
Learning to Branch
Ellen Vitercik

Joint work with Nina Balcan, Travis Dick, and Tuomas Sandholm

Published in ICML 2018

1



Integer Programs (IPs)

a

maximize 𝒄 ∙ 𝒙
subject to 𝐴𝒙 ≤ 𝒃

𝒙 ∈ {0,1}𝑛

2



Facility location problems can be formulated as IPs.

3



Clustering problems can be formulated as IPs.

4



Binary classification problems can be formulated as IPs.

5



Integer Programs (IPs)

a

maximize 𝒄 ∙ 𝒙
subject to 𝐴𝒙 = 𝒃

𝒙 ∈ {0,1}𝑛

NP-hard

6



Branch and Bound (B&B)

• Most widely-used algorithm for IP-solving (CPLEX, Gurobi)

• Recursively partitions search space to find an optimal solution
• Organizes partition as a tree

• Many parameters
• CPLEX has a 221-page manual describing 135 parameters

“You may need to experiment.”

7



Why is tuning B&B 
parameters important?

• Save time
• Solve more problems

• Find better solutions

8



B&B in the real world

Delivery company routes trucks daily
Use integer programming to select routes

Demand changes every day
Solve hundreds of similar optimizations

Using this set of typical problems… 

can we learn best parameters?

9



Application-

Specific

Distribution
Algorithm 

Designer

B&B parameters

Model

𝐴 1 , 𝒃 1 , 𝒄 1 , … , 𝐴 𝑚 , 𝒃 𝑚 , 𝒄 𝑚

How to use samples to find best B&B parameters for my domain?

10



Model

Model has been studied in applied communities [Hutter et al. ‘09]

Application-

Specific

Distribution
Algorithm 

Designer

B&B parameters

𝐴 1 , 𝒃 1 , 𝒄 1 , … , 𝐴 𝑚 , 𝒃 𝑚 , 𝒄 𝑚

11



Model

Model has been studied from a theoretical perspective 

[Gupta and Roughgarden ‘16, Balcan et al., ‘17]

Application-

Specific

Distribution
Algorithm 

Designer

B&B parameters

𝐴 1 , 𝒃 1 , 𝒄 1 , … , 𝐴 𝑚 , 𝒃 𝑚 , 𝒄 𝑚

12



Model

1. Fix a set of B&B parameters to optimize

2. Receive sample problems from unknown distribution

3. Find parameters with the best performance on the samples

“Best” could mean smallest search tree, for example

𝐴 1 , 𝒃 1 , 𝒄 1 𝐴 2 , 𝒃 2 , 𝒄 2

13



Questions to address

How to find parameters that are best on average over samples?

Will those parameters have high performance in expectation?

𝐴, 𝒃, 𝒄

?

