
How Much Data Is Sufficient to Learn High-Performing
Algorithms? Generalization Guarantees for Data-Driven

Algorithm Design
Maria-Florina Balcan

ninamf@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Dan DeBlasio

dfdeblasio@utep.edu

University of Texas at El Paso

El Paso, Texas, USA

Travis Dick

tbd@seas.upenn.edu

University of Pennsylvania

Philadelphia, Pennsylvania, USA

Carl Kingsford

carlk@cs.cmu.edu

Carnegie Mellon University

Ocean Genomics, Inc.

Pittsburgh, Pennsylvania, USA

Tuomas Sandholm

sandholm@cs.cmu.edu

Carnegie Mellon University

Strategic Machine, Inc.

Strategy Robot, Inc.

Optimized Markets, Inc.

Pittsburgh, Pennsylvania, USA

Ellen Vitercik

vitercik@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

ABSTRACT
Algorithms often have tunable parameters that impact performance

metrics such as runtime and solution quality. For many algorithms

used in practice, no parameter settings admit meaningful worst-

case bounds, so the parameters are made available for the user

to tune. Alternatively, parameters may be tuned implicitly within

the proof of a worst-case guarantee. Worst-case instances, how-

ever, may be rare or nonexistent in practice. A growing body of

research has demonstrated that data-driven algorithm design can

lead to significant improvements in performance. This approach

uses a training set of problem instances sampled from an unknown,

application-specific distribution and returns a parameter setting

with strong average performance on the training set.

We provide a broadly applicable theory for deriving general-
ization guarantees that bound the difference between the algo-

rithm’s average performance over the training set and its expected

performance on the unknown distribution. Our results apply no

matter how the parameters are tuned, be it via an automated or

manual approach. The challenge is that for many types of algo-

rithms, performance is a volatile function of the parameters: slightly

perturbing the parameters can cause a large change in behavior.

Prior research [e.g., 8, 10, 12, 38] has proved generalization bounds

by employing case-by-case analyses of greedy algorithms, clus-

tering algorithms, integer programming algorithms, and selling

mechanisms. We uncover a unifying structure which we use to

prove extremely general guarantees, yet we recover the bounds

from prior research. Our guarantees, which are tight up to loga-

rithmic factors in the worst case, apply whenever an algorithm’s

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

STOC ’21, June 21–25, 2021, Virtual, Italy
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8053-9/21/06.

https://doi.org/10.1145/3406325.3451036

performance is a piecewise-constant, -linear, or—more generally—

piecewise-structured function of its parameters. Our theory also

implies novel bounds for voting mechanisms and dynamic pro-

gramming algorithms from computational biology.

CCS CONCEPTS
• Theory of computation→ Sample complexity and general-
ization bounds.

KEYWORDS
Automated algorithm design, data-driven algorithm design, auto-

mated algorithm configuration, machine learning theory, computa-

tional biology, mechanism design

ACM Reference Format:
Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas

Sandholm, and Ellen Vitercik. 2021. How Much Data Is Sufficient to Learn

High-Performing Algorithms? Generalization Guarantees for Data-Driven

Algorithm Design. In Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC ’21), June 21–25, 2021, Virtual, Italy.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3406325.3451036

1 INTRODUCTION
Algorithms often have tunable parameters that impact performance

metrics such as runtime, solution quality, and memory usage. These

parameters may be set explicitly, as is often the case in applied dis-

ciplines. For example, integer programming solvers expose over

one hundred parameters for the user to tune. There may not be

parameter settings that admit meaningful worst-case bounds, but

after careful parameter tuning, these algorithms can quickly find so-

lutions to computationally challenging problems. However, applied

approaches to parameter tuning have rarely come with provable

guarantees. Alternatively, an algorithm’s parameters may be set im-

plicitly, as is often the case in theoretical computer science: a proof

may implicitly optimize over a parameterized family of algorithms

in order to guarantee a worst-case approximation factor or runtime

bound. Worst-case bounds, however, can be overly pessimistic in

https://doi.org/10.1145/3406325.3451036
https://doi.org/10.1145/3406325.3451036

STOC ’21, June 21–25, 2021, Virtual, Italy Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

practice. A growing body of research (surveyed by Balcan [5]) has

demonstrated the power of data-driven algorithm design, where
machine learning is used to find parameter settings that work par-

ticularly well on problems from the application domain at hand.

We present a broadly applicable theory for proving generalization
guarantees in the context of data-driven algorithm design. We adopt

a natural learning-theoretic model of data-driven algorithm design

introduced by Gupta and Roughgarden [38]. As in the applied liter-

ature on automated algorithm configuration [e.g., 41, 43, 45, 48, 66,

76, 77], we assume there is an unknown, application-specific distri-

bution over the algorithm’s input instances. A learning procedure

receives a training set sampled from this distribution and returns a

parameter setting—or configuration—with strong average perfor-

mance over the training set. If the training set is too small, this

configuration may have poor expected performance. Generalization
guarantees bound the difference between average performance over

the training set and expected performance. Our guarantees apply

no matter how the parameters are optimized, via an algorithmic

search as in automated algorithm configuration [e.g., 22, 66, 76, 77],

or manually as in experimental algorithmics [e.g., 16, 44, 54].
Across many types of algorithms—for example, combinatorial

algorithms, integer programs, and dynamic programs—the algo-

rithm’s performance is a volatile function of its parameters. This is

a key challenge that distinguishes our results from prior research

on generalization guarantees. For well-understood functions in ma-

chine learning theory such as linear separators or other smooth

curves in Euclidean spaces, there is generally a simple connec-

tion between a function’s parameters and the value of the function.

Meanwhile, slightly perturbing an algorithm’s parameters can cause

significant changes in its behavior and performance. To provide

generalization bounds, we uncover structure that governs these

volatile performance functions.

The structure we discover depends on the relationship between

primal and dual functions [2]. To derive generalization bounds, a

common strategy is to calculate the intrinsic complexity of a function
class U which we refer to as the primal class. Every functionuρ ∈ U
is defined by a parameter setting ρ ∈ Rd and uρ (x) ∈ R measures

the performance of the algorithm parameterized by ρ given the

input x . We measure intrinsic complexity using the classic notion

of pseudo-dimension [63]. This is a challenging task because the

domain of every function in U is a set of problem instances, so

there are no obvious notions of Lipschitz continuity or smoothness

on which we can rely. Instead, we use structure exhibited by the

dual class U∗
. Every dual function u∗x ∈ U∗

is defined by a problem

instance x and measures the algorithm’s performance as a function

of its parameters given x as input. The dual functions have a simple,

Euclidean domain Rd and we demonstrate that they have ample

structure which we can use to bound the pseudo-dimension of U .

1.1 Our contributions
Our results apply to any parameterized algorithm with dual func-

tions that exhibit a clear-cut, ubiquitous structural property: the

duals are piecewise constant, piecewise linear, or—more broadly—

piecewise structured. The parameter space decomposes into a small

number of regions such that within each region, the algorithm’s

performance is “well behaved.” As an example, Figure 1 illustrates

Figure 1: A piecewise-constant function overR2
≥0

with linear
boundary functions д(1) and д(2).

a piecewise-structured function of two parameters ρ = (ρ[1], ρ[2]).

There are two functionsд(1) andд(2) that define a partition of the pa-
rameter space and four constant functions that define the function

value on each subset from this partition.

