Learning to optimize computational resources: **Frugal training with generalization guarantees**

Nina Balcan, Tuomas Sandholm, Ellen Vitercik Carnegie Mellon University

Algorithm configuration

Algorithms often have **tunable parameters**

- Impact resource consumption such as runtime, memory usage, ...
- Hand-tuning is time-consuming and tedious \bullet

This paper: theoretical guarantees for algorithm configuration via ML

Useful (and requisite) structure

We often observe that $\ell(\cdot, j)$ is **piecewise-constant** E.g., in integer programming [Balcan, Dick, Sandholm, V. '18]

 $\ell(p,j)$

Learning-based configuration procedure

Input: Set of "typical" problem instances drawn from distribution Γ E.g., integer programs (IPs) an airline solves day to day Output: Parameter setting with low expected resource consumption E.g., low expected runtime, memory usage, ...

Goal: Procedure itself should have low resource consumption

Notation and example

 $\ell(p,j)$: Resources required to solve instance j using params $p \in \mathbb{R}^d$

Example: j = integer program and p = CPLEX parameter setting $\ell(p, j)$ = size of branch-and-bound tree CPLEX builds

Prior research

Algorithm parameter *p*

Our algorithm

$\mathsf{OPT} = \min_{n} \mathbb{E}_{j \sim \Gamma}[\ell(p, j)]$

(Actually compete with nuanced notion of OPT, like prior research [Kleinberg et al. '17, '19; Weisz et al., '18, '19])

Kleinberg et al. '17, '19 and Weisz et al., '18, '19: Focus on finite parameter spaces Can be used on infinite parameter space:

- Sample $\Omega\left(\frac{1}{\nu}\right)$ configurations; run algorithm over finite set
- Output configuration is in top γ -quantile

Bad case for randomly sampling parameters:

 $\mathbb{E}_{j\sim\Gamma}[\ell(p,j)]$

These worst-case examples do exist E.g., in integer programming [Balcan, Dick, Sandholm, V. '18]

Our contributions

Maintains **upper confidence bound** (UCB) on OPT, initially set to ∞

On each round t, draws set S_t from Γ

Computes **partition** of parameters into regions where within each: For each instance in S_t , the loss ℓ , capped at 2^t , is **constant** Implementation guidance in prior research [e.g., Balcan, Dick, Sandholm, V. '18]

On each region of partition, if enough instances have loss less than 2^{t} Chooses arbitrary parameter from region and deems it "good"

Once cap 2^t has grown sufficiently large compared to UCB on **OPT**: Algorithm returns set of "good" parameters

Guarantees

Theorem (informal):

- WHP, exists "good" param in output that's within $1 + \epsilon$ of optimal

Algorithm that finds **finite** set of good params from within **infinite** set Set contains **nearly-optimal** parameter with high probability Can be used as input to algorithm for finite parameter spaces [Kleinberg et al. '17, '19; Weisz et al., '18, '19]

2. Algorithm terminates after $\tilde{O}(\ln(\sqrt[4]{1+\epsilon} \cdot OPT))$ rounds On final round, let P be the size of partition algorithm computes 3. Number of "good" parameters is $\tilde{O}(P \cdot \ln(\sqrt[4]{1 + \epsilon} \cdot OPT))$ $|S_t|$ is polynomial in 2^t (linear in OPT), $\ln P$, d, and $\frac{1}{2}$ In bad case for random sampling, algorithm terminates in $\tilde{O}(1)$ rounds