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Decision-making under uncertainty

In practice, many aspects of inputs are unknown a priori. E.g.:
• E.g., future traffic or demand in routing

However, we often have rich historical data
• ML can help predict unknown aspects of inputs
• Research area: Algorithms with predictions

[e.g., book chapter by Mitzenmacher, Vassilvitskii, ‘20]
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Goal: Open the ML black-box in algorithms with predictions
• ML model selection [Heydari, Saberi, V, Wikum, ICML’24; He, V, ICML’25]
• This talk: uncertainty quantification [Shen, V, Wikum, ICML’25]



Algorithms and prediction uncertainty

Challenge: prediction errors can amplify in decision-making
Don’t blindly trust predictions

Insight: ML models can estimate uncertainty automatically
• Well-defined, statistical notion of if prediction can be trusted
• Examples: calibration and conformal predictions [Sun et al. ’24]



Our contributions 

Demonstrate calibration’s utility through two case studies:

Ski Rental
• Prototypical online rent-or-buy decision problem
• Algorithm with guarantees that improve with accuracy and calibration error

Online Job Scheduling
• Calibrated predictions yield better schedules than prior work
 [Cho et al., ‘22]

Validate methods on real-world datasets



Additional related work

Probabilistic/distributional predictions
[Anand et al. ’20; Gupta et al. ’21; Diakonikolas et al. ’21; Lin et al. ’22; Cho et al. ’22; 
Angelopoulos et al. ’24; Dinitz et al. ’24]

Learning prediction reliability online
[Khodak et al. ‘22]

Sun et al. ’24: Algorithms with conformal ML predictions
• We show calibration has key advantages over conformal methods:
• Especially helpful when predictions have high variance
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Calibration (binary target)

•  Random variables (𝑋, 𝑌) with support 𝒳× 0,1
•  𝑓:𝒳 → [0,1] is calibrated if ℙ 𝑌 = 1 𝑓 𝑋 = 𝑝 = 𝑝
• E.g., rain prediction: weather is rainy on 50% of days where 𝑓 𝑋 = .5

• Let 𝑇 𝑋 = ℙ 𝑌 = 1 𝑓 𝑋  (equals 𝑓 𝑋  if perfectly calibrated)
𝔼 𝑌 − 𝑓 𝑋

!
= Var(𝑌) − Var 𝑇 𝑋 + 𝔼 𝑇(𝑋) − 𝑓 𝑋

!

SharpnessUncertainty

• Calibrated, unsharp:
𝑓 𝑋 = ℙ[𝑌 = 1] for all 𝑋

• Calibrated, sharp:
𝑓 𝑋 = ℙ[𝑌 = 1 ∣ 𝑋] for all 𝑋

Calibration errorℓ! error
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Ski rental problem

• Prototypical online rent-or-buy decision-making problem
• Skier will ski for some unknown number of days 𝑍 ∈ ℝ"
• Each day, decide to rent skis for $1 or buy for one-time cost $𝑏
• Goal: Minimize total skiing cost
• Worst-case ”breakeven” strategy:

Rent for 𝑏 days, and if still want to ski, buy [Karlin et al. ‘01]

Competitive ratio (CR)	∶= #$%
&'(
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Ski rental with predictions: Prior work

Algorithm with prediction of 𝐼(𝑍 > 𝑏) [Kumar et al. ’18]:
• Uses “trust” parameter 𝜆 ∈ 0,1

• 𝜆 = 0: fully trust predictor
• 𝜆 = 1: don’t trust predictor at all

• Consistency guarantee: Perfect prediction yields CR ≤ 1 + 𝜆
• Robustness guarantee: Any prediction yields CR ≤ 1 + +

,

Our goal: leverage calibration to encode trust/uncertainty



Algorithm with calibrated prediction
• 𝒳 = skier features
• Predictor 𝑓 𝑋  of target 𝑌 = 𝐼(𝑍 > 𝑏) 
• Max calibration error 𝛼 = max

-∈/(1)
𝑣	 − ℙ[𝑌 = 1 ∣ 𝑓 𝑋 = 𝑣] given 

prediction 𝑓 𝑋 = 𝑣 rent for 𝑘(𝑣) days

𝑘 𝑣 =

𝑏, 	 𝑣 ≤
4 + 3𝛼
5

𝑏
1 − 𝑣 + 𝛼
𝑣 + 𝛼

, else	
  

𝛼 = 0 
𝛼 = 0.1	
𝛼 = 0.2  

𝑣 

Days rented 𝑘(𝑣), (𝑏 = 5)

• Algorithm: given prediction 𝑓 𝑋 = 𝑣 rent for 𝑘(𝑣) days



Ski rental: Main results
Prediction-wise bound:
𝔼 CR ∣ 𝑓 𝑋 = 𝑣 ≤ 1 + 2𝛼 +min 𝑣 + 𝛼, 2 𝑣 + 𝛼 1 − 𝑣 + 𝛼

 