More formally, the dual class U∗
is (F , G,k)-piecewise decompos-

able if for every problem instance, there are at most k boundary

functions from a set G (for example, the set of linear separators) that

partition the parameter space into regions such that within each re-

gion, algorithmic performance is defined by a function from a setF
(for example, the set of constant functions). We bound the pseudo-

dimension of U in terms of the pseudo- and VC-dimensions of the

dual classes F∗
and G∗

, denoted Pdim (F∗) and VCdim (G∗). This

yields our main theorem: if [0,H] is the range of the functions in U ,

then with probability 1 − δ over the draw of N training instances,

for any parameter setting, the difference between the algorithm’s

average performance over the training set and its expected perfor-

mance is Õ

(
H

√
1

N

(
Pdim (F∗) + VCdim (G∗) lnk + ln 1

δ

))
. Specif-

ically, we prove that Pdim(U) = Õ (Pdim (F∗) + VCdim (G∗) lnk)
and that this bound is tight up to log factors. The classesF andG are

often so well structured that bounding Pdim (F ∗) and VCdim (G∗)

is straightforward.

This is the most broadly applicable generalization bound for

data-driven algorithm design in the distributional learning model

that applies to arbitrary input distributions. A nascent line of re-

search [3, 8–10, 12, 38] provides generalization bounds for a selec-

tion of parameterized algorithms. Unlike the results in this paper,

those papers analyze each algorithm individually, case by case. Our

approach recovers those bounds, implying guarantees for configur-

ing greedy algorithms [38], clustering algorithms [10], and integer

programming algorithms [8, 10], as well as mechanism design for

revenue maximization [12]. We also derive novel bounds for com-

putational biology algorithms and voting mechanisms.

Proof insights. At a high level, we prove this guarantee by count-

ing the number of parameter settings with significantly different

performance over any set S of problem instances. To do so, we

first count the number of regions induced by the |S |k boundary

functions that correspond to these problem instances. This step

subtly depends not on the VC-dimension of the class of boundary

functions G , but rather on VCdim (G∗). These |S |k boundary func-

tions partition the parameter space into regions where across all

instances x in S , the dual functions u∗x are simultaneously struc-

tured. Within any one region, we use the pseudo-dimension of the

dual class F∗
to count the number of parameter settings in that

How Much Data Is Sufficient to Learn High-Performing Algorithms? STOC ’21, June 21–25, 2021, Virtual, Italy

region with significantly different performance. We aggregate these

bounds over all regions to bound the pseudo-dimension of U .

Parameterized dynamic programming algorithms from computa-
tional biology. Our results imply bounds for a variety of compu-

tational biology algorithms that are used in practice. We analyze

parameterized sequence alignment algorithms [29, 35, 39, 61, 62] as

well as RNA folding algorithms [60], which predict how an input

RNA strand would naturally fold, offering insight into the mole-

cule’s function. We also provide guarantees for algorithms that

predict topologically associating domains in DNA sequences [30],

which shed light on how DNA wraps into three-dimensional struc-

tures that influence genome function.

Parameterized voting mechanisms. Amechanism is a special type

of algorithm designed to help a set of agents come to a collective

decision. For example, a town’s residents may want to build a public

resource such as a park, pool, or skating rink, and a mechanism

would help them decide which to build. We analyze neutral affine
maximizers [55, 59, 65], a well-studied family of parameterized

mechanisms. The parameters impact social welfare, which is the

sum of the agents’ values for the mechanism’s outcome.

1.2 Additional related research
A growing body of theoretical research investigates how machine

learning can be incorporated in the process of algorithm design [1,

3, 4, 8–10, 12, 14, 15, 17, 19, 26, 27, 31, 38, 42, 46, 47, 53, 56, 64, 73–

75]. A chapter by Balcan [5] provides a comprehensive survey. We

highlight a few papers that are most related to ours below.

Runtime optimization with provable guarantees. Kleinberg et al.
[46, 47] and Weisz et al. [74, 75] provide configuration procedures

with provable guarantees when the goal is to minimize runtime. In

contrast, our bounds apply to arbitrary performance metrics, such

as solution quality as well as runtime. Also, their procedures are

designed for the case where the set of parameter settings is finite

(although they can still offer some guarantees when the parameter

space is infinite by first sampling a finite set of parameter settings

and then running the configuration procedure; Balcan et al. [8, 13]

study what kinds of guarantees discretization approaches can and

cannot provide). In contrast, our guarantees apply immediately to

infinite parameter spaces. Finally, unlike our results, the guarantees

from this prior research are not configuration-procedure-agnostic:

they apply only to the specific procedures that are proposed.

Learning-augmented algorithms. A related line of research has

designed algorithms that replace some steps of a classic worst-case

algorithm with a machine-learned oracle that makes predictions

about structural aspects of the input [26, 27, 42, 53, 56, 64, 73]. If the

prediction is accurate, the algorithm’s performance (for example, its

error or runtime) is superior to the original worst-case algorithm,

and if the prediction is incorrect, the algorithm performs as well as

that worst-case algorithm. Though similar, our approach to data-

driven algorithm design is different because we are not attempting

to learn structural aspects of the input; rather, we are optimizing the

algorithm’s parameters directly using the training set. Moreover, we

can also compete with the best-known worst-case algorithm by in-

cluding it in the algorithm class over which we optimize. Just adding

one extra algorithm—however different—does not increase our sam-

ple complexity bounds. That best-in-the-worst-case algorithm does

not have to be a special case of the parameterized algorithm.

Dispersion. Balcan et al. [4, 9] provide provable guarantees for

algorithm configuration, with a particular focus on online learning

and privacy-preserving algorithm configuration. These tasks are

impossible in the worst case, so these papers identify a property of

the dual functions under which online and private configuration

are possible. This condition is dispersion, which, roughly speaking,

requires that the discontinuities of the dual functions are not too

concentrated in any ball. Online learning guarantees imply sample

complexity guarantees due to online-to-batch conversion, and Bal-

can et al. [9] also provide sample complexity guarantees based on

dispersion using Rademacher complexity.

Proofs that dispersion holds typically follow by exploiting prop-

erties of the input distribution under certain assumptions or—when

applicable—by appealing to the random nature of the parameter-

ized algorithm. Thus, for arbitrary distributions and deterministic

algorithms, dispersion does not necessarily hold. In contrast, our

results hold even when the discontinuities concentrate, and thus

are applicable to a broader set of problems in the distributional

learning model. In other words, the results from this paper cannot

be recovered using the techniques of Balcan et al. [4, 9].

2 NOTATION AND PROBLEM STATEMENT
We study algorithms parameterized by a set P ⊆ Rd . As a concrete
example, parameterized algorithms are often used for sequence

alignment [35]. There are many features of an alignment one might

wish to optimize, such as the number of matches, mismatches, or

indels (defined in Section 4.1). A parameterized objective function

is defined by weighting these features. As another example, hier-

archical clustering algorithms often use linkage routines such as

single, complete, and average linkage. Parameters can be used to

interpolate between these three classic procedures [10], which can

be outperformed with a careful parameter tuning [3].

We use X to denote the set of problem instances the algorithm

takes as input. We measure the performance of the algorithm pa-

rameterized by ρ = (ρ[1], . . . , ρ[d]) ∈ Rd via a utility function

uρ : X → [0,H], with U =
{
uρ : ρ ∈ P

}
denoting the set of

all such functions. We assume there is an unknown, application-

specific distribution D over X .

Our goal is to find a parameter vector in P with high perfor-

mance in expectation overD. We provide generalization guarantees
for this problem. Given a training set of problem instances S sam-

pled from D, a generalization guarantee bounds the difference—for

any choice of the parameters ρ—between the average performance

of the algorithm over S and its expected performance.

