Dispersion for
Data-Driven Algorithm Design,
Online Learning,
and Private Optimization

Ellen Vitercik
Northwestern Quarterly Theory Workshop

Joint work with Nina Balcan and Travis Dick

» 4
OOAK
Tae0s oret
OOOOOO
WA
N \‘ ’.
2000

Many problems have fast, optimal algorithms ’:‘0
* E.g., sorting, shortest paths ké‘,é"&

Many problems have fast, optimal algorithms
* E.g., sorting, shortest paths

Many problems don’t
* E.g., Integer programming, subset selection
« Many approximation and heuristic techniques

* Best method depends on the application
* Which to use?

Practitioners repeatedly solve problems
Maintain same structure
Differ on underlying data

Should be algo that's good across all instances

i};ﬁ Use ML to automate algorithm design

Automated algorithm design

igﬁ? Use ML to automate algorithm design

Large body of empirical work:
« Comp bio [DeBlasio and Kececioglu, 18]
* Al [Xu, Hutter, Hoos, and Leyton-Brown, '08]

This work: formal guarantees for this approach

Simple example: knapsack

Pro_blem mstal?ce. | S !
* n items; Item i has value v; and size s;
- Knapsack with capacity K By 3

Goal: find most valuable items that fit

Algorithm (parameterized by p = 0):

. . . Vi
Add items Iin decreasing order of - — How to set?

[Gupta and Roughgarden, ‘17]

Application domain: stealing jewelry

Online algorithm configuration

Knapsack algorithm
parameter p

Online algorithm configuration

Day 2

Knapsack algorithm

parameter p

Online algorithm configuration

Day 3

Knapsack algorithm Value of
parameter p items in
knapsack

Parameter p

Online algorithm configuration

Day 3

uz(p)

Knapsack algorithm Algorithm
parameter p utility on 3rd
instance

Parameter p

Online algorithm configuration

Day 4
u,(p)
Knapsack algorithm Algorithm
parameter p ol utility on 4t
instance

Parameter p

Online algorithm configuration

Goal:Compete with best fixed parameters in hindsight.
Minimize regret.

Optimizing piecewise Lipschitz functions

Configuration < optimizing sums of piecewise Lipschitz functions

Worst-case impossible to optimize online!

Algorithm
utility on ¢t
Instance

Parameter p

Our contributions

Structural property dispersion implies strong guarantees for:
* Online optimization of PWL functions

« Uniform convergence In statistical settings
* Differentially private optimization

Dispersion satisfied in real problems
under very mild assumptions

Outline

Online learning setup
Dispersion

Regret bounds

Examples of dispersion

Other applications of dispersion
Conclusion

o 0k hRE

Online piecewise Lipschitz optimization

Foreachround t € {1, ..., T}

1. Learner chooses p, € R?

2. Adversary chooses piecewise L-Lipschitz function u,: R - R
3. Learner gets reward u,(p;)

4. Full information: Learner observes function u;

u(p) = —
Algorithm
utility on ¢th [
Instance

Online piecewise Lipschitz optimization

Foreachround t € {1, ..., T}
1. Learner chooses p, € R?
2. Adversary chooses piecewise L-Lipschitz function u,: R - R
3. Learner gets reward u,(p;)
4. Full information: Learner observes function u;
Bandit feedback: Learner only observes u,(p;)

u(p) = -—
Algorithm
utility on ¢th [

Instance -

Online piecewise Lipschitz optimization

Foreachround t € {1, ..., T}

1. Learner chooses p, € R?

2. Adversary chooses piecewise L-Lipschitz function u,: R - R
3. Learner gets reward u,(p;)

4. Full information: Learner observes function u;

Bandit feedback: Learner only observes u,(p;)

Avg
regret

Goal: Minimize regret = max Y u(p) =X u.(py) I
T

PER
Want regret sublinear in T

Prior work on PWL online optimization
Gupta and Roughgarden ['17]:
Max-Weight Independent Set algo configuration

— Cohen-Addad and Kanade ['17]:
— 1D piecewise constant functions

Mean adversary

Exists adversary choosing piecewise constant functions s.t.:
Every full information online algorithm has linear regret.

Round 1:

O —

— Adversary chooses one or the other with equal prob.

Mean adversary

Exists adversary choosing piecewise constant functions s.t.:
Every full information online algorithm has linear regret.

Round 1: Round 2:
A O — 1t O
————— -—)—
I —® =0
e — Qe——

Mean adversary

Exists adversary choosing piecewise constant functions s.t.:
Every full information online algorithm has linear regret.

Round 1:

Round 2:

@

Repeatedly halves optimal region

Mean adversary

Exists adversary choosing piecewise constant functions s.t.:
Every full information online algorithm has linear regret.