𝔼 𝐂𝐑	 𝒇 𝑿 = 𝒗]

𝑣

𝛼 =
0.1 𝛼 =
0.2 

𝛼 =
0 



Ski rental: Main results
Prediction-wise bound:
𝔼 CR ∣ 𝑓 𝑋 = 𝑣 ≤ 1 + 2𝛼 +min 𝑣 + 𝛼, 2 𝑣 + 𝛼 1 − 𝑣 + 𝛼

Lower bound: ∀𝑣, exists distribution & calibrated predictor s.t.
𝔼 CR ∣ 𝑓 𝑋 = 𝑣 ≥ 1 +min 𝑣, 2 𝑣 1 − 𝑣

Global bound:
𝔼 CR ≤ 1 + 3𝛼 +min ℙ[𝑍 > 𝑏], 2 MSE(𝑓) + 3𝛼

✅ Lower MSE and calibration error lead to near-optimal CR
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Online job scheduling problem

1 machine to process 𝑛 unit-length jobs

Each job 𝑖 has unknown high (𝑦A = 1) or low 𝑦A = 0 	priority
• Processing a 𝜃-fraction of a job reveals its priority

Jobs can be stored after partial processing

Objective: Minimize weighted sum of completion times
Z𝐶A ⋅ 𝑤B!

Completion time of job 𝑖

Cost per unit delay, with 𝑤" > 𝑤# > 0



Online scheduling with predictions

𝒳 = job features

Predictor 𝑓 𝑋  of target 𝑌 = 𝐼(job is high priority)

Scheduling strategies:

Preemptive: Start new job if discover current is low-priority

Non-preemptive: Always process opened jobs to completion



𝛽-threshold rule [Cho et al. ’22]

Input: probabilities 𝑝A that job 𝑖 is high priority

1.  𝛽 ← C
DEC

⋅ F"
F"EF#

2.  Order probabilities 𝑝A" ≥ ⋯ ≥ 𝑝A$
3.  𝑚 ← | 𝑖:	𝑝A > 𝛽 |
4.  Run jobs 𝑖D, … , 𝑖G preemptively, in order
5.  Complete remaining jobs non-preemptively, in order

What if predictions are calibrated?
• Cho et al. ‘22: Specific calibrated, unsharp predictor
• This paper: Arbitrary calibrated, sharp predictor



Importance of predictor sharpness

Input: probabilities 𝑝A that job 𝑖 is high priority

• Low priority job (partially) processed before high priority job
• Sharp predictors lead to fewer interchanges

What if predictions are calibrated?
• Cho et al. ‘22: Specific calibrated, unsharp predictor
• This paper: Arbitrary calibrated, sharp predictor

Weighted sum of completion times compared to optimal in hindsight

Key insight: interchanges are the primary source of regret



• Low priority job (partially) processed before high priority job
• Sharp predictors lead to fewer interchanges

Importance of predictor sharpness

Sharp 𝑓(𝑋)

Unsharp 𝑓′(𝑋)

0 1

123456

5 6 4

𝛽
Processed in random order

3 1 2

Key insight: interchanges are the primary source of regret



Scheduling: Main result

Thm: Let ℙ 𝑓 𝑋 > 𝛽 𝑌 = 0 = 𝜖H, ℙ 𝑓 𝑋 < 𝛽 𝑌 = 1 = 𝜖D
𝔼[#	interchanges]

I
!

≤ Var(𝑌) 𝜖H + 𝜖D − 𝜅D − 𝜅!

(Eventual) corollary: bound on algorithm’s regret (see paper)

𝑓(𝑋)
0 1𝛽

𝜅+ ≔ Var 𝑓 𝑋 𝑓 𝑋 ≤ 𝛽 ⋅ ℙ[𝑓 𝑋 ≤ 𝛽]G

𝜅G ≔ Var 𝑓 𝑋 𝑓 𝑋 > 𝛽 ⋅ ℙ[𝑓 𝑋 > 𝛽]G



Experiments: Sepsis triage

ML for predicting sepsis onset to improve early detection
Expected regret per job*Dataset of 110,204 hospital admissions

“Calibrated”“Binary”

Sharp
calibration

Unsharp 
calibration

*Scheduling 𝑛 = 100 patient reviews

Base logistic regression 
predictor (0.86 AUC)



Conclusions

• Calibration: valuable tool for algorithms with predictions
• Case studies: ski rental and job scheduling
• Performance guarantees improve with calibration error
• Validated methods on real-world datasets

𝔼
CR
	
𝑓
𝑋

=
𝑣]

𝑣

𝛼 =
0.1 𝛼 =
0.2  

𝛼 =
0 



Future directions

Further open the ML black box of algorithms with predictions
• Analyze how decisions depend on predictor properties

• MSE, calibration, sharpness, and inherent uncertainty
• False positive/negative rate [see also, e.g., Anand et al. ’20]

• Ultimate goal: Guide model choice and training for decision tasks
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