𝐴 1 , 𝒃 1 , 𝒄 1 𝐴 2 , 𝒃 2 , 𝒄 2

14



Outline

1. Introduction

2. Branch-and-Bound

3. Learning algorithms

4. Experiments

5. Conclusion and Future Directions

15



max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

16



max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

17



B&B

1. Choose leaf of tree

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

18



B&B

1. Choose leaf of tree

2. Branch on a variable

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

𝑥1 = 0 𝑥1 = 1

19



B&B

1. Choose leaf of tree

2. Branch on a variable

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

𝑥1 = 0 𝑥1 = 1

20



B&B

1. Choose leaf of tree

2. Branch on a variable

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

𝑥1 = 0 𝑥1 = 1

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

𝑥2 = 0 𝑥2 = 1

21



B&B

1. Choose leaf of tree

2. Branch on a variable

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

𝑥1 = 0 𝑥1 = 1

𝑥2 = 0 𝑥2 = 1

22



B&B

1. Choose leaf of tree

2. Branch on a variable

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

0,
3

5
, 0, 0, 0, 1, 1

116

0, 1,
1

3
, 1, 0, 0, 1

133.3

𝑥1 = 0 𝑥1 = 1

𝑥6 = 0 𝑥6 = 1 𝑥2 = 0 𝑥2 = 1

23



B&B

1. Choose leaf of tree

2. Branch on a variable

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

0, 1,
1

3
, 1, 0, 0, 1

133.3

𝑥1 = 0 𝑥1 = 1

𝑥6 = 0 𝑥6 = 1 𝑥2 = 0 𝑥2 = 1

0,
3

5
, 0, 0, 0, 1, 1

116

24



B&B

1. Choose leaf of tree

2. Branch on a variable

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

0,
3

5
, 0, 0, 0, 1, 1

116

0, 1,
1

3
, 1, 0, 0, 1

133.3

0, 1, 0, 1, 1, 0, 1 0,
4

5
, 1, 0, 0, 0, 1

118

𝑥1 = 0 𝑥1 = 1

𝑥6 = 0 𝑥6 = 1 𝑥2 = 0 𝑥2 = 1

𝑥3 = 0 𝑥3 = 1

133

25



B&B

1. Choose leaf of tree

2. Branch on a variable

3. Fathom leaf if:
i. LP relaxation solution is 

integral

ii. LP relaxation is infeasible

iii. LP relaxation solution 
isn’t better than best-
known integral solution

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

0,
3

5
, 0, 0, 0, 1, 1

116

0, 1,
1

3
, 1, 0, 0, 1

133.3

𝑥1 = 0 𝑥1 = 1

𝑥6 = 0 𝑥6 = 1 𝑥2 = 0 𝑥2 = 1

𝑥3 = 0 𝑥3 = 1

0,
4

5
, 1, 0, 0, 0, 1

118

0, 1, 0, 1, 1, 0, 1

133

26



B&B

1. Choose leaf of tree

2. Branch on a variable

3. Fathom leaf if:
i. LP relaxation solution 

is integral

ii. LP relaxation is infeasible

iii. LP relaxation solution 
isn’t better than best-
known integral solution

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

0,
3

5
, 0, 0, 0, 1, 1

116

0, 1,
1

3
, 1, 0, 0, 1

133.3

𝑥1 = 0 𝑥1 = 1

𝑥6 = 0 𝑥6 = 1 𝑥2 = 0 𝑥2 = 1

𝑥3 = 0 𝑥3 = 1

0,
4

5
, 1, 0, 0, 0, 1

118

0, 1, 0, 1, 1, 0, 1

133Integral

27



B&B

1. Choose leaf of tree

2. Branch on a variable

3. Fathom leaf if:
i. LP relaxation solution is 

integral

ii. LP relaxation is infeasible

iii. LP relaxation solution 
isn’t better than best-
known integral solution

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙

s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

0,
3

5
, 0, 0, 0, 1, 1

116

0, 1,
1

3
, 1, 0, 0, 1

133.3

𝑥1 = 0 𝑥1 = 1

𝑥6 = 0 𝑥6 = 1 𝑥2 = 0 𝑥2 = 1

𝑥3 = 0 𝑥3 = 1

0,
4

5
, 1, 0, 0, 0, 1

118

0, 1, 0, 1, 1, 0, 1

133

28



B&B

1. Choose leaf of tree

2. Branch on a variable

3. Fathom leaf if:
i. LP relaxation solution is 

integral

ii. LP relaxation is infeasible

iii. LP relaxation solution 
isn’t better than best-
known integral solution

This talk: How to choose which variable?
(Assume every other aspect of B&B is fixed.)

29



Variable selection policies can have a huge effect on tree size

30



Outline

1. Introduction

2. Branch-and-Bound
a. Algorithm Overview

b. Variable Selection Policies

3. Learning algorithms

4. Experiments

5. Conclusion and Future Directions

31



Variable selection policies (VSPs)

Score-based VSP:

At leaf 𝑸, branch on variable 𝒙𝒊 maximizing
𝐬𝐜𝐨𝐫𝐞 𝑸, 𝒊

Many options! Little known about which to use when

1,
3

5
, 0, 0, 0, 0, 1

136

1, 0, 0, 1, 0,
1

2
, 1

120

1, 1, 0, 0, 0, 0,
1

3

120

𝑥2 = 0 𝑥2 = 1

32



Variable selection policies

For an IP instance 𝑄:

• Let 𝑐𝑄 be the objective value of its LP relaxation

• Let 𝑄𝑖
− be 𝑄 with 𝑥𝑖 set to 0, and let 𝑄𝑖

+ be 𝑄 with 𝑥𝑖 set to 1

Example.

1

2
, 1, 0, 0, 0, 0, 1

140

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙
s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7 𝑐𝑄
𝑄

33



Variable selection policies

For an IP instance 𝑄:

• Let 𝑐𝑄 be the objective value of its LP relaxation

• Let 𝑄𝑖
− be 𝑄 with 𝑥𝑖 set to 0, and let 𝑄𝑖

+ be 𝑄 with 𝑥𝑖 set to 1

Example.