Specifically, our main technical contribution is a bound on the

pseudo-dimension [63] of the setU . For any arbitrary set of functions

H that map an abstract domain Y to R, the pseudo-dimension of H,

denoted Pdim(H), is the size of the largest set {y1, . . . ,yN } ⊆ Y
such that for some set of targets z1, . . . , zN ∈ R,

|{(sign (h (y1) − z1) , . . . , sign (h (yN) − zN)) | h ∈ H}| = 2
N . (1)

Classic results from learning theory [63] translate pseudo-dimension

bounds into generalization guarantees. For example, suppose [0,H]

STOC ’21, June 21–25, 2021, Virtual, Italy Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

is the range of the functions in H. For any δ ∈ (0, 1) and any distri-

bution D over Y , with probability 1 − δ over the draw of S ∼ DN
,

for all functions h ∈ H, the difference between the average value

of h over S and its expected value is bounded as follows:������ 1N ∑
y∈S

h(y) − E
y∼D

[h(y)]

������ = O ©«H
√

1

N

(
Pdim(H) + ln

1

δ

)ª®¬ . (2)

When H is a set of binary-valued functions that map Y to {0, 1},

the pseudo-dimension of H is more commonly referred to as the

VC-dimension of H [70], denoted VCdim(H).

3 GENERALIZATION GUARANTEES FOR
DATA-DRIVEN ALGORITHM DESIGN

In data-driven algorithm design, there are two closely related func-

tion classes. First, for each parameter setting ρ ∈ P , uρ : X → R
measures performance as a function of the input x ∈ X . Simi-

larly, for each input x , there is a function ux : P → R defined as

ux (ρ) = uρ (x) that measures performance as a function of the pa-

rameter vector ρ. The set {ux | x ∈ X } is equivalent to Assouad’s

notion of the dual class [2].

Definition 3.1 (Dual class [2]). For any domain Y and set of

functions H ⊆ RY , the dual class of H is defined as

H∗ =
{
h∗y : H → R | y ∈ Y

}
where h∗y (h) = h(y). Each function h∗y ∈ H∗

fixes an input y ∈ Y
and maps each function h ∈ H to h(y). We refer to the class H as

the primal class.

The set of functions {ux | x ∈ X } is equivalent to the dual class

U∗ =
{
u∗x : U → [0,H] | x ∈ X

}
in the sense that for every param-

eter vector ρ ∈ P and every instance x ∈ X , ux (ρ) = u∗x
(
uρ

)
.

Many combinatorial algorithms share a clear-cut, useful struc-

ture: for each instance x ∈ X , the functionux is piecewise structured.
For example, each function ux might be piecewise constant with

a small number of pieces. Given the equivalence of the functions

{ux | x ∈ X } and the dual class U∗
, the dual class exhibits this

piecewise structure as well. We use this structure to bound the

pseudo-dimension of the primal class U .

Intuitively, a function h : Y → R is piecewise structured if we

can partition the domain Y into subsets Y1, . . . ,YM so that when

we restricth to one pieceYi ,h equals somewell-structured function

f : Y → R. In other words, for all y ∈ Yi , h(y) = f (y). We define

the partition Y1, . . . ,YM using boundary functions д(1), . . . ,д(k) :
Y → {0, 1}. Each function д(i) divides the domain Y into two sets:

the points it labels 0 and the points it labels 1. Figure 2 illustrates a

partition of R2 by boundary functions. Together, the k boundary

functions partition the domain Y into at most 2
k
regions, each

one corresponding to a bit vector b ∈ {0, 1}k that describes on

which side of each boundary the region belongs. For each region,

we specify a piece function fb : Y → R that defines the function

values of h restricted to that region. Figure 1 shows an example of

a piecewise-structured function with two boundary functions and

four piece functions.

For many algorithms, every function in the dual class is piece-

wise structured. Moreover, across dual functions, the boundary

Figure 2: Boundary functions partitioning R2. The arrows
indicate on which side of each function д(i)(ρ) = 0 and on
which side д(i)(ρ) = 1. For example, д(1)

(
ρ1

)
= 1, д(1)

(
ρ2

)
= 1,

and д(1)
(
ρ3

)
= 0.

functions come from a single, fixed class, as do the piece functions.

For example, the boundary functions might always be halfspace in-

dicator functions, while the piece functions might always be linear

functions. The following definition captures this structure.

Definition 3.2. A function class H ⊆ RY that maps a domain

Y to R is (F , G,k)-piecewise decomposable for a class G ⊆ {0, 1}Y

of boundary functions and a class F ⊆ RY of piece functions

if the following holds: for every h ∈ H, there are k boundary

functions д(1), . . . ,д(k) ∈ G and a piece function fb ∈ F for each

bit vector b ∈ {0, 1}k such that for all y ∈ Y , h(y) = fby (y) where

by =
(
д(1)(y), . . . ,д(k)(y)

)
∈ {0, 1}k .

Ourmain theorem shows that when the dual classU∗
is (F , G,k)-

piecewise decomposable, we can bound the pseudo-dimension of

U in terms of the VC-dimension of G∗
and the pseudo-dimension

of F ∗
. Later, we show that for many common classes F and G , we

can easily bound the complexity of their duals.

Theorem 3.3. Suppose that the dual function class U∗ is (F , G,k)-
piecewise decomposable with boundary functions G ⊆ {0, 1}U and
piece functions F ⊆ RU . The pseudo-dimension of U is bounded as
follows: Pdim(U) = Õ (Pdim(F∗) + VCdim(G∗) lnk) .

To make the theorem’s proof succinct, we extract a key insight in

the following lemma. Given a setH of functions that map a domain

Y to {0, 1}, Lemma 3.4 bounds the number of binary vectors

(h1(y), . . . ,hN (y)) (3)

we can obtain for any N functions h1, . . . ,hN ∈ H as we vary

the input y ∈ Y . Pictorially, if we partition R2 using the functions

д(1), д(2), and д(3) from Figure 2 for example, Lemma 3.4 bounds

the number of regions in the partition. This bound depends not

on the VC-dimension of the class H, but rather on that of its dual

H∗
. We use a classic lemma by Sauer [69] to prove Lemma 3.4.

Sauer’s lemma [69] bounds the number of binary vectors of the form

(h (y1) , . . . ,h (yN))we can obtain for any N elementsy1, . . . ,yN ∈

Y as we vary the function h ∈ H by (eN)VCdim(H)
. Therefore, it

does not immediately imply a bound on the number of vectors from

Equation (3). In order to apply Sauer’s lemma, we must transition

to the dual class.

Lemma 3.4. Let H be a set of functions that map a domain Y
to {0, 1}. For any functions h1, . . . ,hN ∈ H, the number of binary

How Much Data Is Sufficient to Learn High-Performing Algorithms? STOC ’21, June 21–25, 2021, Virtual, Italy

vectors (h1(y), . . . ,hN (y)) obtained by varying the input y ∈ Y is
bounded as follows:

|{(h1(y), . . . ,hN (y)) |y ∈ Y}| ≤ (eN)VCdim(H∗). (4)

Proof. We rewrite the left-hand-side of Equation (4) as���{(h∗y (h1) , . . . ,h∗y (hN)

) ���y ∈ Y
}��� .

Sincewe fixN inputs and vary the functionh∗y , the lemma statement

follows from Sauer’s lemma [69]. □

We now prove Theorem 3.3.

