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Many problems have fast, optimal algorithms

• E.g., sorting, shortest paths



Many problems have fast, optimal algorithms

• E.g., sorting, shortest paths

Many problems don’t

• E.g., integer programming, subset selection

• Many approximation and heuristic techniques

• Best method depends on the application
• Which to use?



Practitioners repeatedly solve problems

Maintain same structure

Differ on underlying data

Should be algo that’s good across all instances

Use information about prior instances
to choose algorithm for future instances
Use ML to automate algorithm design



Automated algorithm design

Use ML to automate algorithm design

Large body of empirical work:

• Comp bio [DeBlasio and Kececioglu, ‘18]

• AI [Xu, Hutter, Hoos, and Leyton-Brown, ’08]

This work: formal guarantees for this approach

Use ML to automate algorithm design



Simple example: knapsack

Problem instance:

• 𝑛 items; Item 𝑖 has value 𝑣𝑖 and size 𝑠𝑖
• Knapsack with capacity 𝐾

Goal: find most valuable items that fit

Algorithm (parameterized by 𝜌 ≥ 0):

Add items in decreasing order of 
𝑣𝑖

𝑠𝑖
𝜌

[Gupta and Roughgarden, ‘17]
How to set?



Application domain: stealing jewelry



Day 1

Online algorithm configuration

Knapsack algorithm 

parameter 𝜌

0.95



Day 2

Online algorithm configuration

Knapsack algorithm 

parameter 𝜌

0.45



Value of 

items in 

knapsack

Day 3

Online algorithm configuration

Knapsack algorithm 

parameter 𝜌

0.45
Parameter 𝜌



Day 3

Online algorithm configuration

Knapsack algorithm 

parameter 𝜌

0.45

Algorithm 

utility on 3rd

instance

Parameter 𝜌

𝑢3 𝜌



Day 4

Online algorithm configuration

Knapsack algorithm 

parameter 𝜌

0.75

Algorithm 

utility on 4th

instance

Parameter 𝜌

𝑢4 𝜌



Online algorithm configuration

Goal:Compete with best fixed parameters in hindsight.

Minimize regret.



Optimizing piecewise Lipschitz functions

Worst-case impossible to optimize online!

Configuration ⇔ optimizing sums of piecewise Lipschitz functions

Parameter 𝜌

Algorithm 

utility on 𝑡th

instance



Our contributions

Structural property dispersion implies strong guarantees for:

• Online optimization of PWL functions

• Uniform convergence in statistical settings

• Differentially private optimization

Dispersion satisfied in real problems
under very mild assumptions
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Online piecewise Lipschitz optimization

For each round 𝑡 ∈ 1, … , 𝑇 :

1. Learner chooses 𝝆𝑡 ∈ ℝ𝑑

2. Adversary chooses piecewise 𝐿-Lipschitz function 𝑢𝑡: ℝ
𝑑 → ℝ

3. Learner gets reward 𝑢𝑡 𝝆𝑡
4. Full information: Learner observes function 𝑢𝑡

𝑢𝑡 𝜌 =
Algorithm 

utility on 𝑡th

instance
𝜌
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Online piecewise Lipschitz optimization

For each round 𝑡 ∈ 1, … , 𝑇 :

1. Learner chooses 𝝆𝑡 ∈ ℝ𝑑

2. Adversary chooses piecewise 𝐿-Lipschitz function 𝑢𝑡: ℝ
𝑑 → ℝ

3. Learner gets reward 𝑢𝑡 𝝆𝑡
4. Full information: Learner observes function 𝑢𝑡

Bandit feedback: Learner only observes 𝑢𝑡 𝝆𝑡

Goal: Minimize regret = max
𝝆∈ℝ𝑑

σ𝑡=1
𝑇 𝑢𝑡 𝝆 − σ𝑡=1

𝑇 𝑢𝑡 𝝆𝑡

Want regret sublinear in 𝑇

Avg

regret

𝑇



Prior work on PWL online optimization

Gupta and Roughgarden [’17]:

Max-Weight Independent Set algo configuration

Cohen-Addad and Kanade [’17]:

1D piecewise constant functions



Mean adversary

Exists adversary choosing piecewise constant functions s.t.:

Every full information online algorithm has linear regret.

Round 1:

Adversary chooses one or the other with equal prob.
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Mean adversary

Exists adversary choosing piecewise constant functions s.t.:

Every full information online algorithm has linear regret.

Round 1: Round 2:

Learner’s expected reward: 
𝑇

2

Reward of best point in hindsight: 𝑇

Expected regret = 
𝑇

2

Repeatedly halves optimal region
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Dispersion

Mean adversary concentrates discontinuities near maximizer 𝜌∗

Even points very close to 𝜌∗ have low utility!

𝑢1, … , 𝑢𝑇 are 𝒘,𝒌 -dispersed at point 𝝆 if:

ℓ2-ball 𝐵 𝝆,𝑤 contains discontinuities for ≤ 𝑘 of 𝑢1, … , 𝑢𝑇

𝝆
𝑤

Ball of radius 𝑤 about 𝝆 contains 2 discontinuities.