Round 1:

Round 2:

@

Repeatedly halves optimal region

Mean adversary

Exists adversary choosing piecewise constant functions s.t.:
Every full information online algorithm has linear regret.

Round 1:

Round 2:

@

Repeatedly halves optimal region

Mean adversary

Exists adversary choosing piecewise constant functions s.t.:
Every full information online algorithm has linear regret.

Round 1: Round 2: Repeatedly halves optimal region
C_ I
o Learner’s expected reward: g
— Reward of best point in hindsight: T
T
Expected regret = >

Outline

Online learning setup
Dispersion

Regret bounds

Examples of dispersion

Other applications of dispersion
Conclusion

o0k bR

Dispersion

Mean adversary concentrates discontinuities near maximizer p*
Even points very close to p* have low utility!

Uy, ..., ur are (w, k)-dispersed at point p if:
¢,-ball B(p,w) contains discontinuities for < k of uq, ..., uy

{
q Ball of radius w about p contains 2 discontinuities.
’A% - (w, 2)-dispersed at p.

Sums of piecewise dispersed functions

Given uy, ..., ur, plot of sum Y7_; u;:

Not dispersed Dispersed
/ /
S AN
o N \/\ /7
N N Z A
N 1 (-|-|—)\|\|:

p

Many discontinuities in interval Few discontinuities in interval

Key property of dispersed functions

If ug, ..., ur: R% - [0,1] are

1. Piecewise L-Lipschitz

2. (w, k)-dispersed at maximizer p*,

For every p € B(p*,w): X{=1ut(p) = Xi{=qu(p*) — TLw — k.
Proof idea : uq, ..., up

!
Is u; L-Lipschitz
@ on B(p*,w)?

Key property of dispersed functions

If ug, ..., ur: R% - [0,1] are
1. Piecewise L-Lipschitz
2. (w, k)-dispersed at maximizer p*,

For every p € B(p*,w): X{=1u(p) = Xi= u(p*) — TLw — k.
Proof idea : uq, ..., up

{

Is u; L-Lipschitz
on B(p*,w)?

lur(p) —u(p)| <1
%(s k functions)

Key property of dispersed functions

If ug, ..., ur: R% - [0,1] are

1. Piecewise L-Lipschitz

2. (w, k)-dispersed at maximizer p*,

For every p € B(p*,w): Yi= ut(p) = Xi=qu(p*) — TLw — k.

Proof idea : uq, ..., up lu,(p) —u(pH)] < 1

!
s u, L-Lipschitz No (< k functions)
@ on B(p*,w)? Yes (< T functions)

lur(p) —us ()| < Lw

Outline

4.
5.
6.

Online learning setup

. Dispersion

Regret bounds

1. Full information
2. Bandit feedback

Examples of dispersion
Other applications of dispersion
Conclusion

Full information online learning

Exponentially Weighted Forecaster [Cesa-Bianchi & Lugosi '06]:
At round t, sample from dist. w/ PDF f;(p) « exp(1X.tZu (p)).

ur(p)

Full information online learning

Theorem: If uq, ...,ur: B4(0,1) — [0,1] are:
1. Piecewise L-Lipschitz
2. (w, k)-dispersed at p*,

EWF has regret O (JTd log% + TLw + k) . O

When is this a good bound?
Forw = % and k = O(NT), regretis 0(VTd)

Full information online learning
Theorem: If uq, ...,ur: B4(0,1) — [0,1] are:

1. Piecewise L-Lipschitz
2. (w, k)-dispersed at p*,

EWF has regret O (JTd log% + TLw + k) . Q

Intuition: Every p € B(p*,w) has utility > OPT — TLw — k.

Full information online learning

Theorem: If uq, ...,ur: B4(0,1) — [0,1] are:
1. Piecewise L-Lipschitz
2. (w, k)-dispersed at p*,

EWF has regret O (JTd log% + TLw + k) .

Intuition: Every p € B(p*,w) has utility > OPT — TLw — k.
EWF can compete with B(p*,w) up to O (\/ Tdlog %) factor.

Matching lower bound

Theorem: For any algorithm, exist PW constant uq, ..., ur S.t.:

Algorithm’s regret is Q(inf \/Td log% + k).

(w,k)

Inf over all (w, k)-dispersion parameters u,, ..., ur satisfy at p*.

N
Upper bound = 0 (inf \/Td logi + k). |
(w,k) w
—

Outline

4.
5.
6.

Online learning setup

. Dispersion

Regret bounds

1. Full information
2. Bandit feedback

Examples of dispersion
Other applications of dispersion
Conclusion

Bandit feedback

Theorem: If uq, ...,ur: B4(0,1) —» [0,1] are:
1. Piecewise L-Lipschitz
2. (w, k)-dispersed at p*,

_ d
There is a bandit algorithm with regret O (\/Td (%) + TLw + k).

ut(p)

Bandit feedback

- d
Theorem: Exists algorithm with regret O (\/Td (%) + TLw + k).

