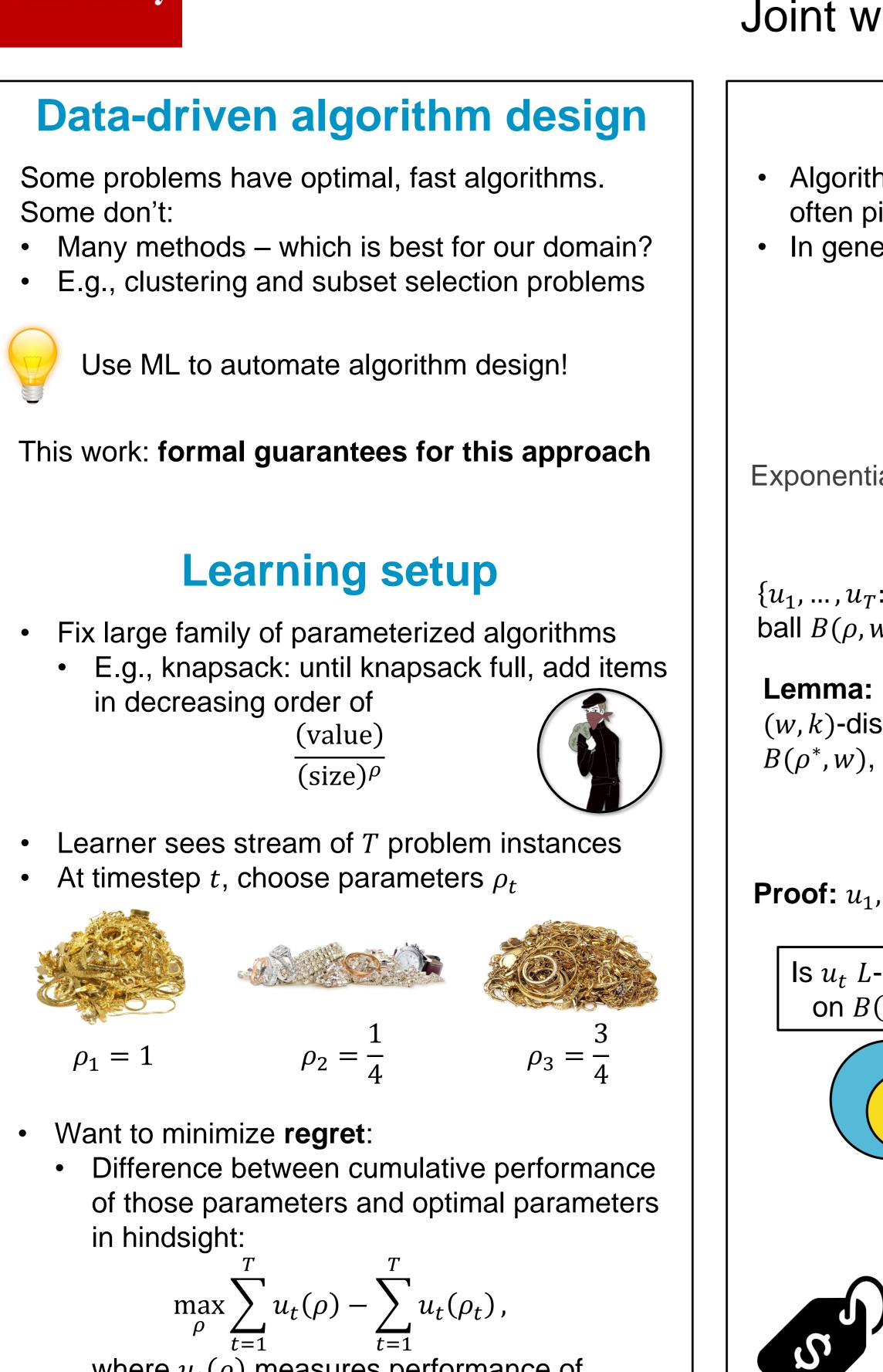
Carnegie Mellon University

Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization Ellen Vitercik



where $u_t(\rho)$ measures performance of algorithm parameterized by ρ on t^{th} problem Joint work with Nina Balcan and Travis Dick. Appeared in FOCS 2018.