→ (𝑤, 2)-dispersed at 𝝆.



Sums of piecewise dispersed functions

Given 𝑢1, … , 𝑢𝑇, plot of sum σ𝑡=1
𝑇 𝑢𝑡:

Not dispersed

Many discontinuities in interval Few discontinuities in interval

Dispersed

𝜌 𝜌



Key property of dispersed functions

If 𝑢1, … , 𝑢𝑇: ℝ
𝑑 → [0,1] are

1. Piecewise 𝐿-Lipschitz

2. (𝑤, 𝑘)-dispersed at maximizer 𝝆∗,

For every 𝝆 ∈ 𝐵 𝝆∗, 𝑤 : σ𝑡=1
𝑇 𝑢𝑡 𝝆 ≥ σ𝑡=1

𝑇 𝑢𝑡 𝝆
∗ − 𝑇𝐿𝑤 − 𝑘.

Proof idea : 𝑢1, … , 𝑢𝑇

Is 𝑢𝑡 𝐿-Lipschitz 

on 𝐵 𝝆∗, 𝑤 ?𝝆∗
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Full information online learning

Exponentially Weighted Forecaster [Cesa-Bianchi & Lugosi ’06]:

At round 𝑡, sample from dist. w/ PDF 𝑓𝑡(𝝆) ∝ exp 𝜆 σ𝑠=1
𝑡−1 𝑢𝑠 𝝆 .

𝑢𝑡 𝜌

𝜌



Full information online learning

𝝆∗

Theorem: If 𝑢1, … , 𝑢𝑇: 𝐵𝑑(𝟎, 1) → 0,1 are:

1. Piecewise 𝐿-Lipschitz

2. (𝑤, 𝑘)-dispersed at 𝝆∗,

EWF has regret 𝑂 𝑻𝒅 𝐥𝐨𝐠
𝟏

𝒘
+ 𝑻𝑳𝒘 + 𝒌 .

Intuition: Every 𝝆 ∈ 𝐵 𝝆∗, 𝑤 has utility ≥ 𝑂𝑃𝑇 − 𝑇𝐿𝑤 − 𝑘.

EWF can compete with 𝐵 𝝆∗, 𝑤 up to 𝑂 𝑇𝑑 log
1

𝑤
factor.

When is this a good bound?

For 𝑤 =
1

𝐿 𝑇
and 𝑘 = ෨𝑂 𝑇 , regret is ෨𝑂 𝑇𝑑
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Matching lower bound

Theorem: For any algorithm, exist PW constant 𝑢1, … , 𝑢𝑇 s.t.:

Algorithm’s regret is Ω inf
(𝑤,𝑘)

𝑇𝑑 log
1

𝑤
+ 𝑘 . 

Inf over all (𝑤, 𝑘)-dispersion parameters 𝑢1, … , 𝑢𝑇 satisfy at 𝝆∗.

Upper bound = 𝑂 inf
(𝑤,𝑘)

𝑇𝑑 log
1

𝑤
+ 𝑘 .
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Bandit feedback

Theorem: If 𝑢1, … , 𝑢𝑇: 𝐵𝑑(𝟎, 1) → 0,1 are:

1. Piecewise 𝐿-Lipschitz

2. (𝑤, 𝑘)-dispersed at 𝝆∗,

There is a bandit algorithm with regret ෨𝑂 𝑇𝑑
1

𝑤

𝑑
+ 𝑇𝐿𝑤 + 𝑘 .

𝑢𝑡 𝜌

𝜌



Bandit feedback

Theorem: Exists algorithm with regret ෨𝑂 𝑇𝑑
1

𝑤

𝑑
+ 𝑇𝐿𝑤 + 𝑘 .

Proof idea.

• Let 𝝆1, … , 𝝆𝑁 be a 𝑤-net of 𝐵𝑑(𝟎, 1) (can take 𝑁 ≈ 1/𝑤𝑑).

• Reduce to 𝑁-armed bandit.

• Use EXP3 on discretization → regret 𝑂 𝑇𝑁 log𝑁 .

• Ball of radius 𝑤 around 𝝆∗ must contain some 𝝆𝑖.

• Regret of 𝝆𝑖 compared to 𝝆∗ is ≤ 𝑇𝐿𝑤 + 𝑘.

When is this a good bound?

If 𝑑 = 1, 𝑤 =
1
3
𝑇
, and 𝑘 = ෨𝑂 𝑇2/3 , regret is ෨𝑂 𝐿𝑇2/3 .

𝑢𝑡 𝜌

𝜌



Bandit feedback

Theorem: Exists algorithm with regret ෨𝑂 𝑇𝑑
1

𝑤

𝑑
+ 𝑇𝐿𝑤 + 𝑘 .

Proof idea.

• Let 𝝆1, … , 𝝆𝑁 be a 𝑤-net of 𝐵𝑑(𝟎, 1) (can take 𝑁 ≈ 1/𝑤𝑑).

• Reduce to 𝑁-armed bandit.