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

𝑥1 = 0 𝑥1 = 1

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙
s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

𝑐𝑄1− 𝑐𝑄1+

𝑐𝑄
𝑄

34



For a IP instance 𝑄:

• Let 𝑐𝑄 be the objective value of its LP relaxation

• Let 𝑄𝑖
− be 𝑄 with 𝑥𝑖 set to 0, and let 𝑄𝑖

+ be 𝑄 with 𝑥𝑖 set to 1

Example.

Variable selection policies

1

2
, 1, 0, 0, 0, 0, 1

140

1,
3

5
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0,
1

4
, 1

135

𝑥1 = 0 𝑥1 = 1

𝑐𝑄1− 𝑐𝑄1+

𝑐𝑄
𝑄

max (40, 60, 10, 10, 3, 20, 60) ∙ 𝒙
s.t. 40, 50, 30, 10, 10, 40, 30 ∙ 𝒙 ≤ 100

𝒙 ∈ {0,1}7

The linear rule (parameterized by 𝝁) [Linderoth & Savelsbergh, 1999]

Branch on variable 𝑥𝑖 maximizing:

score 𝑄, 𝑖 = 𝜇min 𝑐𝑄 − 𝑐𝑄𝑖
− , 𝑐𝑄 − 𝑐𝑄𝑖

+ + (1 − 𝜇)max 𝑐𝑄 − 𝑐𝑄𝑖
− , 𝑐𝑄 − 𝑐𝑄𝑖

+

35



Variable selection policies

And many more…

The (simplified) product rule [Achterberg, 2009]

Branch on variable 𝑥𝑖 maximizing:

score 𝑄, 𝑖 = 𝑐𝑄 − 𝑐𝑄𝑖
− ∙ 𝑐𝑄 − 𝑐𝑄𝑖

+

The linear rule (parameterized by 𝝁) [Linderoth & Savelsbergh, 1999]

Branch on variable 𝑥𝑖 maximizing:

score 𝑄, 𝑖 = 𝜇min 𝑐𝑄 − 𝑐𝑄𝑖
− , 𝑐𝑄 − 𝑐𝑄𝑖

+ + (1 − 𝜇)max 𝑐𝑄 − 𝑐𝑄𝑖
− , 𝑐𝑄 − 𝑐𝑄𝑖

+

36



Variable selection policies

Given 𝑑 scoring rules score1, … , scored.

Goal: Learn best convex combination 𝜇1score1 +⋯+ 𝜇𝑑scored.

Branch on variable 𝑥𝑖 maximizing:

score 𝑄, 𝑖 = 𝜇1score1 𝑄, 𝑖 + ⋯+ 𝜇𝑑scored 𝑄, 𝑖

Our parameterized rule

37



Application-

Specific

Distribution
Algorithm 

Designer

B&B parameters

Model

𝐴 1 , 𝒃 1 , 𝒄 1 , … , 𝐴 𝑚 , 𝒃 𝑚 , 𝒄 𝑚

How to use samples to find best B&B parameters for my domain?

38



Application-

Specific

Distribution
Algorithm 

Designer

B&B parameters

Model

𝐴 1 , 𝒃 1 , 𝒄 1 , … , 𝐴 𝑚 , 𝒃 𝑚 , 𝒄 𝑚

𝜇1, … , 𝜇𝑑

How to use samples to find best B&B parameters for my domain?𝜇1, … , 𝜇𝑑

39



Outline

1. Introduction

2. Branch-and-Bound

3. Learning algorithms
a. First-try: Discretization

b. Our Approach

4. Experiments

5. Conclusion and Future Directions

40



First try: Discretization

1. Discretize parameter space

2. Receive sample problems from unknown distribution

3. Find params in discretization with best average performance

𝜇

Average tree size

41



First try: Discretization

This has been prior work’s approach [e.g., Achterberg (2009)]. 

𝜇

Average tree size

42



Discretization gone wrong

𝜇

Average tree size

43



Discretization gone wrong

𝜇

Average tree size

This can 

actually 

happen!

