features are initialized using their labels in xt and the edges do not have initial
embeddings.

In both cases, the denoising timestep t is encoded using a sinusoidal positional embedding, which
allows the model to modulate its behavior based on the current noise level. The decoder is trained
using a cross-entropy loss.

5 Decoding Strategies

At test time, after completing T denoising steps on a problem instance s, the model produces
a final distribution qθ(x

s∗ | x1, s) over candidate solutions. Individual samples drawn from this
distribution are not guaranteed to be feasible solutions to the underlying combinatorial problem.
Consequently, task-specific decoding heuristics are applied to convert the probabilistic outputs into
valid solutions.

4

TSP. Let ci and cj denote the Euclidean coordinates of cities i and j. The diffusion model assigns
a probability mass to each edge (i, j), indicating the likelihood that it is part of the optimal tour.
To generate a feasible tour:

• Edges are ranked according to the ratio of their predicted probability mass to their Euclidean
distance, i.e.,

probability mass on (i, j)

∥ci − cj∥
.

• A greedy decoding algorithm sequentially inserts edges in this ranked order while avoiding
conflicts such as premature cycles or degree violations.

• A few rounds of 2-opt local search are optionally applied to refine the resulting tour by
iteratively swapping edges to reduce the total travel distance.

MIS. For MIS, decoding proceeds analogously: nodes are ranked according to their predicted
probability mass, and a greedy selection process is used to add vertices to the independent set
as long as doing so does not introduce adjacency conflicts.

Sampling decoding. To further enhance solution quality, multiple decoding runs can be per-
formed in parallel, each initialized with a different random noise sample xT . This sampling
decoding strategy allows the model to explore distinct regions of the solution space and select the
best outcome according to the problem’s objective function.

6 Experiments

6.1 TSP

Each TSP instance consists of a set of cities uniformly sampled from the unit square, with edge
weights corresponding to Euclidean distances. To reduce computational complexity on large graphs,
each node is connected only to its k nearest neighbors (50 for TSP-500 and 100 for TSP-1000 and
TSP-10000). During training, T = 1000 diffusion steps are used. During testing, two settings
are compared: a 50-step 1-sample policy for greedy decoding, and a 10-step 16-sample policy for
sampling decoding. Figure 1 (a screenshot of Table 2 by Sun and Yang [2]) presents the main
comparison against state-of-the-art neural and heuristic baselines.

6.2 MIS

The MIS experiments are on two classes of graphs: SATLIB graphs, derived from Boolean satisfi-
ability (SAT) instances, and Erdős–Rényi (ER) random graphs. In the ER-[700–800] benchmark,
each graph contains between 700 and 800 nodes, with a connection probability of 0.15. Training is
again performed with T = 1000 diffusion steps. For SATLIB graphs, the authors use two inference
modes: a 50-step 1-sample policy for greedy decoding and a 50-step 4-sample policy for sampling
decoding. For ER graphs, they use a 50-step 1-sample policy for greedy decoding and a 20-step
8-sample policy for sampling decoding. Figure 1 (a screenshot of Table 3 by Sun and Yang [2])
presents the main comparison against state-of-the-art neural and heuristic baselines.

5

Figure 1: TSP results by Sun and Yang [2].

Figure 2: MIS results by Sun and Yang [2].

References

[1] Christopher Beckham. My notes on discrete denoising diffusion models (D3PMs). https:

//beckham.nz/2022/07/11/d3pms.html, April 2023. Accessed: 2025-10-27.

[2] Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial
optimization. In Conference on Neural Information Processing Systems (NeurIPS), 2023.

6

https://beckham.nz/2022/07/11/d3pms.html
https://beckham.nz/2022/07/11/d3pms.html

	Motivation: Probabilistic neural combinatorial optimization
	Forward encoder
	Reverse decoder
	Training the decoder
	Decoding Strategies
	Experiments
	TSP
	MIS