• Use EXP3 on discretization → regret 𝑂 𝑇𝑁 log𝑁 .

• Ball of radius 𝑤 around 𝝆∗ must contain some 𝝆𝑖.

• Regret of 𝝆𝑖 compared to 𝝆∗ is ≤ 𝑇𝐿𝑤 + 𝑘.

When is this a good bound?

If 𝑤 = 𝑇
𝑑+1

𝑑+2
−1

, 𝑘 = ෨𝑂 𝑇
𝑑+1

𝑑+2 , then regret is ෨𝑂 𝑇
𝑑+1

𝑑+2 𝑑3𝑑 + 𝐿 .
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Smooth adversaries and dispersion

Adversary chooses thresholds 𝑢𝑡: 0,1 → 0,1 .

Discontinuity 𝜏 “smoothed” by adding 𝑍~𝑁(0, 𝜎2).

Lemma: W.h.p., ∀𝑤, 𝑢1, … , 𝑢𝑇 are 𝑤, ෨𝑂
𝑇𝑤

𝜎
+ 𝑇 -dispersed.

Corollary: 𝑤 =
𝜎

𝑇
⇒ Full information regret = 𝑶 𝑻 𝐥𝐨𝐠

𝑻

𝝈
.

𝜏 + 𝑍 1𝜏0



Adversary chooses thresholds 𝑢𝑡: 0,1 → 0,1 .

Discontinuity 𝜏 “smoothed” by adding 𝑍~𝑁(0, 𝜎2).

Lemma: W.h.p., ∀𝑤, 𝑢1, … , 𝑢𝑇 are 𝑤, ෨𝑂
𝑇𝑤

𝜎
+ 𝑇 -dispersed.

Proof idea: For any width-𝑤 interval, 𝔼[#discontinuities] = 𝑂
𝑇𝑤

𝜎
.

• VC-dim ⇒ w.h.p., every interval has ෨𝑂
𝑇𝑤

𝜎
+ 𝑇 discontinuities.

Smooth adversaries and dispersion

𝜏 + 𝑍 1𝜏0
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𝜌

𝑢𝑡(𝜌)

Algorithm 

utility on 𝑡th

instance



Dispersion for knapsack

Theorem: If instances randomly distributed s.t. on each round:

1. Each 𝑣𝑖 independent from 𝑠𝑖
2. All 𝑣𝑖 , 𝑣𝑗 have 𝜅-bounded joint density,

W.h.p., for any 𝛼 ≥
1

2
, 𝑢1, … , 𝑢𝑇 are

෨𝑂
𝑇1−𝛼

𝜅
, ෨𝑂 (# items)2𝑇𝛼 -dispersed.

Corollary: Bandit feedback regret = ෨𝑂 𝑇
2

3
1

𝜅
+ (# items)2 .

𝜌

𝑢𝑡(𝜌)

Algorithm 

utility on 𝑡th

instance

Corollary: Full information regret = ෨𝑂 (# items)2 𝑇 .



More Results for Algorithm Configuration

Prove dispersion under smoothness assumptions for:

• Maximum weight independent set

Under no assumptions, we show dispersion for:

• Integer quadratic programming approximation algos
• Based on semi-definite programming relaxations

• 𝑠-linear rounding [Feige & Langberg ‘06]

• Outward rotations [Zwick ‘99]

• Both generalizations of Goemans-Williamson max-cut algorithm [‘95].
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Uniform convergence for batch learning

Theorem: If 𝑢1, … , 𝑢𝑇: ℝ
𝑑 → 0,1 are:

1. Independently drawn from a distribution 𝒟

2. Piecewise 𝐿-Lipschitz

3. Globally (𝑤, 𝑘)-dispersed,

W.h.p., for every 𝝆 ∈ ℝ𝑑,

1

𝑇


𝑡=1

𝑇

𝑢𝑡 𝝆 − 𝔼𝑢∼𝒟 𝑢 𝝆 = ෨𝑂
𝑑

𝑇
log

1

𝑤
+ 𝐿𝑤 +

𝑘

𝑇
.



Differentially private optimization

Given 𝑢1, … , 𝑢𝑇: 𝐵𝑑(𝟎, 1) → 0,1 up front.

Goal:

• Find (approximate) maximizer of 
1

𝑇
σ𝑡=1
𝑇 𝑢𝑡.

• Preserve 𝜖-DP w.r.t. changing any one function.

Exponential mechanism [McSherry-Talwar ’07] has suboptimality

෨𝑂
𝑑

𝑇𝜖
log

1

𝑤
+ 𝐿𝑤 +

𝑘

𝑇
.

Matching lower bounds!
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• Implies regret bounds for online optimization of PWL functions.
• Batch learning and private optimization guarantees.

• Examples of dispersion in real problems.
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• Introduced dispersion.
• Measures concentration of discontinuities of PWL functions.
• Implies regret bounds for online optimization of PWL functions.
• Batch learning and private optimization guarantees.

• Examples of dispersion in real problems.

Open Questions:

• Bad properties beyond discontinuities?

• Config. between full-info and bandit. Can we provide algos?