Main challenge

Algorithm's performance on an instance as function of parameters is often piecewise Lipschitz

• In general, optimizing piecewise Lipschitz functions is impossible!

Approach

Exponentially-weighted forecaster (EWF): On round t, choose parameters ρ w.p. $\propto \exp(\lambda \sum_{s=1}^{t-1} u_s(\rho))$

Dispersion

 $\{u_1, \dots, u_T : \mathbb{R}^d \to [0,1]\}$ is (w, k)-dispersed at ρ if ℓ_2 ball $B(\rho, w)$ contains discontinuities for $\leq k$ functions

Lemma: If u_1, \ldots, u_T are piecewise L-Lipschitz and (*w*, *k*)-dispersed at a maximizer ρ^* , for every $\rho \in$

$$\sum_{t=1}^{T} u_t(\rho) \ge OPT - TLw - k.$$

of:
$$u_1, \dots, u_T$$

 u_t L-Lipschitz
on $B(\rho^*, w)$?
 $(u_t(\rho) - u_t(\rho^*)| \le 1$
No ($\le k$ functions)
Yes ($\le T$ functions)
 $|u_t(\rho) - u_t(\rho^*)| \le Lw$

and (w, k)-dispersed at ρ^* , EWF has regret

$$O\left(\sqrt{Td\log \frac{1}{2}}\right)$$

 $\tilde{O}(\sqrt{T})$ regret is $\tilde{O}(\sqrt{Td})$.

has expected regret

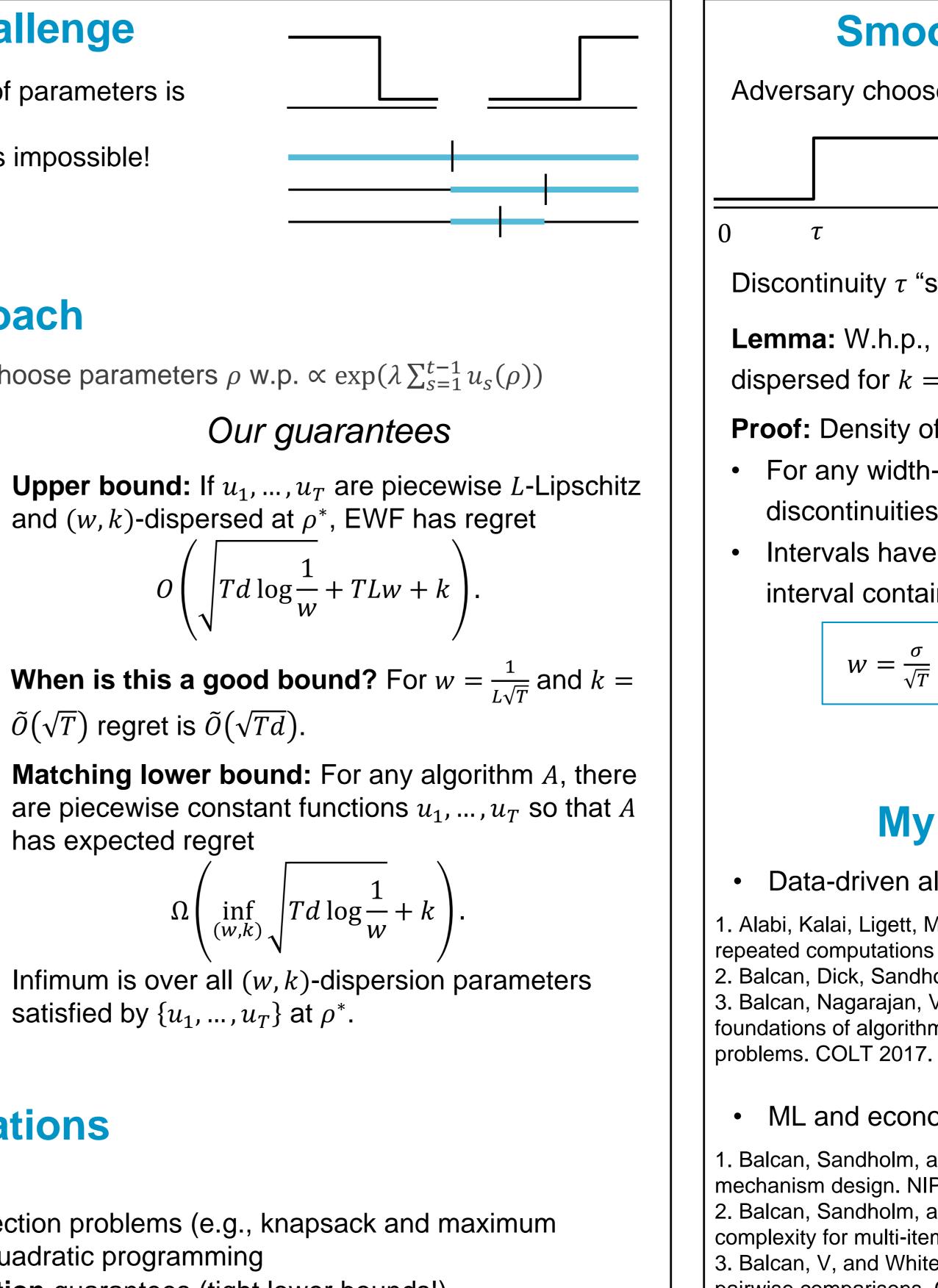
$$\Omega\left(\inf_{(w,k)}\sqrt{T}\right)$$

