Algorithms with Calibrated
Machine Learning Predictions

Ellen Vitercik, Stanford
ICML'25

Judy Hanwen Shen Anders Wikum



Decision-making under uncertainty

In practice, many aspects of inputs are unknown a priori. E.g.:
* E.g., future traffic or demand in routing

However, we often have rich historical data
e ML can help predict unknown aspects of inputs

* Research area: Algorithms with predictions
[e.g., book chapter by Mitzenmacher, Vassilvitskii, ‘20]
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* E.g., future traffic or demand in routing

However, we often have rich historical data
e ML can help predict unknown aspects of inputs

* Research area: Algorithms with predictions
[e.g., book chapter by Mitzenmacher, Vassilvitskii, ‘20]

Goal: Open the ML black-box in algorithms with predictions
ML model selection [Heydari, Saberi, V, Wikum, ICML'24; He, V, ICML'25]
* This talk: uncertainty quantification [Shen, V, Wikum, ICML'25]



Algorithms and prediction uncertainty

Challenge: prediction errors can amplify in decision-making
Don't blindly trust predictions

Insight: ML models can estimate uncertainty automatically
« Well-defined, statistical notion of if prediction can be trusted
« Examples: calibration and conformal predictions [Sun et al. '24]



Our contributions

Demonstrate calibration’s utility through two case studies:

® Ski Rental
@ * Prototypical online rent-or-buy decision problem

» Algorithm with guarantees that improve with accuracy and calibration error

== Online Job Scheduling

-  Calibrated predictions yield better schedules than prior work
[Cho et al., '22]

Validate methods on real-world datasets



Additional related work

Probabilistic/distributional predictions

[Anand et al. '20; Gupta et al. '21; Diakonikolas et al. '21; Lin et al. '22; Cho et al. '22;
Angelopoulos et al. '24; Dinitz et al. '24]

Learning prediction reliability online
[Khodak et al. '22]

Sun et al. '24: Algorithms with conformal ML predictions
* We show calibration has key advantages over conformal methods:
* Especially helpful when predictions have high variance



Outline

Introduction

. Background

Case study 1: Ski Rental

Case study 2: Scheduling
Conclusions and future directions

I



Calibration (binary target)

* Random variables (X,Y) with support Xx{0,1}

¢ f:X > [0,1]is calibrated f P[Y =1|f(X) =p]=p
 E.g., rain prediction: weather is rainy on 50% of days where f(X) = .5

e letT(X) = ]P[Y2= 1| f(X) ] (equals f(X) if perfectly calibrated)
E[(Y - £00)°| = Var(v) — Var(T(X)) + E|(T(X) - f(X))°]

£, error Uncertainty Sharpness Calibration error

. Calibrated, unsharp:
f(X)=P[Y =1]forall X
« Calibrated, sharp:

\ f(X)=P[Y=1IX]foraIIX)
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Ski rental problem 47

* Prototypical online rent-or-buy decision-making problem

e Skier will ski for some unknown number of days Z € R,

 Each day, decide to rent skis for $1 or buy for one-time cost $b
« Goal: Minimize total skiing cost

« Worst-case "breakeven” strategy:
Rent for b days, and if still want to ski, buy [Karlin et al. '01]

ALG __ amountalgorithm pays <2
OPT min{Z,b} =

Competitive ratio (CR) :=



Ski rental with predictions: Prior work

Algorithm with prediction of I(Z > b) [Kumar et al. "18]:

« Uses “trust” parameter 1 € [0,1]
« A = 0: fully trust predictor
A =1:don'ttrust predictor at all

« Consistency guarantee: Perfect prediction yieldsCR <1+ A
* Robustness guarantee: Any prediction yields CR < 1 +/11

Our goal: leverage calibration to encode trust/uncertainty



Algorithm with calibrated prediction

e X = skier features

* Predictor f(X) of targetY = I(Z > b)

