Carnegie Mellon University

Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization Ellen Vitercik

Smooth adversaries Adversary chooses thresholds $u_t: [0,1] \rightarrow \{0,1\}$ τ 1 Discontinuity τ "smoothed" by adding $Z \sim N(0, \sigma^2)$. **Lemma:** W.h.p., for any $w > 0$, $\{u_1, ..., u_T\}$ is (w, k) dispersed for $k = \tilde{O}\left(\frac{Tw}{\tau}\right)$ σ $+\sqrt{T}$. **Proof:** Density of $\tau + Z$ is O 1 σ . • For any width- w interval, expected number discontinuities $= 0$ Tw σ . τ

• Intervals have VC-dim $2 \rightarrow W.h.p.,$ every interval contains $\tilde{O}\left(\frac{Tw}{\tau}\right)$ σ $+$ \sqrt{T}) discontinuities.

Joint work with Nina Balcan and Travis Dick. Appeared in FOCS 2018.

My related work

Data-driven algorithm design

1. Alabi, Kalai, Ligett, Musco, Tzamos, and V. Speeding-up repeated computations via pruning. 2018.

2. Balcan, Dick, Sandholm, and V. Learning to branch. ICML 2018. 3. Balcan, Nagarajan, V., and White. Learning-theoretic foundations of algorithm configuration for combinatorial partitioning problems. COLT 2017.

• ML and economics

1. Balcan, Sandholm, and V. Sample complexity of automated mechanism design. NIPS 2016.

2. Balcan, Sandholm, and V. A general theory of sample complexity for multi-item profit maximization. EC 2018. 3. Balcan, V, and White. Learning combinatorial functions from pairwise comparisons. COLT 2016.

This work: **formal guarantees for this approach** Use ML to automate algorithm design! **Data-driven algorithm design** Some problems have optimal, fast algorithms. Some don't: • Many methods – which is best for our domain? • E.g., clustering and subset selection problems **Learning setup** • Fix large family of parameterized algorithms • E.g., knapsack: until knapsack full, add items in decreasing order of value $(size)$ ^{ρ} Learner sees stream of T problem instances • At timestep t , choose parameters ρ_t • Want to minimize **regret**: • Difference between cumulative performance of those parameters and optimal parameters in hindsight: $\max_{\rho} \sum$ $t=1$ \overline{T} $u_t(\rho) - \sum$ $t=1$ \overline{T} $u_t(\rho_t)$, where $u_t(\rho)$ measures performance of algorithm parameterized by ρ on t^{th} problem $\rho_1 = 1$ 1 4 $\rho_3 =$ 3 4

Exponentially-weighted forecaster (EWF): On round t, choose parameters ρ w.p. $\propto \exp(\lambda \sum_{s=1}^{t-1} u_s(\rho))$

Lemma: If $u_1, ..., u_T$ are piecewise L-Lipschitz and (w, k) -dispersed at a maximizer ρ^* , for every $\rho \in$ $B(\rho^*, w),$

Proof: u

Main challenge

• Algorithm's performance on an instance as function of parameters is often piecewise Lipschitz

• In general, optimizing piecewise Lipschitz functions is impossible!

Approach

Dispersion

 $\{u_1, ..., u_T : \mathbb{R}^d \to [0,1]\}$ is (w, k) -dispersed at ρ if ℓ_2 ball $B(\rho, w)$ contains discontinuities for $\leq k$ functions

$$
u_1, ..., u_T
$$
\n
$$
u_t(\rho) - u_t(\rho^*) \le 1
$$
\n
$$
L\text{-Lipschitz}
$$
\n
$$
B(\rho^*, w)?
$$
\n
$$
\text{Yes } (\le T \text{ functions})
$$
\n
$$
|u_t(\rho) - u_t(\rho^*)| \le Lw
$$

and (w, k) -dispersed at ρ^* , EWF has regret

$$
\sum_{t=1}^{T} u_t(\rho) \ge OPT - TLw - k.
$$

$$
O\left(\sqrt{Td\log n}\right)
$$

When is this a good bound? For $w =$

 $\tilde{O}(\sqrt{T})$ regret is $\tilde{O}(\sqrt{Td})$.

has expected regret

$$
\Omega\left(\inf_{(w,k)}\sqrt{T}\right)
$$

satisfied by $\{u_1, ..., u_T\}$ at ρ^* .

- Prove dispersion for: • Pricing and auction design
- Algorithm configuration for subset selection problems (e.g., knapsack and maximum weight independent set) and integer quadratic programming

Applications

Dispersion also implies **differentially private optimization** guarantees (tight lower bounds!)

$$
w = \frac{\sigma}{\sqrt{T}} \to \text{Regret} = O\left(\sqrt{T \log \frac{1}{T}}
$$