Learning to optimize computational resources:
Frugal training with generalization guarantees

Nina Balcan, Tuomas Sandholm, Ellen Vitercik
Carnegie Mellon University

Algorithm configuration Useful (and requisite) structure
Algorithms often have tunable parameters We often observe that £(:,j) is piecewise-constant
* |Impact resource consumption such as runtime, memory usage, ... E.g., ininteger programming [Balcan, Dick, Sandholm, V. 18]

* Hand-tuning is time-consuming and tedious

This paper: theoretical guarantees for algorithm configuration via ML £(p,j)

A

Learning-based configuration procedure

Input: Set of “typical” problem instances drawn from distribution T’ - — ™ — — — _

E.q., integer programs (IPs) an airline solves day to day - - — M R —_—
Output: Parameter setting with low expected resource consumption | | | | -

E.qg., low expected runtime, memory usage, ... — — — —

Goal: Procedure itself should have low resource consumption

I Algorith
Notation and example gorithm parameter p

£(p, j): Resources required to solve instance j using params p € R¢

Example: j = integer program and p = CPLEX parameter setting Our algorlthm
f(p,j) = size of branch-and-bound tree CPLEX builds

OPT = minE;_ r[£(p,j)]

p
Pri h (Actually compete with nuanced notion of OPT, like prior research
rior researc [Kleinberg etal.’17,'19; Weisz et al., '18, "19])
Kleinberg etal. 17,19 and Weisz et al., "18,"19: Maintains upper confidence bound (UCB) on OPT, initially set to o
Focus on finite parameter spaces
Can be used on infinite parameter space: On each round t, draws set S, from T
* Sample Q G) configurations; run algorithm over finite set

Computes partition of parameters into regions where within each:

For each instance in S;, the loss ¢, capped at 2%, is constant
Implementation guidance in prior research

le.g., Balcan, Dick, Sandholm, V. "18]

« Qutput configuration is in top y-quantile

Bad case for randomly sampling parameters:

Ej~rl€(p,J)]

1 On each region of partition, if enough instances have loss less than 2°
Chooses arbitrary parameter from region and deems it “good”

< Once cap 2% has grown sufficiently large compared to UCB on OPT:

- Algorithm returns set of “good” parameters
—— Y —

Algorithm parameter p

Guarantees

These worst-case examples do exist

E.g., ininteger programming [Balcan, Dick, Sandholm, V. "18] .
Theorem (informal):

1. WHP, exists "good” param in output that's within 1 + € of optimal

Our contributions 2. Algorithm terminates after Ov(ln(i/l + e OPT)) rounds
3. Ontinal round, let P be the size of partition algorithm computes
Algorithm that finds finite set of good params from within infinite set Number of “good” parameters is O(P - In(V1 + € - OPT))
* Set contains nearly-optimal parameter with high probability 4. |S,| is polynomial in 2¢ (linear in OPT), InP, d, and 1
€

* Can be used as input to algorithm for finite parameter spaces

[Kleinberg etal."17,"19; Weisz et al., "18, "19] In bad case for random sampling, algorithm terminates in 0(1) rounds