44



Discretization gone wrong

Theorem [informal]. For any discretization:

Exists problem instance distribution 𝒟 inducing this behavior

Proof ideas:

𝒟’s support consists of infeasible IPs with “easy out” variables
B&B takes exponential time unless branches on “easy out” variables

B&B only finds “easy outs” if uses parameters from specific range

Expected tree size

𝜇

45



Outline

1. Introduction

2. Branch-and-Bound

3. Learning algorithms
a. First-try: Discretization

b. Our Approach
i. Single-parameter settings

ii. Multi-parameter settings

4. Experiments

5. Conclusion and Future Directions

46



Simple assumption

Exists 𝜅 upper bounding the size of largest tree willing to build

Common assumption, e.g.:

• Hutter, Hoos, Leyton-Brown, Stützle, JAIR’09

• Kleinberg, Leyton-Brown, Lucier, IJCAI’17

47



𝜇 ∈ [0,1]

Lemma: For any two scoring rules and any IP 𝑄,

𝑂 (# variables)𝜅+2 intervals partition [0,1] such that:

For any interval [𝑎, 𝑏], B&B builds same tree across all 𝜇 ∈ 𝑎, 𝑏

Much smaller in our experiments!

Useful lemma

48



Useful lemma

branch

on 𝑥2

branch

on 𝑥3

𝜇

𝜇 ∙ score1 𝑄, 1 + (1 − 𝜇) ∙ score2 𝑄, 1

𝜇 ∙ score1 𝑄, 2 + (1 − 𝜇) ∙ score2 𝑄, 2

𝜇 ∙ score1 𝑄, 3 + (1 − 𝜇) ∙ score2 𝑄, 3

branch

on 𝑥1

Lemma: For any two scoring rules and any IP 𝑄,

𝑂 (# variables)𝜅+2 intervals partition [0,1] such that:

For any interval [𝑎, 𝑏], B&B builds same tree across all 𝜇 ∈ 𝑎, 𝑏

49



Useful lemma

𝑄

𝑄2
− 𝑄2

+

Any 𝜇 in yellow interval:

𝑥2 = 0 𝑥2 = 1

branch

on 𝑥2

branch

on 𝑥3

𝜇

branch

on 𝑥1

Lemma: For any two scoring rules and any IP 𝑄,

𝑂 (# variables)𝜅+2 intervals partition [0,1] such that:

For any interval [𝑎, 𝑏], B&B builds same tree across all 𝜇 ∈ 𝑎, 𝑏

𝑄2
−

50



Useful lemma

Lemma: For any two scoring rules and any IP 𝑄,

𝑂 (# variables)𝜅+2 intervals partition [0,1] such that:

For any interval [𝑎, 𝑏], B&B builds same tree across all 𝜇 ∈ 𝑎, 𝑏

𝜇

𝜇 ∙ score1 𝑄2
−, 1 + (1 − 𝜇) ∙ score2 𝑄2

−, 1

𝜇 ∙ score1 𝑄2
−, 3 + (1 − 𝜇) ∙ score2 𝑄2

−, 3

𝑄

𝑄2
− 𝑄2

+

Any 𝜇 in yellow interval:

𝑥2 = 0 𝑥2 = 1

branch on 

𝑥2 then 𝑥3

branch on 

𝑥2 then 𝑥1

51



Useful lemma

Lemma: For any two scoring rules and any IP 𝑄,

𝑂 (# variables)𝜅+2 intervals partition [0,1] such that:

For any interval [𝑎, 𝑏], B&B builds same tree across all 𝜇 ∈ 𝑎, 𝑏

𝜇

Any 𝜇 in blue-yellow interval:

branch on 

𝑥2 then 𝑥3

branch on 

𝑥2 then 𝑥1

𝑄

𝑄2
− 𝑄2

+

𝑥3 = 0 𝑥3 = 1

52

𝑥2 = 0 𝑥2 = 1



Useful lemma

Proof idea.

• Continue dividing [0,1] into intervals s.t.:

In each interval, var. selection order fixed

• Can subdivide only finite number of times

• Proof follows by induction on tree depth

Lemma: For any two scoring rules and any IP 𝑄,

𝑂 (# variables)𝜅+2 intervals partition [0,1] such that:

For any interval [𝑎, 𝑏], B&B builds same tree across all 𝜇 ∈ 𝑎, 𝑏

𝜇

branch on 

𝑥2 then 𝑥3

branch on 

𝑥2 then 𝑥1

53



Learning algorithm

Input: Set of IPs sampled from a distribution 𝒟

For each IP, set 𝜇 = 0. While 𝜇 < 1:
1. Run B&B using 𝜇 ∙ score1 + (1 − 𝜇) ∙ score2, resulting in tree 𝒯

2. Find interval 𝜇, 𝜇′ where if B&B is run using the scoring rule 
𝜇′′ ∙ score1 + 1 − 𝜇′′ ∙ score2

for any 𝜇′′ ∈ 𝜇, 𝜇′ , B&B will build tree 𝒯 (takes a little bookkeeping)

3. Set 𝜇 = 𝜇′

Return: Any ො𝜇 from the interval minimizing average tree size

𝜇 ∈ [0,1]

54



Learning algorithm guarantees

Let Ƹ𝜇 be algorithm’s output given ෨𝑂
𝜅3

𝜀2
ln(#variables) samples.

