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Dispersion for Data-Driven Algorithm Design, Online Learning, and Private Optimization

Data-driven algorithm design

Some problems have optimal, fast algorithms.
Some don't:

« Many methods — which is best for our domain?
 E.g., clustering and subset selection problems

Use ML to automate algorithm design!

This work: formal guarantees for this approach

Learning setup

* Fix large family of parameterized algorithms
« E.g., knapsack: until knapsack full, add items

In decreasing order of
(value)

(size)P

* Learner sees stream of T problem instances
« At timestep t, choose parameters p;

« Want to minimize regret:
« Difference between cumulative performance
of those parameters and optimal parameters
In hindsight:
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where u;(p) measures performance of
algorithm parameterized by p on t™ problem

Main challenge —

 Algorithm's performance on an instance as function of parameters is I

often piecewise Lipschitz

* In general, optimizing piecewise Lipschitz functions is impossible! |

Approach

Exponentially-weighted forecaster (EWF): On round t, choose parameters p w.p. < exp(1 Y27 us(p))

Dispersion

{ug, ..., ur: R4 - [0,1]} is (w, k)-dispersed at p if £,-
ball B(p, w) contains discontinuities for < k functions

Lemma: If uq, ..., up are piecewise L-Lipschitz and
(w, k)-dispersed at a maximizer p*, for every p €

B(p*,w), )
z u,(p) = OPT — TLw — k.

t=1

Proof: uq,...,uy

[ue(p) —ue () = 1
1. . No (< k functions)
Is u; L-Lipschitz

on B(p*,w)? .
Yes (< T functions)
& [u:(p) —us (P < Lw

Prove dispersion for:
* Pricing and auction design

Our guarantees

Upper bound: If uq, ..., uy are piecewise L-Lipschitz
and (w, k)-dispersed at p*, EWF has regret
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When is this a good bound? Forw = % and k =
O(NT) regretis 0(NTAd).

Matching lower bound: For any algorithm A, there
are piecewise constant functions uy, ..., ur So that A
has expected regret

Q| inf
(w,k) \

1
leogw+k

Infimum Is over all (w, k)-dispersion parameters
satisfied by {u4,...,ur} at p*.

Applications

* Algorithm configuration for subset selection problems (e.g., knapsack and maximum
weight independent set) and integer quadratic programming

Dispersion also implies differentially private optimization guarantees (tight lower bounds!)

Smooth adversaries

Adversary chooses thresholds u,:[0,1] — {0,1}
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Discontinuity T “smoothed” by adding Z~N (0, 62).

Lemma: W.h.p., forany w > 0, {uy, ..., ur} is (w, k)-
dispersed for k = 0 (%W + \/T)

Proof: Densityof t + Z is O (1)

o
* For any width-w interval, expected number

discontinuities = 0 (%W)

* Intervals have VC-dim 2 - W.h.p., every
interval contains 0 (TW + \/T) discontinuities.
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