Research

ey, 7o ' ¢ :
ey G % Learning to Prune: N @ s,
H “ Speeding up Repeated Computations

Daniel Alabi, Adam Tauman Kalai, Katrina Ligett, Cameron Musco, Christos Tzamos, and Ellen Vitercik
COLT 2019

Speeding up Algorithm Guarantees
Repeated Computations

1. Initialize pruned set S; « @ Recap: At round i, algorithm outputs fs (x;)
o ‘ 2. Foreach round i € {1,...,T}: S; depends oNn Xq.;
Goal: Solve sequence ot similar computational problems, a. Receive problem instance x; |
., o ‘ l
exploiting common structure b. With probability 1/V/i, explore: Goal 1: Minimize [S;]
Tvoicallv large swaths of search soace never optimal . Output f(x;) Time it takes to compute fs (x;) typically grows with [S;]
yi ylt S them! P P ii. Compute minimally F_>runed set S*(x;)
earn to ignore them: iil. Update pruned set: S;;1 « S; U S*(x;) Theorem:
» Shortest path always in specific region of road network . ,Otge;WiSf (_/vi(th)probability 1 - 1/¥i), exploit: * [%ZL\SL-\] < |57 4 I’uI\;TIS*II where §* = Uj=; S*(x;)
* Only handful of LP constraints ever bind - U |c’>u f5,(%i - _
» Large portions of DNA never contain patterns of interest i. Don't update pruned set: Si4q < §; Proof:
1 1 _ 1 1
S =—=IUl+ |1 ——E[|S]| =—=IU|+[1——=) IS
’ [15:1] \/7‘ | (\/7) [15:1] \/7\ | (\/7)‘ |
Experiments
Goal 2: Minimize # of mistakes
Linear programming Rounds where fs,(x;) # f(x;)

Top line: Simplex
Bottom line: Our algorithm

Linear programs:
204 variables, 946 constraints

Fraction of mistakes:

|
o
=

Theorem:
S[# of mistakes] < lel, where $* = U;_; $*(x;)
S* is smallest set S where fq(x;) = f(x;) for all i

&
=

Model

550 1 _‘N

simplex iterations
=

Function f: X — Y maps problem instances x to solutions y s omom @ B Proof sketch:
Pruning algorithm rounds 0.018 over 5000 runs with T' = 30 * Fore e S*, let Ny(e) be # oftimese ¢ S; bute € S*(x;)
Learning algorithm receives sequence xy, ..., x7 € X Shortest path routing * When makes mistake, must be e € S5*(x;) with e € S;
E.g., each x; equals edge weights for a fixed graph * Otherwise, S; 2 5*(x;), so no mistake
" : . , . e This means N+(e) +=1
Goal: 2 w- \ Top I|ne..D|J|<stra > algorlthm * Therefore, E[# of mistakes] <), cc+ E[Nr(e)]
| ; L . X Bottom line: Our algorithm S\
Correctly compute f on most rounds, m|n|m|2|?g runtime o Eraction of mistakes: + We prove E[N;(e)] < ¥T_, (1 _ \/_T) < —
Worst-case algorithm would compute f(x;) for each x; Té a _ 0.068 over 5000 runs with T = 30 . IfegS, thene & S_] forj < i
H= 2004 | | | | I *
Assume access to other functions mapping X - Y [P » This means E[# of mistakes] < ljfl
* Faster to compute HHng e -
» Detined by subsets (prunings) S ot universe U
» Universe U represents entire search space
» Denote corresponding function fg: X —» Y
* fu=1
Example:
% U = all edges in fixed graph 3%
S = subset of edges N .
Assume exists S*(x) € U where fo(x) = f(x) iff S*(x) € S il e

* "Minimally pruned set”

» E.g., the shortest path
Goal: Route from top to bottom star. Black nodes: Pruned subgraph. Grey nodes: Nodes Dijkstra explores over 30 rounds.