* Max calibration error a = vrer}qaég)lv —P[lY =11 f(X) =v]|
 Algorithm: given prediction f(X) = v rent for k(v) days

% 4 1+ 3q :Days rented k(v), (b = 5)
b, v < =

1—U+CZ 2
b , else | \a=0.1
\\l v+ a 0 fj:(’

k(v) = 1




Ski rental: Main results

Prediction-wise bound:
E[CR| f(X) =v] <1+ 2« +min(v + 0(,2\/(17 +a)(l—v+ a))

E[CR | f(X) = v]
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Ski rental: Main results

Prediction-wise bound:
EICR| f(X)=v] <1+ 2a+min(v+a,2\/(v+a)(1 —v+a))

Lower bound: Vv, exists distribution & calibrated predictor s.t.
E[CR| f(X) = v] = 1 + min (v, 2./v(1 — v))

Global bound:
E[CR] < 1+ 3a + min(P[Z > b], 2,/ MSE(f) + 3a)

Lower MSE and calibration error lead to near-optimal CR
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Online job scheduling problem

1 machine to process n unit-length jobs

Each job i has unknown high (y; = 1) or low (y; = 0) priority

 Processing a O-fraction of a job reveals its priority
Jobs can be stored after partial processing

Objective: Minimize weighted sum of completion times

E Ci . Wyi Cost per unit delay, with wy > wy >0

Completion time of job i



Online scheduling with predictions
X = job features
Predictor f(X) of target Y = I(job is high priority)

Scheduling strategies:

(= Preemptive: Start new job if discover current is low-priority
=

-] Non-preemptive: Always process opened jobs to completion




B-threshold rule [Cho et al. '227]

Input: probabilities p; that job i is high priority

N
\fWhat if predictions are calibrated?

« Cho etal.'22: Specific calibrated, unsharp predictor
1. B« 6  wm . This paper: Arbitrary calibrated, sharp predictor

1-6 W1—Wp
Order probabilitiesp;, = - = p;
m < |{i: p; > B}
Run jobs iy, ..., 1,, preemptively, in order

ok W

Complete remaining jobs non-preemptively, in order



Importance of predictor sharpness

Input: probabilities p; that job i is high priority

\fWhat if predictions are calibrated?
Cho et al. '22: Specific calibrated, unsharp predictor

% This paper: Arbitrary calibrated, sharp predictor

Key insight: interchanges are the primary source of regret

Weighted sum of completion times compared to optimal in hindsight

* Low priority job (partially) processed before high priority job
« Sharp predictors lead to fewer interchanges




Importance of predictor sharpness

Key insight: interchanges are the primary source of regret
* Low priority job (partially) processed before high priority job
« Sharp predictors lead to fewer interchanges
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» Unsharp f'(X)




Scheduling: Main result

iy = Var(f(X) | f(X) < B) - P[f(X) < B]°

4_~—A_. ()

0 B 1

Kk, =Var(f(X) | f(X) > B) - P[f(X) > B]?

Thm: letP[f(X)>B|Y=0]=¢, P[f(X)<B|Y=1]=¢,
[E[# interchanges]

(2)

(Eventual) corollary: bound on algorithm’s regret (see paper)

<Var(Y)(ey + €;) — K1 — K>



Experiments: Sepsis triage

ML for predicting sepsis onset to improve early detection

Dataset of 110,204 hospital admissions

Base logistic regression
predictor (0.86 AUC)
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Conclusions

* Calibration: valuable tool for algorithms with predictions
 Case studies: ski rental and job scheduling

* Performance guarantees improve with calibration error
* Validated methods on real-world datasets
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Future directions

Further open the ML black box of algorithms with predictions

* Analyze how decisions depend on predictor properties
* MSE, calibration, sharpness, and inherent uncertainty
 False positive/negative rate [see also, e.g., Anand et al. '20]
 Ultimate goal: Guide model choice and training for decision tasks
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