Proof of Theorem 3.3. Fix an arbitrary set of problem instances

x1, . . . , xN ∈ X and targets z1, . . . , zN ∈ R. We bound the number

of ways that U can label the problem instances x1, . . . , xN with

respect to the target thresholds z1, . . . , zN ∈ R. In other words, as

per Equation (1), we bound the size of the set�������

©«
sign

(
uρ (x1) − z1

)
...

sign

(
uρ (xN) − zN

)ª®®¬
������� ρ ∈ P

�������

=

���������

©«
sign

(
u∗x1

(
uρ

)
− z1

)
...

sign

(
u∗xN

(
uρ

)
− zN

)
ª®®®®¬
��������� ρ ∈ P

��������� (5)

by (ekN)VCdim(G∗)(eN)Pdim(F ∗)
. Then solving for the largest N

such that 2
N ≤ (ekN)VCdim(G∗)(eN)Pdim(F ∗)

gives a bound on

Pdim(U). Our bound on Equation (5) has two main steps:

(1) In Claim 3.5, we show that there are M < (ekN)VCdim(G∗)

subsetsP1, . . . ,PM partitioning the parameter spaceP such

that within any one subset, the dual functions u∗x1 , . . . ,u
∗
xN

are simultaneously structured. In particular, for each subset

Pj , there exist piece functions f1, . . . , fN ∈ F such that

u∗xi
(
uρ

)
= fi

(
uρ

)
for all ρ ∈ Pj and i ∈ [N]. This is the

partition of P induced by aggregating all of the boundary

functions corresponding to the dual functions u∗x1 , . . . ,u
∗
xN .

(2) We then show that for any region Pj of the partition, as we

vary the parameter vector ρ ∈ Pj , uρ can label the problem

instances x1, . . . , xN in at most (eN)Pdim(F ∗)
ways with re-

spect to the target thresholds z1, . . . , zN . It follows that the

total number of ways that U can label the problem instances

x1, . . . , xN is bounded by (ekN)VCdim(G∗)(eN)Pdim(F ∗)
.

We now prove Claim 3.5.

Claim 3.5. There are M < (ekN)VCdim(G∗) subsets P1, . . . ,PM
partitioning the parameter space P such that within any one subset,
the dual functions u∗x1 , . . . ,u

∗
xN are simultaneously structured. In

particular, for each subset Pj , there exist piece functions f1, . . . , fN ∈

F such that u∗xi
(
uρ

)
= fi

(
uρ

)
for all ρ ∈ Pj and i ∈ [N].

Proof of Claim 3.5. Let u∗x1 , . . . ,u
∗
xN ∈ U∗

be the dual func-

tions defined by the instances x1, . . . , xN . Since U∗
is (F , G,k)-

piecewise decomposable, we know that for each function u∗xi , there

are k boundary functions д
(1)

i , . . . ,д
(k)
i ∈ G ⊆ {0, 1}U that define

its piecewise decomposition. Let
ˆG = ⋃N

i=1

{
д
(1)

i , . . . ,д
(k)
i

}
be the

union of these boundary functions across all i ∈ [N]. For ease of

notation, we relabel the functions in
ˆG , calling them д1, . . . ,дkN .

LetM be the total number of kN -dimensional vectors we can obtain

by applying the functions in
ˆG ⊆ {0, 1}U to elements of U :

M :=

�������

©«
д1

(
uρ

)
...

дkN
(
uρ

)ª®®¬ : ρ ∈ P

������� . (6)

By Lemma 3.4,M < (ekN)VCdim(G∗) . Let b1, . . . ,bM be the binary

vectors in the set from Equation (6). For each i ∈ [M], let Pj ={
ρ |

(
д1

(
uρ

)
, . . . ,дkN

(
uρ

))
= bj

}
. By construction, for each set

Pj , the values of all the boundary functions д1
(
uρ

)
, . . . ,дkN

(
uρ

)
are constant as we vary ρ ∈ Pj . Therefore, there is a fixed set of

piece functions f1, . . . , fN ∈ F so that u∗xi
(
uρ

)
= fi

(
uρ

)
for all

vectors ρ ∈ Pj and indices i ∈ [N]. Therefore, the claim holds. □

Claim 3.5 and Equation (5) imply that for every subset Pj of the

partition, �������

©«
sign

(
uρ (x1) − z1

)
...

sign

(
uρ (xN) − zN

)ª®®¬
������� ρ ∈ Pj

�������

=

�������

©«
sign

(
f1

(
uρ

)
− z1

)
...

sign

(
fN

(
uρ

)
− zN

)ª®®¬
������� ρ ∈ Pj

������� . (7)

Lemma 3.4 implies that Equation (7) is bounded by (eN)Pdim(F ∗)
.

In other words, for any region Pj of the partition, as we vary

the parameter vector ρ ∈ Pj , uρ can label the problem instances

x1, . . . , xN in at most (eN)Pdim(F ∗)
ways with respect to the target

thresholds z1, . . . , zN . Because there are M < (ekN)VCdim(G∗)
re-

gions Pj of the partition, we can conclude that that U can label the

instances x1, . . . , xN in at most (ekN)VCdim(G∗)(eN)Pdim(F ∗)
dis-

tinct ways relative to the targets z1, . . . , zN . In other words, Equa-

tion (5) is bounded by (ekN)VCdim(G∗)(eN)Pdim(F ∗)
. On the other

hand, if U shatters the problem instances x1, . . . , xN , then the num-

ber of distinct labelings must be 2
N
. Therefore, Pdim(U) is at most

the largest value of N such that 2
N ≤ (ekN)VCdim(G∗)(eN)Pdim(F ∗)

,

which implies that N = Õ (Pdim(F ∗) + VCdim(G∗) lnk) . □

We prove several lower bounds which show that Theorem 3.3 is

tight up to logarithmic factors.

Theorem 3.6. The following lower bounds hold:
(1) There is a parameterized sequence alignment algorithm with

Pdim(U) = Ω(logn) for some n ≥ 1. Its dual class U∗ is
(F , G,n)-piecewise decomposable for classes F and G with
Pdim (F∗) = VCdim (G∗) = 1.

(2) There is a parameterized voting mechanism with Pdim(U) =

Ω(n) for some n ≥ 1. Its dual class U∗ is (F , G, 2)-piecewise
decomposable for classes F and G with Pdim (F∗) = 1 and
VCdim (G∗) = n.

Proof. In Theorem 4.3, we prove the result for sequence align-

ment, in which case n is the maximum length of the sequences,

F is the set of constant functions, and G is the set of threshold

STOC ’21, June 21–25, 2021, Virtual, Italy Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

functions. In Theorem 5.2, we prove the result for voting mecha-

nisms, in which case n is the number of agents that participate in

the mechanism, F is the set of constant functions, and G is the set

of homogeneous linear separators in Rn . □

Applications to representative function classes
We now instantiate Theorem 3.3 in a general setting inspired by

data-driven algorithm design. Let U =
{
uρ | ρ ∈ R

}
be a set of

utility functions defined over a single-dimensional parameter space.

We often find that the dual functions are piecewise constant, linear,

or polynomial. More generally, the dual functions are piecewise

structured with piece functions that oscillate a fixed number of

times. In other words, the dual class U∗
is (F , G,k)-piecewise de-

composable where the boundary functions G are thresholds and

the piece functions F oscillate a bounded number of times, as

formalized below.

Definition 3.7. A function h : R→ R has at most B oscillations if

for every z ∈ R, the function ρ 7→ I{h(ρ)≥z } is piecewise constant
with at most B discontinuities.

Figure 3 illustrates three common types of functionswith bounded

oscillations. In the following lemma, we prove that ifH is a class of

functions that map R to R, each of which has at most B oscillations,

then Pdim(H∗) = O(lnB).

Lemma 3.8. Let H be a class of functions mapping R to R, each of
which has at most B oscillations. Then Pdim(H∗) = O(lnB).

Proof. Suppose that Pdim (H∗) = N . Then there exist functions

h1, . . . ,hN ∈ H and witnesses z1, . . . , zN ∈ R such that for every

subset T ⊆ [N], there exists a parameter setting ρ ∈ R such that

h∗ρ (hi) ≥ zi if and only if i ∈ T . We can simplify notation as

follows: since h (ρ) = h∗ρ (h) for every function h ∈ H, we have

that for every subset T ⊆ [N], there exists a parameter setting

ρ ∈ R such that hi (ρ) ≥ zi if and only if i ∈ T . Let P∗
be the set

of 2
N

parameter settings corresponding to each subset T ⊆ [N].