satisfied by $\{u_1, \dots, u_T\}$ at ρ^* .

Applications

- Prove dispersion for: Pricing and auction design
- Algorithm configuration for subset selection problems (e.g., knapsack and maximum weight independent set) and integer quadratic programming

Dispersion also implies **differentially private optimization** guarantees (tight lower bounds!)



Smooth adversaries Adversary chooses thresholds $u_t: [0,1] \rightarrow \{0,1\}$ Discontinuity τ "smoothed" by adding $Z \sim N(0, \sigma^2)$. **Lemma:** W.h.p., for any w > 0, $\{u_1, ..., u_T\}$ is (w, k)dispersed for $k = \tilde{O}\left(\frac{Tw}{\sigma} + \sqrt{T}\right)$ **Proof:** Density of $\tau + Z$ is $O\left(\frac{1}{\sigma}\right)$. • For any width-*w* interval, expected number discontinuities = $O\left(\frac{Tw}{\sigma}\right)$ • Intervals have VC-dim 2 \rightarrow W.h.p., every interval contains $\tilde{O}\left(\frac{Tw}{\sigma} + \sqrt{T}\right)$ discontinuities. $w = \frac{\sigma}{\sqrt{T}} \rightarrow \text{Regret} = O\left(1/T \log \frac{T}{\sigma}\right)$ My related work Data-driven algorithm design 1. Alabi, Kalai, Ligett, Musco, Tzamos, and V. Speeding-up repeated computations via pruning. 2018. 2. Balcan, Dick, Sandholm, and V. Learning to branch. ICML 2018. 3. Balcan, Nagarajan, V., and White. Learning-theoretic foundations of algorithm configuration for combinatorial partitioning

• ML and economics

1. Balcan, Sandholm, and V. Sample complexity of automated mechanism design. NIPS 2016.

2. Balcan, Sandholm, and V. A general theory of sample complexity for multi-item profit maximization. EC 2018. 3. Balcan, V, and White. Learning combinatorial functions from pairwise comparisons. COLT 2016.

