Generalization in Portfolio-based Algorithm Selection Nina Balcan, Tuomas Sandholm, Ellen Vitercik

Algorithm portfolios

Algorithms often have many tunable parameters Significant impact on runtime, solution quality, ...

Best configuration for one problem is rarely optimal for and

Portfolio-based algorithm selection

- 1. Compile diverse portfolio of parameter settings
- 2. At runtime, select one with strong predicted performan

Example:

Fueled breakthroughs in:

- SAT [Xu, Hutter, Hoos, Leyton-Brown, '08]
- Integer programming [Xu, Hoos, Leyton-Brown, '10]
- Combinatorial auction winner determination [Sandholm]
- Planning [Cenamor, De La Rosa, Fernández, '16]

Learning a portfolio and selector

- 1. Fix parameterized algorithm
- 2. Receive training set S of "typical" inputs

Training set

instance 1 instance 2 instance 3		Problem instance 1	Problem instance 2	Problem instance 3					
----------------------------------	--	-----------------------	-----------------------	-----------------------	--	--	--	--	--

3. Use S to learn a **portfolio** $\hat{\mathcal{P}}$ of configurations and a **selector** \hat{f} that maps problem instances to $\hat{\mathcal{P}}$

Key question: On future inputs,

Will the configuration \hat{f} selects have good performance?

other	 Sources of generalization e 1. Portfolio size 2. Learning-theoretic complexity of the alg 3. Learning-theoretic complexity of: the algorithm's performance as a funct 						
nce	ModelZ: Set of all inputs (e.g., IPs)R: Set of all parameter settings (e.g., CPLI)						
	Unknown distribution ${\cal D}$ over inputs E.g., airline scheduling problems						
arameter $ ho$	$u_{ ho}(z) =$ utility of algorithm parameterized b Runtime, solution quality, $u_{z}^{*}(ho) =$ utility as a function of parameter						
13]	Assumption: $u_z^*(\rho)$ is piecewise constant we Holds in: Integer programming Balcan, Dick, Sandholm, Vitercik, '18 Clustering Balcan, Nagarajan, Vitercik, White, '17 Balcan, Dick, White, 18; Balcan, Dick, Lan Computational biology Balcan, DeBlasio, Dick, Kingsford, Sandho Greedy algorithm configuration Gupta, Roughgarden, '16						
<section-header></section-header>	Main resultWHP over $z_1, \ldots, z_N \sim \mathcal{D}$:Avg utility of configurations selected by \hat{f} $\leq \tilde{O}(\sqrt{(d + \kappa \log t)/N})$ Intrinsic complexity of the set of algorithm selectorsPortfolio size						

Strong average performance Strong future performance

Takeaway:

As portfolio grows, can have good configuration for any input, ...but it becomes **impossible** to avoid **overfitting**

error

gorithm selector

tion of its parameters

X parameter)

by $\rho \in \mathbb{R}$ on input z

with $\leq t$ pieces

ng, '20

olm, **Vitercik**, '20

- **expected** utility

Linear performance model

Xu, Hutter, Hoos, Leyton-Brown '08

Input z with features $\phi(z) \in \mathbb{R}^m$

Linear models

Predicted performance

Error bound: $\tilde{O}(\sqrt{m\kappa/N})$

In the paper:

Experiments: Branch-and-bound

Carnegie Mellon University

• Regression tree performance models [Hutter, Xu, Hoos, Leyton-Brown, '14] • Clustering-based algorithm selectors [Kadioglu, Malitsky, Sellmann, Tierney, '10]