By definition, these parameter settings induce 2
N

distinct binary

vectors as follows:��������

©«
I{h1(ρ)≥z1 }

...

I{hN (ρ)≥zN }

ª®®®¬ : ρ ∈ P∗

�������� = 2

N .

On the other hand, since each function hi has at most B oscil-

lations, we can partition R into M ≤ BN + 1 intervals I1, . . . , IM
such that for every interval Ij and every i ∈ [N], the function

ρ 7→ I{hi (ρ)≥zi } is constant across the interval Ij . Therefore, at

most one parameter setting ρ ∈ P∗
can fall within a single interval

Ij . Otherwise, if ρ, ρ
′ ∈ Ij ∩ P∗

, then

©«
I{h1(ρ)≥z1 }

...

I{hN (ρ)≥zN }

ª®®®¬ =
©«
I{h1(ρ′)≥z1 }

...

I{hN (ρ′)≥zN }

ª®®®¬ ,
which is a contradiction. Thus, 2

N ≤ BN + 1, so N = O(lnB). □

Lemma 3.8 implies the following pseudo-dimension bound when

the dual function class U∗
is (F , G,k)-piecewise decomposable,

where the boundary functions G are thresholds and the piece func-

tions F oscillate a bounded number of times.

Lemma 3.9. Let U =
{
uρ | ρ ∈ R

}
be a set of utility functions

and suppose the dual class U∗ is (F , G,k)-decomposable, where the
boundary functions G = {дa | a ∈ R} are thresholds дa : uρ 7→

I{a≤ρ } . Suppose for each f ∈ F , the function ρ 7→ f
(
uρ

)
has at

most B oscillations. Then Pdim(U) = O((lnB) ln(k lnB)).

Proof. First, we claim that VCdim (G∗) = 1. For a contradiction,

suppose G∗
can shatter two functions дa,дb ∈ G∗

, where a <
b. There must be a parameter setting ρ ∈ R where д∗uρ (дa) =

дa
(
uρ

)
= I{a≤ρ } = 0 and д∗uρ (дb) = дb

(
uρ

)
= I{b≤ρ } = 1.

Therefore, b ≤ ρ < a, which is a contradiction, so VCdim (G∗) = 1.

Next, we claim that Pdim (F ∗) = O(lnB). For each function

f ∈ F , lethf : R→ R be defined ashf (ρ) = f
(
uρ

)
. By assumption,

each function hf has at most B oscillations. Let H =
{
hf | f ∈ F

}
and let N = Pdim (H∗). By Lemma 3.8, we know that N = O(lnB).
We claim that Pdim(H∗) ≥ Pdim(F∗). For a contradiction, sup-

pose the class F∗
can shatter N + 1 functions f1, . . . , fN+1 using

witnesses z1, . . . , zN+1 ∈ R. By definition, this means that����������

©«
I{
f ∗uρ (f1)≥z1

}
...

I{
f ∗uρ (fN+1)≥zN+1

}
ª®®®®®¬
: ρ ∈ P

���������� = 2
N+1.

For any function f ∈ F and any parameter setting ρ ∈ R, f ∗uρ (f) =

f
(
uρ

)
= hf (ρ) = h

∗
ρ (hf). Therefore,����������

©«
I{
h∗
ρ

(
hf

1

)
≥z1

}
...

I{
h∗
ρ

(
hfN+1

)
≥zN+1

}
ª®®®®®¬
: ρ ∈ P

����������
=

����������

©«
I{
f ∗uρ (f1)≥z1

}
...

I{
f ∗uρ (fN+1)≥zN+1

}
ª®®®®®¬
: ρ ∈ P

���������� = 2
N+1,

which contradicts the fact that Pdim(H∗) = N . Thus, Pdim(F ∗) ≤

N = O(lnB). The corollary then follows from Theorem 3.3. □

4 PARAMETERIZED COMPUTATIONAL
BIOLOGY ALGORITHMS

We study algorithms that are used in practice for three biological

problems: sequence alignment, RNA folding, and predicting topo-

logically associated domains in DNA. In these applications, there

are two unifying similarities. First, algorithmic performance is mea-

sured in terms of the distance between the algorithm’s output and

a ground-truth solution. In most cases, this solution is discovered

using laboratory experimentation, so it is only available for the

instances in the training set. Second, these algorithms use dynamic

programming to maximize parameterized objective functions. This

objective function represents a surrogate optimization criterion

for the dynamic programming algorithm, whereas utility measures

how well the algorithm’s output resembles the ground truth. There

How Much Data Is Sufficient to Learn High-Performing Algorithms? STOC ’21, June 21–25, 2021, Virtual, Italy

(a) Constant function (zero oscilla-
tions).

(b) Linear function (one oscilla-
tion).

(c) Inverse-quadratic function of the form h(ρ) = a
ρ2
+

bρ + c (two oscillations).

Figure 3: Each solid line is a function with bounded oscillations and each dotted line is an arbitrary threshold. Many parame-
terized algorithms have piecewise-structured duals with piece functions from these families.

may be multiple solutions that maximize this objective function,

which we call co-optimal. Although co-optimal solutions have the

same objective function value, they may have different utilities. To

handle tie-breaking, we assume that in any region of the parameter

space where the set of co-optimal solutions is fixed, the algorithm’s

output is also fixed, which is typically true in practice.

4.1 Global pairwise sequence alignment
In pairwise sequence alignment, the goal is to line up strings in

order to identify regions of similarity. In biology, for example, these

similar regions indicate functional, structural, or evolutionary rela-

tionships between the sequences. Formally, let Σ be an alphabet and

let S1, S2 ∈ Σn be two sequences. A sequence alignment is a pair of
sequences τ1, τ2 ∈ (Σ∪{−})∗ such that |τ1 | = |τ2 |, del (τ1) = S1, and
del (τ2) = S2, where del is a function that deletes every −, or gap
character. There are many features of an alignment that one might

wish to optimize, such as the number of matches (τ1[i] = τ2[i]),
mismatches (τ1[i] , τ2[i]), indels (τ1[i] = − or τ2[i] = −), and gaps
(maximal sequences of consecutive gap characters in τ ∈ {τ1, τ2}).
We denote these features using functions ℓ1, . . . , ℓd that map pairs

of sequences (S1, S2) and alignments L to R.
A common dynamic programming algorithmAρ [35, 72] returns

the alignment L that maximizes the objective function

ρ[1] · ℓ1 (S1, S2, L) + · · · + ρ[d] · ℓd (S1, S2, L) , (8)

where ρ = (ρ[1], . . . , ρ[d]) ∈ Rd is a parameter vector. We denote

the output alignment as Aρ (S1, S2). As Gusfield et al. [39] wrote,

“there is considerable disagreement among molecular biologists

about the correct choice” of a parameter setting ρ. We assume

there is a utility function that characterizes an alignment’s quality,

denoted u(S1, S2, L) ∈ R. For example, u(S1, S2, L) might measure

the distance between L and a “ground truth” alignment of S1 and
S2 [68]. We then define uρ (S1, S2) = u

(
S1, S2,Aρ (S1, S2)

)
to be the

utility of the alignment returned by the algorithm Aρ .

In the following lemma, we prove that the set of utility functions

uρ has piecewise-structured dual functions.

Lemma 4.1. Let U be the set of functions

U =
{
uρ : (S1, S2) 7→ u

(
S1, S2,Aρ (S1, S2)

)
| ρ ∈ Rd

}
.

