





# Learning to Prune: Speeding up Repeated Computations







Daniel Alabi, Adam Tauman Kalai, Katrina Ligett, Cameron Musco, Christos Tzamos, and Ellen Vitercik COLT 2019

# Speeding up **Repeated Computations**

Goal: Solve sequence of similar computational problems, exploiting common structure

Typically, large swaths of search space never optimal Learn to ignore them!

- Shortest path always in specific region of road network
- Only handful of LP constraints ever bind
- Large portions of DNA never contain patterns of interest



### Model

Function  $f: X \to Y$  maps problem instances x to solutions y

Learning algorithm receives sequence  $x_1, ..., x_T \in X$ E.g., each  $x_i$  equals edge weights for a fixed graph

#### Goal:

Correctly compute f on most rounds, minimizing runtime Worst-case algorithm would compute  $f(x_i)$  for each  $x_i$ 

Assume access to other functions mapping  $X \rightarrow Y$ 

- Faster to compute
- Defined by subsets (prunings) S of universe U
- Universe  ${\mathcal U}$  represents entire search space
- Denote corresponding function  $f_S: X \to Y$
- $f_{\mathcal{U}} = f$



Example:

u = all edges in fixed graph

S =subset of edges

Assume exists  $S^*(x) \subseteq \mathcal{U}$  where  $f_S(x) = f(x)$  iff  $S^*(x) \subseteq S$ 

- "Minimally pruned set"
- E.g., the shortest path

# Algorithm

- 1. Initialize pruned set  $\bar{S}_1 \leftarrow \emptyset$
- 2. For each round  $i \in \{1, ..., T\}$ :
  - a. Receive problem instance  $x_i$
  - b. With probability  $1/\sqrt{i}$ , explore:
  - i. Output  $f(x_i)$
  - ii. Compute minimally pruned set  $S^*(x_i)$
  - iii. Update pruned set:  $\bar{S}_{i+1} \leftarrow \bar{S}_i \cup S^*(x_i)$
  - c. Otherwise (with probability  $1 1/\sqrt{i}$ ), exploit:
    - i. Output  $f_{\bar{S}_i}(x_i)$
    - ii. Don't update pruned set:  $\bar{S}_{i+1} \leftarrow \bar{S}_i$

# Experiments

#### Linear programming



**Top line:** Simplex

Bottom line: Our algorithm

Linear programs:

204 variables, 946 constraints

Fraction of mistakes: 0.018 over 5000 runs with T = 30

### Shortest path routing



Top line: Dijkstra's algorithm Bottom line: Our algorithm

Fraction of mistakes:

### 0.068 over 5000 runs with T = 30

## Guarantees

Recap: At round i, algorithm outputs  $f_{S_i}(x_i)$  $S_i$  depends on  $x_{1:i}$ 

Goal 1: Minimize  $|S_i|$ 

Time it takes to compute  $f_{S_i}(x_i)$  typically grows with  $|S_i|$ 

Theorem:

$$\mathbb{E}\left[\frac{1}{T}\sum_{i=1}^{T}|S_{i}|\right] \leq |S^{*}| + \frac{|\mathcal{U}| - |S^{*}|}{\sqrt{T}}, \text{ where } S^{*} = \bigcup_{i=1}^{T}S^{*}(x_{i})$$

Proof:

$$\mathbb{E}[|S_i|] = \frac{1}{\sqrt{i}}|\mathcal{U}| + \left(1 - \frac{1}{\sqrt{i}}\right)\mathbb{E}[|\bar{S}_i|] \le \frac{1}{\sqrt{i}}|\mathcal{U}| + \left(1 - \frac{1}{\sqrt{i}}\right)|S^*|$$

Goal 2: Minimize # of mistakes Rounds where  $f_{S_i}(x_i) \neq f(x_i)$ 

#### Theorem:

 $\mathbb{E}[\text{# of mistakes}] \leq \frac{|S^*|}{\sqrt{T}}, \text{ where } S^* = \bigcup_{i=1}^T S^*(x_i)$  $S^*$  is smallest set S where  $f_S(x_i) = f(x_i)$  for all i

Proof sketch:

- For  $e \in S^*$ , let  $N_T(e)$  be # of times  $e \notin S_i$  but  $e \in S^*(x_i)$
- When makes mistake, must be  $e \in S^*(x_i)$  with  $e \notin S_i$
- Otherwise,  $S_i \supseteq S^*(x_i)$ , so no mistake
- This means  $N_T(e) += 1$
- Therefore,  $\mathbb{E}[\# \text{ of mistakes}] \leq \sum_{e \in S^*} \mathbb{E}[N_T(e)]$
- We prove  $\mathbb{E}[N_T(e)] \leq \sum_{r=1}^T \left(1 \frac{1}{\sqrt{T}}\right)^r \leq \frac{1}{\sqrt{T}}$
- If  $e \notin \bar{S}_i$ , then  $e \notin \bar{S}_j$  for  $j \leq i$
- This means  $\mathbb{E}[\# \text{ of mistakes}] \leq \frac{|S^*|}{\sqrt{\pi}}$



Goal: Route from top to bottom star. Black nodes: Pruned subgraph. Grey nodes: Nodes Dijkstra explores over 30 rounds.