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Smooth adversaries

Adversary chooses thresholds 𝑢𝑡: 0,1 → 0,1

1𝜏

Discontinuity 𝜏 “smoothed” by adding 𝑍~𝑁(0, 𝜎2).

0 1𝜏 + 𝑍

Lemma: W.h.p., for any 𝑤 > 0, 𝑢1, … , 𝑢𝑇 is (𝑤, 𝑘)-

dispersed for 𝑘 = ෨𝑂
𝑇𝑤

𝜎
+ 𝑇 .

Proof: Density of 𝜏 + 𝑍 is 𝑂
1

𝜎
.

• For any width-𝑤 interval, expected number 

discontinuities = 𝑂
𝑇𝑤

𝜎
.

• Intervals have VC-dim 2 → W.h.p., every 

interval contains ෨𝑂
𝑇𝑤

𝜎
+ 𝑇 discontinuities.
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This work: formal guarantees for this approach

Use ML to automate algorithm design!

Data-driven algorithm design

Some problems have optimal, fast algorithms.

Some don’t:

• Many methods – which is best for our domain?

• E.g., clustering and subset selection problems

Learning setup

• Fix large family of parameterized algorithms

• E.g., knapsack: until knapsack full, add items 

in decreasing order of
value

size 𝜌

• Learner sees stream of 𝑇 problem instances

• At timestep 𝑡, choose parameters 𝜌𝑡

• Want to minimize regret:

• Difference between cumulative performance 

of those parameters and optimal parameters 

in hindsight:

max
𝜌

෍
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𝑇

𝑢𝑡 𝜌 −෍

𝑡=1

𝑇

𝑢𝑡 𝜌𝑡 ,

where 𝑢𝑡 𝜌 measures performance of 

algorithm parameterized by 𝜌 on 𝑡th problem 
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1
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Main challenge

• Algorithm's performance on an instance as function of parameters is 

often piecewise Lipschitz

• In general, optimizing piecewise Lipschitz functions is impossible!

0

𝑢𝑡 𝜌 − 𝑢𝑡 𝜌
∗ ≤ 1

Approach

Exponentially-weighted forecaster (EWF): On round 𝑡, choose parameters 𝜌 w.p. ∝ exp 𝜆σ𝑠=1
𝑡−1 𝑢𝑠 𝜌

Dispersion

𝑢1, … , 𝑢𝑇: ℝ
𝑑 → [0,1] is 𝒘, 𝒌 -dispersed at 𝝆 if ℓ2-

ball 𝐵(𝜌, 𝑤) contains discontinuities for ≤ 𝑘 functions

Lemma: If 𝑢1, … , 𝑢𝑇 are piecewise 𝐿-Lipschitz and 

(𝑤, 𝑘)-dispersed at a maximizer 𝜌∗, for every 𝜌 ∈
𝐵(𝜌∗, 𝑤),

෍
𝑡=1

𝑇

𝑢𝑡(𝜌) ≥ 𝑂𝑃𝑇 − 𝑇𝐿𝑤 − 𝑘.

Is 𝑢𝑡 𝐿-Lipschitz 

on 𝐵 𝜌∗, 𝑤 ?

𝜌∗
𝑢𝑡 𝜌 − 𝑢𝑡 𝜌

∗ ≤ 𝐿𝑤

Yes (≤ 𝑇 functions)

No (≤ 𝑘 functions)

Proof: 𝑢1, … , 𝑢𝑇

Our guarantees

Upper bound: If 𝑢1, … , 𝑢𝑇 are piecewise 𝐿-Lipschitz 

and (𝑤, 𝑘)-dispersed at 𝜌∗, EWF has regret 

𝑂 𝑇𝑑 log
1

𝑤
+ 𝑇𝐿𝑤 + 𝑘 .

When is this a good bound? For 𝑤 =
1

𝐿 𝑇
and 𝑘 =

෨𝑂 𝑇 regret is ෨𝑂 𝑇𝑑 .

Matching lower bound: For any algorithm 𝐴, there 

are piecewise constant functions 𝑢1, … , 𝑢𝑇 so that 𝐴
has expected regret 

Ω inf
(𝑤,𝑘)

𝑇𝑑 log
1

𝑤
+ 𝑘 .

Infimum is over all (𝑤, 𝑘)-dispersion parameters 

satisfied by 𝑢1, … , 𝑢𝑇 at 𝜌∗.

Prove dispersion for:

• Pricing and auction design

• Algorithm configuration for subset selection problems (e.g., knapsack and maximum 

weight independent set) and integer quadratic programming

Applications

Dispersion also implies differentially private optimization guarantees (tight lower bounds!)
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𝑇
→ Regret = 𝑂 𝑇 log

𝑇
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