The dual class U∗ is
(
F , G, 4nn4n+2

)
-piecewise decomposable, where

F = { fc : U → R | c ∈ R} consists of constant functions fc :

uρ 7→ c and G =
{
дa : U → {0, 1} | a ∈ Rd

}
consists of halfspace

indicator functions дa : uρ 7→ I{a ·ρ<0} .

Proof. Fix a sequence pair S1 and S2. Let L be the set of align-

ments the algorithm returns as we range over all parameter vectors

ρ ∈ Rd . In other words, L =
{
Aρ (S1, S2) | ρ ∈ Rd

}
. In the full

version [7], we prove that |L| ≤ 2
nn2n+1. For any alignment L ∈ L,

the algorithm Aρ will return L if and only if

ρ[1] · ℓ1 (S1, S2, L) + · · · + ρ[d] · ℓd (S1, S2, L)

> ρ[1] · ℓ1
(
S1, S2, L

′
)
+ · · · + ρ[d] · ℓd

(
S1, S2, L

′
)

(9)

for all L′ ∈ L\{L}. Therefore, there is a setH of at most

(
2
nn2n+1

2

)
≤

4
nn4n+2 hyperplanes such that across all parameter vectors ρ in

a single connected component of Rd \ H, the output of the al-

gorithm parameterized by ρ, Aρ (S1, S2), is fixed. (As is standard,

Rd \H indicates set removal.) This means that for any connected

component R of Rd \ H, there exists a real value cR such that

uρ (S1, S2) = cR for all ρ ∈ R. By definition of the dual, this means

that u∗S1,S2

(
uρ

)
= uρ (S1, S2) = cR as well.

We now use this structure to show that the dual class U∗
is(

F , G, 4nn4n+2
)
-piecewise decomposable, as per Definition 3.2. Re-

call that G =
{
дa : U → {0, 1} | a ∈ Rd

}
consists of halfspace in-

dicator functions дa : uρ 7→ I{a ·ρ<0} and F = { fc : U → R |

c ∈ R} consists of constant functions fc : uρ 7→ c . For each pair of

alignments L, L′ ∈ L, let д(L,L′) ∈ G correspond to the halfspace

represented in Equation (9). Order these k :=
(|L |
2

)
functions arbi-

trarily as д(1), . . . ,д(k). Every connected component R of Rd \H
corresponds to a sign pattern of the k hyperplanes. For a given

region R, let bR ∈ {0, 1}k be the corresponding sign pattern. Define

the function f (bR) ∈ F as f (bR) = fcR , so f (bR)
(
uρ

)
= cR for all

ρ ∈ Rd . Meanwhile, for every vector b not corresponding to a sign

pattern of the k hyperplanes, let f (b) = f0, so f (b)
(
uρ

)
= 0 for all

ρ ∈ Rd . In this way, for every ρ ∈ Rd ,

u∗S1,S2
(
uρ

)
=

∑
b ∈{0,1}k

I{д(i)(uρ)=b[i],∀i ∈[k]} f
(b)(uρ),

as desired. □

In the full version [7], we prove Pdim(F ∗) = 0 and VCdim(G∗) =

d + 1. Theorem 3.3 and Lemma 4.1 therefore imply that Pdim(U) =

O(nd lnn). Moreover, in the full version [7], we provide guarantees

for algorithms that align more than two sequences.

Tighter guarantees for a structured algorithm subclass: the affine-
gap model. A line of prior work [29, 39, 61, 62] analyzed a specific

instantiation of the objective function (8) where d = 3. In this

case, we can obtain a pseudo-dimension bound of O(lnn), which is

STOC ’21, June 21–25, 2021, Virtual, Italy Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

exponentially better than the bound implied by Lemma 4.1. Given a

pair of sequences S1, S2 ∈ Σn , the dynamic programming algorithm

Aρ returns the alignment L maximizes the objective function

mt(S1, S2, L)−ρ[1]ms(S1, S2, L)−ρ[2]id(S1, S2, L)−ρ[3]gp(S1, S2, L),

where mt(S1, S2, L) is the number of matches, ms(S1, S2, L) is the
number of mismatches, id(S1, S2, L) equals the number of indels,

gp(S1, S2, L) is the number of gaps, and ρ = (ρ[1], ρ[2], ρ[3]) ∈ R3 is
a parameter vector. We denote the output alignment as Aρ (S1, S2).
This is known as the affine-gap scoring model. We exploit specific

structure exhibited by this algorithm family to obtain the exponen-

tial pseudo-dimension improvement. This useful structure guar-

antees that for any pair of sequences S1 and S2, there are only

O
(
n3/2

)
different alignments the algorithm family

{
Aρ | ρ ∈ R3

}
might produce as we range over parameter vectors [29, 39, 61]. This

bound is exponentially smaller than the generic bound of 4
nn4n+2

that we use in the proof of Lemma 4.1. The proof is in the full

version [7].

Lemma 4.2. Let U be the set of functions

U =
{
uρ : (S1, S2) 7→ u

(
S1, S2,Aρ (S1, S2)

)
| ρ ∈ R3≥0

}
.

The dual class U∗ is
(
F , G,O

(
n3

))
-piecewise decomposable, where

F = { fc : U → R | c ∈ R} consists of constant functions fc : uρ 7→

c and where G =
{
дa : U → {0, 1} | a ∈ R4

}
consists of halfspace

indicator functions дa : uρ 7→ I{a[1]ρ[1]+a[2]ρ[2]+a[3]ρ[3]<a[4]} .

Theorem 3.3 and Lemma 4.2 imply that Pdim(U) = O(lnn).We

also prove that this pseudo-dimension bound is tight up to constant

factors. In this lower bound proof, our utility function u is the Q
score between a given alignment L of two sequences (S1, S2) and
the ground-truth alignment L∗ (the Q score is also known as the

SPS score in the case of multiple sequence alignment [24]). The Q
score between L and the ground-truth alignment L∗ is the fraction
of aligned letter pairs in L∗ that are correctly reproduced in L. For
example, the following alignment L has a Q score of

2

3
because it

correctly aligns the two pairs of Cs, but not the pair of Gs:

L =

[
G A T C C
A G - C C

]
L∗ =

[
- G A T C C
A G - - C C

]
.

We use the notation u (S1, S2, L) ∈ [0, 1] to denote the Q score

between L and the ground-truth alignment of S1 and S2. The full
proof of the following theorem is in the full version [7].

Theorem 4.3. There exists a set
{
Aρ | ρ ∈ R3

≥0

}
of co-optimal-

constant algorithms and an alphabet Σ such that the set of functions
U =

{
uρ : (S1, S2) 7→ u

(
S1, S2,Aρ (S1, S2)

)
| ρ ∈ R3

≥0

}
,whichmap

sequence pairs S1, S2 ∈ ∪ni=1Σ
i of length at most n to [0, 1], has a

pseudo-dimension of Ω(logn).

Proof sketch. In this proof sketch, we illustrate the way in

which two sequences pairs can be shattered, and then describe how

the proof can be generalized to Θ(logn) sequence pairs.

Setup. Our setup consists of the following three elements: the

alphabet, the two sequence pairs

(
S
(1)

1
, S

(1)

2

)
and

(
S
(2)

1
, S

(2)

2

)
, and

ground-truth alignments of these pairs. We detail these elements

below:

(1) Our alphabet consists of twelve characters: {ai , bi , ci , di }
3

i=1.

