Incentive compatibility (IC)

Fundamental concept in mechanism design
Buyers maximize their utilities by bidding truthfully

Many real-world mechanisms are not IC:
Discriminatory auctions

* Multi-unit variant of first-price auction

» Used to sell US treasury bills and UK electricity
Generalized second price auction

* Used for sponsored search
First-price auction

» Display ad exchanges may be transitioning to FP
Most tielded combinatorial auctions

» For example, sourcing auctions

Why not?

* Might be expensive for buyers to compute true values
» Rules are often easier to explain

» Bids used to tune future auction

* Auction might leak the bidders’ private values

* Bidders might not be risk neutral

Approximate IC

Mechanism is y-IC when for each bidder i:
It everyone except bidder i is truthtul,
she can only increase utility by v if she bids strategically

Detined either:
1. In expectation over others’ values (ex-interim)
2. In expectation over all values (ex-ante)

Studied extensively
[Kothari et al., 2003, Archer et al., 2004, Conitzer and
Sandholm, 2007, Dekel et al., 2010, Lubin and Parkes,
2012, Mennle and Seuken, 2014, Ditting et al., 2015,
Dutting et al., 2017, Azevedo and Budish, 2018, Feng et
al., 2018, Golowich et al., 2018]

Literature on y-1C assumes distribution is known in advance

Where does this knowledge come from?

We relax this assumption:
Assume only samples from type distribution
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Estimating approximate IC

Overriding goal:
Estimate IC approximation factor (y) using samples

Our estimate:
Maximum utility agent can gain by misreporting her type,
on average over samples, when
true & reported types from finite subset of type space

Estimate used in mechanism design via deep learning:
Add constraint requiring this estimate be small
[Datting et al., ‘17, Feng et al., 18, Golowich et al., 18]

Challenge:
Might miss true & reported types with large utility gains

Crucial questions:
1. Which finite subset?

2. What's the estimation error?

Which finite subset?

1. Uniform grid: Focus of this poster
|‘ Easy to construct
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2. Learning theoretic cover (standard from ML theory)
l’ Can be hard to construct

|‘ Always works

Uniform grid: Main challenge
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Uniform grid: Guarantees

When is the distribution “nice” enough to use a grid?

Dispersion [Balcan, Dick, and Vitercik, 18]z
Functions uy, ..., uy are (w, k)-dispersed if:
Every w-ball contains discontinuities of < k functions
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Plot average ~ 2, Uj:
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Theorem (informal):

It utility functions induced by N samples are:
1. (w, k)-dispersed

2. Piecewise L-Lipschitz

- Can use w-grid as finite subset
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d = standard ML measure of utility functions’ complexity

Error
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We prove these (w, k) values hold when distribution is nice

When w = 0 (=), k = 0(VN);

Applications

[0, k] = range of type distribution’s density function

First-price auction

' ' ~ [ (#Dbi -1
Estimation error = O (( bidders)+ k )
\/(#Samples)

Also analyze combinatorial first-price auctions

Generalized second-price auction

. . ~ ((#bidders)3/2 + k1
Estimation error = O (( ) )
J/ (#samples)

Discriminatory and uniform price auctions
Generalization of first-price auction to multi-unit settings
(#bidders) (#units)?+ k1
J/ (#samples) )
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Estimation error = O (




