
Learning to optimize computational resources:
Frugal training with generalization guarantees

Nina Balcan, Tuomas Sandholm, Ellen Vitercik
Carnegie Mellon University

Our algorithm
OPT = min

$
𝔼&∼(ℓ 𝑝, 𝑗

(Actually compete with nuanced notion of OPT, like prior research
[Kleinberg et al. ‘17, ’19; Weisz et al., ‘18, ’19])

Maintains upper confidence bound (UCB) on OPT, initially set to ∞

On each round t, draws set 𝑆. from Γ

Computes partition of parameters into regions where within each:
For each instance in 𝑆., the loss ℓ, capped at 2., is constant
Implementation guidance in prior research

[e.g., Balcan, Dick, Sandholm, V. ‘18]

On each region of partition, if enough instances have loss less than 𝟐𝒕
Chooses arbitrary parameter from region and deems it “good”

Once cap 2. has grown sufficiently large compared to UCB on OPT:
Algorithm returns set of “good” parameters

Guarantees
Theorem (informal):
1. WHP, exists ”good” param in output that’s within 𝟏 + 𝝐 of optimal
2. Algorithm terminates after 6𝑂 ln 9 1 + 𝜖 < 𝑂𝑃𝑇 rounds
3. On final round, let 𝑃 be the size of partition algorithm computes

Number of “good” parameters is 6𝑂 𝑃 < ln 9 1 + 𝜖 < 𝑂𝑃𝑇
4. 𝑆. is polynomial in 2. (linear in OPT), ln 𝑃, 𝑑, and @

A

In bad case for random sampling, algorithm terminates in B𝑶(𝟏) rounds

ℓ 𝑝, 𝑗

Algorithm parameter 𝑝

Useful (and requisite) structure
We often observe that ℓ <, 𝑗 is piecewise-constant

E.g., in integer programming [Balcan, Dick, Sandholm, V. ‘18]

These worst-case examples do exist
E.g., in integer programming [Balcan, Dick, Sandholm, V. ‘18]

Our contributions
Algorithm that finds finite set of good params from within infinite set
• Set contains nearly-optimal parameter with high probability
• Can be used as input to algorithm for finite parameter spaces

[Kleinberg et al. ‘17, ’19; Weisz et al., ‘18, ‘19]

Algorithm configuration
Algorithms often have tunable parameters
• Impact resource consumption such as runtime, memory usage, …
• Hand-tuning is time-consuming and tedious

This paper: theoretical guarantees for algorithm configuration via ML

Learning-based configuration procedure
Input: Set of “typical” problem instances drawn from distribution Γ

E.g., integer programs (IPs) an airline solves day to day
Output: Parameter setting with low expected resource consumption

E.g., low expected runtime, memory usage, …

Goal: Procedure itself should have low resource consumption

Notation and example
ℓ 𝑝, 𝑗 : Resources required to solve instance 𝑗 using params 𝑝 ∈ ℝH

Example: 𝑗 = integer program and 𝑝 = CPLEX parameter setting
ℓ 𝑝, 𝑗 = size of branch-and-bound tree CPLEX builds

Prior research
Kleinberg et al. ‘17, ‘19 and Weisz et al., ‘18, ‘19:

Focus on finite parameter spaces
Can be used on infinite parameter space:
• Sample Ω @

J
configurations; run algorithm over finite set

• Output configuration is in top 𝛾-quantile

Bad case for randomly sampling parameters:
𝔼&∼(ℓ 𝑝, 𝑗

Algorithm parameter 𝑝