(2) The two sequence pairs are comprised of three subsequence

pairs:

(
t
(1)

1
, t
(1)

2

)
,

(
t
(2)

1
, t
(2)

2

)
, and

(
t
(3)

1
, t
(3)

2

)
, where

t
(1)

1
= a1b1d1

t
(1)

2
= b1c1d1

,
t
(2)

1
= a2a2b2d2

t
(2)

2
= b2c2c2d2

, and

t
(3)

1
= a3a3a3b3d3

t
(3)

2
= b3c3c3c3d3

. (10)

We define the two sequence pairs as

S
(1)

1
= t

(1)

1
t
(2)

1
t
(3)

1
= a1b1d1a2a2b2d2a3a3a3b3d3

S
(1)

2
= t

(1)

2
t
(2)

2
t
(3)

2
= b1c1d1b2c2c2d2b3c3c3c3d3

and

S
(2)

1
= t

(2)

1
= a2a2b2d2

S
(2)

2
= t

(2)

2
= b2c2c2d2

.

(3) Finally, we define ground-truth alignments of the two se-

quence pairs

(
S
(1)

1
, S

(1)

2

)
and

(
S
(2)

1
, S

(2)

2

)
.We define the ground-

truth alignment of

(
S
(1)

1
, S

(1)

2

)
to be

a1 b1 - d1 a2 a2 b2 - - d2 a3 a3 a3 b3 - - - d3
b1 - c1 d1 - - b2 c2 c2 d2 b3 - - - c3 c3 c3 d3

. (11)

The most important properties of this alignment are that

the dj characters are always matching and the bj characters
alternate between matching and not matching. Similarly, we

define the ground-truth alignment of

(
S
(2)

1
, S

(2)

2

)
to be

a2 a2 b2 - - d2
- - b2 c2 c2 d2

.

Shattering. We now show that these two sequence pairs can

be shattered. A key step is proving that u(0,ρ[2],0)

(
S
(1)

1
, S

(1)

2

)
and

u(0,ρ[2],0)

(
S
(2)

1
, S

(2)

2

)
have the following form:

u(0,ρ[2],0)

(
S
(1)

1
, S

(1)

2

)
=

4

6
if ρ[2] ≤ 1

6

5

6
if

1

6
< ρ[2] ≤ 1

4

4

6
if

1

4
< ρ[2] ≤ 1

2

5

6
if ρ[2] > 1

2

(12)

and u(0,ρ[2],0)

(
S
(2)

1
, S

(2)

2

)
=

{
1 if ρ[2] ≤ 1

4

1

2
if ρ[2] > 1

4

.

The form ofu(0,ρ[2],0)

(
S
(1)

1
, S

(1)

2

)
is illustrated by Figure 4. It is then

straightforward to verify that the two sequence pairs are shattered

by the parameter settings (0, 0, 0),
(
0, 1

5
, 0
)
,

(
0, 1

3
, 0
)
, and (0, 1, 0)

with the witnesses z1 = z2 =
3

4
. In other words, the mismatch and

gap parameters are set to 0 and the indel parameter ρ[2] takes the
values

{
0, 1

5
, 1
3
, 1
}
.

Proof sketch of Equation (12). The full proof that Equation (12)

holds follows the following high-level reasoning:

(1) First, we prove that under the algorithm’s output alignment,

the dj characters will always be matching. Intuitively, this

is because the algorithm’s objective function will always be

maximized when each subsequence t
(j)
1

is aligned with t
(j)
2
.

(2) Second, we prove that the characters bj will be matched if

and only if ρ[2] ≤ 1

2j . Intuitively, this is because in order to

match these characters, we must pay with 2j indels. Since the

How Much Data Is Sufficient to Learn High-Performing Algorithms? STOC ’21, June 21–25, 2021, Virtual, Italy

Figure 4: The form of u(0,ρ[2],0)
(
S
(1)

1
, S

(1)

2

)
as a function of the indel parameter ρ[2]. When ρ[2] ≤ 1

6
, the algorithm returns the

bottom alignment. When 1

6
< ρ[2] ≤ 1

4
, the algorithm returns the alignment that is second to the bottom. When 1

4
< ρ[2] ≤ 1

2
,

the algorithm returns the alignment that is second to the top. Finally, when ρ[2] > 1

2
, the algorithm returns the top alignment.

The purple characters denote which characters are correctly aligned according to the ground-truth alignment (Equation (11)).

objective function is mt

(
S
(1)

1
, S

(1)

2
, L
)
−ρ[2] · id

(
S
(1)

1
, S

(1)

2
, L
)
,

the 1 match will be worth the 2j indels if and only if 1 ≥

2jρ[2].

These two properties in conjunction mean that when ρ[2] > 1

2
,

none of the bj characters are matched, so the characters that are

correctly aligned (as per the ground-truth alignment (Equation (11)))

in the algorithm’s output are (a1, b1), (d1, d1), (d2, d2), (a3, b3), and
(d3, d3), as illustrated by purple in the top alignment of Figure 4.

Since there are 6 aligned letters in the ground-truth alignment, the

Q score is
5

6
, or in other words, u(0,ρ[2],0)

(
S
(1)

1
, S

(1)

2

)
= 5

6
.

When ρ[2] shifts to the next-smallest interval

(
1

4
, 1
2

]
, the indel

penalty ρ[2] is sufficiently small that the b1 characters will align.
Thus we lose the correct alignment (a1, b1), and the Q score drops

to
4

6
. Similarly, if we decrease ρ[2] to the next-smallest interval(

1

6
, 1
4

]
, the b2 characters will align, which is correct under the

ground-truth alignment (Equation (11)). Thus the Q score increases

back to
5

6
. Finally, by the same logic, when ρ[2] ≤ 1

6
, we lose

the correct alignment (a3, b3) in favor of the alignment of the b3
characters, so the Q score falls to

4

6
. In this way, we prove the form

of u(0,ρ[2],0)

(
S
(1)

1
, S

(1)

2

)
from Equation (12). A parallel argument

proves the form of u(0,ρ[2],0)

(
S
(2)

1
, S

(2)

2

)
.

Generalization to shattering Θ(logn) sequence pairs. This proof
intuition naturally generalizes to Θ(logn) sequence pairs of length

O(n) by expanding the number of subsequences t
(j)
i a la Equa-

tion (10). In essence, if we define S
(1)

1
= t

(1)

1
t
(2)

1
· · · t

(k)
1

and S
(1)

2
=

t
(1)

2
t
(2)

2
· · · t

(k)
2

for a carefully-chosen k = Θ
(√
n
)
, then we can force

u(0,ρ[2],0)

(
S
(1)

1
, S

(1)

2

)
to oscillate O(n) times. Similarly, if we define

S
(2)

1
= t

(2)

1
t
(4)

1
· · · t

(k−1)
1

and S
(2)

2
= t

(2)

2
t
(4)

2
· · · t

(k−1)
2

, then we can

force u(0,ρ[2],0)

(
S
(1)

1
, S

(1)

2

)
to oscillate half as many times, and so

on. This construction allows us to shatter Θ(logn) sequences. □

4.2 RNA folding
RNA molecules have many essential roles including protein coding

and enzymatic functions [40]. RNA is assembled as a chain of bases
denoted A, U, C, and G. It is often found as a single strand folded

onto itself with non-adjacent bases physically bound together. RNA

folding algorithms infer the way strands would naturally fold, shed-

ding light on their functions. Given a sequence S ∈ {A, U, C, G}n , we
represent a folding by a set of pairs ϕ ⊂ [n] × [n]. If (i, j) ∈ ϕ, then

the ith and jth bases of S bind together. Typically, the bases A and U
bind together, as do C and G. Other matchings are likely less stable.

We assume that the foldings do not contain any pseudoknots, which
are pairs (i, j), (i ′, j ′) that cross with i < i ′ < j < j ′.