W.h.p., 𝔼𝑄~𝒟[tree-size(𝑄, Ƹ𝜇)] − min
𝜇∈ 0,1

𝔼𝑄~𝒟[tree−size(𝑄, 𝜇)] < 𝜀

Proof intuition: Bound algorithm class’s intrinsic complexity (IC)
• Lemma bounds the number of “truly different” parameters

• Parameters that are “the same” come from a simple set

Learning theory allows us to translate IC to sample complexity

𝜇 ∈ [0,1]

55



Outline

1. Introduction

2. Branch-and-Bound

3. Learning algorithms
a. First-try: Discretization

b. Our Approach
i. Single-parameter settings

ii. Multi-parameter settings

4. Experiments

5. Conclusion and Future Directions

56



Useful lemma: higher dimensions

Lemma: For any 𝑑 scoring rules and any IP,

a set ℋ of 𝑂 (# variables)𝜅+2 hyperplanes partitions 0,1 𝑑 s.t.:

For any connected component 𝑅 of 0,1 𝑑 ∖ℋ,

B&B builds the same tree across all 𝝁 ∈ 𝑅

57



Learning-theoretic guarantees

Fix 𝑑 scoring rules and draw samples 𝑄1, … , 𝑄𝑁~𝒟

If 𝑁 = ෨𝑂
𝜅3

𝜀2
ln(𝑑 ∙ #variables) , then w.h.p., for all 𝝁 ∈ [0,1]𝑑,

1

𝑁


𝑖=1

𝑁

tree−size(𝑄𝑖 , 𝝁) − 𝔼𝑄~𝒟[tree−size(𝑄, 𝝁)] < 𝜀

Average tree size generalizes to expected tree size

58



Outline

1. Introduction

2. Branch-and-Bound

3. Learning algorithms

4. Experiments

5. Conclusion and Future Directions

59



Experiments: Tuning the linear rule

Let: score1 𝑄, 𝑖 = min 𝑐𝑄 − 𝑐𝑄𝑖
− , 𝑐𝑄 − 𝑐𝑄𝑖

+

score2 𝑄, 𝑖 = max 𝑐𝑄 − 𝑐𝑄𝑖
− , 𝑐𝑄 − 𝑐𝑄𝑖

+

Our parameterized rule

Branch on variable 𝑥𝑖 maximizing:

score 𝑄, 𝑖 = 𝜇 ∙ score1 𝑄, 𝑖 + (1 − 𝜇) ∙ score2 𝑄, 𝑖

This is the linear rule [Linderoth & Savelsbergh, 1999]

60



Experiments: Combinatorial auctions

Leyton-Brown, Pearson, and Shoham. Towards a universal test suite for combinatorial auction 
algorithms. In Proceedings of the Conference on Electronic Commerce (EC), 2000.

“Regions” generator:

400 bids, 200 goods, 100 instances

“Arbitrary” generator:

200 bids, 100 goods, 100 instances

61



Additional experiments

Facility location:

70 facilities, 70 customers, 

500 instances

Clustering:

5 clusters, 35 nodes,

500 instances

Agnostically learning 

linear separators:

50 points in ℝ2,

500 instances

62



Outline

1. Introduction

2. Branch-and-Bound

3. Learning algorithms

4. Experiments

5. Conclusion and Future Directions

63



Conclusion

• Study B&B, a widely-used algorithm for combinatorial problems

• Show how to use ML to weight variable selection rules
• First sample complexity bounds for tree search algorithm configuration

• Unlike prior work [Khalil et al. ‘16; Alvarez et al. ‘17], which is purely empirical

• Empirically show our approach can dramatically shrink tree size
• We prove this improvement can even be exponential

• Theory applies to other tree search algos, e.g., for solving CSPs

64



Future directions

How can we train faster?
• Don’t want to build every tree B&B will make for every training instance 
• Train on small IPs and then apply the learned policies on large IPs?

Other tree-building applications can we apply our techniques to?
• E.g., building decision trees and taxonomies

How can we attack other learning problems in B&B? 
• E.g., node-selection policies

65

Thank you! Questions?