When is this agood bound?

fd=1,w = 7 and k = 0(T?/3), regret is O(LT?/3).

ut(p)

Bandit feedback

- d
Theorem: Exists algorithm with regret O (\/Td (%) + TLw + k).

When is this a good bound?

d+1 d+1 d+1

fw=Tarz ', k = 6(Td_+z), then regret is O (Td_+z (\/de + L))

Outline

Online learning setup
Dispersion

Regret bounds

Examples of dispersion
Other applications of dispersion
Conclusion

o0k bR

Smooth adversaries and dispersion

Adversary chooses thresholds u,:[0,1] — {0,1}. J

0 1

Smooth adversaries and dispersion

Adversary chooses thresholds u,:[0,1] — {0,1}. !
1A

Discontinuity t “smoothed” by adding Z~N (0, o
0t t+7Z 1

Lemma: W.h.p., Vw, uq, ..., us are (w, 0 (%W + \/T))-dispersed.

Corollary: w = % = Full information regret = 0 (\/Tlog%).

Smooth adversaries and dispersion

Adversary chooses thresholds u,:[0,1] — {0,1}. !
1A

Discontinuity t “smoothed” by adding Z~N (0, o
0t t+7Z 1

Lemma: W.h.p., Vw, uq, ..., u; are (w, 0 (%W + \/T))-dispersed.

Proof idea: For any width-w interval, E[#discontinuities] = O (%W)

» VC-dim = w.h.p., every interval has O (TW + \/T) discontinuities.

o

Simple example: knapsack

Problem instance:
* n items; Item i has value v; and size s;

« Knapsack with capacity K

Goal: find most valuable items that fit

Algorithm (parameterized by p = 0):
Add items in decreasing order of v—;)

S
[Gupta and Roughgarden, ‘17]

l

Simple example: knapsack

Problem instance:
* n items; Item i has value v; and size s;

« Knapsack with capacity K

Goal: find most valuable items that fit

Algorithm (parameterized by p = 0):
v

Add items in decreasing order of S—;)

[Gupta and Roughgarden, ‘17]

ut(p)

Algorithm
utility on ¢t
instance

Dispersion for knapsack

Theorem: If instances randomly distributed s.t. on each round:
1. Each v; independent from s;

2. All (v;,v;) have k-bounded joint density, e(P)
W.h.p., forany a > % Uq, ..., Up AIE Algorithm [

- (Tl _ gtility on tth -
(0 (-),0((# items)zT“))-dispersed. instance _

Corollary: Full information regret = O ((# items)Z\/T).

More Results for Algorithm Configuration
Prove dispersion under smoothness assumptions for:
* Maximum weight independent set

Under no assumptions, we show dispersion for:

* Integer quadratic programming approximation algos

« Based on semi-definite programming relaxations
 s-linear rounding [Feige & Langberg ‘06]

« Qutward rotations [Zwick "99]
« Both generalizations of Goemans-Williamson max-cut algorithm ['95].

Outline

Online learning setup

Dispersion

Regret bounds

Examples of dispersion

Other applications of dispersion
Conclusion

o0k bR

Uniform convergence for batch learning

A E

Theorem: If uq, ..., ur: R% = [0,1] are:

1. Independently drawn from a distribution D
2. Plecewise L-Lipschitz

3. Globally (w, k)-dispersed,

W.h.p., for every p € R¢,

I
W)

Loe g Lw X
VTng T

T
1
=) ue(p) — Eyplu(p)
t=1

Differentially private optimization

Given u4,...,u7:B4(0,1) — [0,1] up front.

Goal:

* Find (approximate) maximizer of %Zfﬂut.

* Preserve e-DP w.r.t. changing any one function.

Exponential mechanism [McSherry-Talwar '07] has suboptimality

0 dl 1+L +k
TEOgW W T/

Matching lower bounds!

Outline

Online learning setup
Dispersion

Regret bounds

Examples of dispersion

Other applications of dispersion
Conclusion

o 0k bR

Conclusions and open questions

* Introduced dispersion.
* Measures concentration of discontinuities of PWL functions.
 Implies regret bounds for online optimization of PWL functions.
« Batch learning and private optimization guarantees.

« Examples of dispersion in real problems.

N /\\/ | :\|/:\| | /\\/ e e H

Conclusions and open questions

* Introduced dispersion.
* Measures concentration of discontinuities of PWL functions.
 Implies regret bounds for online optimization of PWL functions.
« Batch learning and private optimization guarantees.

« Examples of dispersion in real problems.

Open Questions:
« Bad properties beyond discontinuities?
» Config. between full-info and bandit. Can we provide algos?