A well-studied algorithm returns a folding that maximizes a

parameterized objective function [60]. At a high level, this objective

function trades off between global properties of the folding (the

number of binding pairs |ϕ |) and local properties (the likelihood

that bases would appear close together in the folding). Specifically,

STOC ’21, June 21–25, 2021, Virtual, Italy Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

the algorithm Aρ uses dynamic programming to return the folding

Aρ (S) that maximizes

ρ |ϕ | + (1 − ρ)
∑

(i , j)∈ϕ

MS [i],S [j],S [i−1],S [j+1]I{(i−1, j+1)∈ϕ }, (13)

where ρ ∈ [0, 1] is a parameter and MS [i],S [j],S [i−1],S [j+1] ∈ R is

a score for having neighboring pairs of the letters (S[i], S[j]) and
(S[i − 1], S[j + 1]). These scores help identify stable sub-structures.

We assume there is a utility function that characterizes a folding’s

quality, denoted u(S,ϕ). For example, u(S,ϕ) might measure the

fraction of pairs shared between ϕ and a “ground-truth” folding,

obtained via expensive computation or laboratory experiments.

Lemma 4.4. Let U be the set of functions

U =
{
uρ : S 7→ u

(
S,Aρ (S)

)
| ρ ∈ R

}
.

The dual class U∗ is
(
F , G,n2

)
-piecewise decomposable, where G =

{дa : U → {0, 1} | a ∈ R} consists of threshold functions дa : uρ 7→

I{ρ<a } andF = { fc : U → R | c ∈ R} consists of constant functions
fc : uρ 7→ c .

Proof. Fix a sequence S . Let Φ be the set of alignments that the

algorithm returns as we range over all parameters ρ ∈ R. In other

words, Φ = {Aρ (S) | ρ ∈ [0, 1]}. We know that every folding has

length at most n/2. For any k ∈ {0, . . . ,n/2}, let ϕk be the folding

of length k that maximizes the right-hand-side of Equation (13):

ϕk = argmaxϕ : |ϕ |=k

∑
(i , j)∈ϕ

MS [i],S [j],S [i−1],S [j+1]I{(i−1, j+1)∈ϕ } .

The folding the algorithm returns will be one of

{
ϕ0, . . . ,ϕn/2

}
, so

|Φ| ≤ n
2
+ 1.

Fix an arbitrary foldingϕ ∈ Φ. We know thatϕ will be the folding

returned by the algorithm Aρ (S) if and only if

ρ |ϕ | + (1 − ρ)
∑

(i , j)∈ϕ

MS [i],S [j],S [i−1],S [j+1]I{(i−1, j+1)∈ϕ }

≥ ρ
��ϕ ′�� + (1 − ρ)

∑
(i , j)∈ϕ′

MS [i],S [j],S [i−1],S [j+1]I{(i−1, j+1)∈ϕ′ }

for all ϕ ′ ∈ Φ\ {ϕ}. Since these functions are linear in ρ, this means

that there is a set of T ≤
(|Φ |
2

)
≤ n2 intervals [ρ1, ρ2), [ρ2, ρ3), . . . ,

[ρT , ρT+1] with ρ1 := 0 < ρ2 < · · · < ρT < 1 := ρT+1 such that

for any one interval I , across all ρ ∈ I , Aρ (S) is fixed. This means

that for any one interval [ρi , ρi+1), there exists a real value ci such
that uρ (S) = ci for all ρ ∈ [ρi , ρi+1). By definition of the dual, this

means that u∗S (uρ) = uρ (S) = ci as well.
We now use this structure to show that the dual class U∗

is(
F , G,n2

)
-piecewise decomposable, as per Definition 3.2. Recall

that G = {дa : U → {0, 1} | a ∈ R} consists of threshold functions

дa : uρ 7→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists

of constant functions fc : uρ 7→ c . We claim that there exists a

function f (b) ∈ F for every vector b ∈ {0, 1}T such that for every

ρ ∈ [0, 1],

u∗S (uρ) =
∑

b ∈{0,1}T

I{дρi (uρ)=b[i],∀i ∈[T]}
f (b)(uρ). (14)

To see why, suppose ρ ∈ [ρi , ρi+1) for some i ∈ [T]. Thenдρ j (uρ) =
I{ρ≤ρ j } = 1 for all j ≥ i + 1 and дρ j (uρ) = I{ρ≤ρ j } = 0 for all

j ≤ i . Let bi ∈ {0, 1}T be the vector that has only 0’s in its first i
coordinates and all 1’s in its remaining T − i coordinates. For all

i ∈ [T], we define f (bi) = fci , so f (bi)
(
uρ

)
= ci for all ρ ∈ [0, 1].

For any other b, we set f (b) = f0, so f (b)
(
uρ

)
= 0 for all ρ ∈ [0, 1].

Therefore, Equation (14) holds. □

Since constant functions have zero oscillations, Lemmas 3.9 and

4.4 imply that Pdim(U) = O (lnn) .

4.3 Topologically associating domains
Inside a cell, the linear DNA of the genome wraps into three-

dimensional structures that influence genome function. Some re-

gions of the genome are closer than others and thereby interact

more. Topologically associating domains (TADs) are contiguous seg-
ments of the genome that fold into compact regions. More formally,

given the genome length n, a TAD set is a set

T = {(i1, j1), . . . , (it , jt)} ⊂ [n] × [n]

such that i1 < j1 < i2 < j2 < · · · < it < jt . If (i, j) ∈ T , the
bases within the corresponding substring physically interact more

frequently with each other than with other bases. Disrupting TAD

boundaries can affect the expression of nearby genes, which can

trigger diseases such as congenital malformations and cancer [52].

The contact frequency of any two genome locations, denoted

by a matrix M ∈ Rn×n , can be measured via experiments [49]. A

dynamic programming algorithm Aρ introduced by Filippova et al.

[30] returns the TAD set Aρ (M) that maximizes∑
(i , j)∈T

sρ (i, j) − µρ (j − i), (15)

where ρ ≥ 0 is a parameter, sρ (i, j) =
1

(j−i)ρ
∑
i≤p<q≤j Mpq is

the scaled density of the subgraph induced by the interactions

between genomic loci i and j , and µρ (d) =
1

n−d
∑n−d−1
t=0 sρ (t, t +d)

is the mean value of sρ over all sub-matrices of length d along the

diagonal of M . We note that unlike the sequence alignment and

RNA folding algorithms, the parameter ρ appears in the exponent

of the objective function.

We assume there is a utility function that characterizes the qual-

ity of a TAD set T , denoted u(M,T) ∈ R. For example, u(M,T)
might measure the fraction of TADs in T that are in the correct

location with respect to a ground-truth TAD set.

Lemma 4.5. Let U be the set of functions

U =
{
uρ : M 7→ u

(
M,Aρ (M)

)
| ρ ∈ R

}
.

The dual class U∗ is
(
F , G, 2n24n2

)
-piecewise decomposable, where

G = {дa : U → {0, 1} | a ∈ R} consists of threshold functions
дa : uρ 7→ I{ρ<a } and F = { fc : U → R | c ∈ R} consists of
constant functions fc : uρ 7→ c .

Proof. Fix a matrixM . We rewrite Equation (15) as follows:

Aρ (M) = argmax

T ⊂[n]×[n]

∑
(i , j)∈T

ci j

(j − i)ρ
,

where

ci j =
©«

∑
i≤u<v≤j

Muv
ª®¬ − 1

n − j + i

n−j+i∑
t=0

∑
t ≤p<q≤t+j−i

Mpq

How Much Data Is Sufficient to Learn High-Performing Algorithms? STOC ’21, June 21–25, 2021, Virtual, Italy

is a constant that does not depend on ρ.
Let T be the set of TAD sets that the algorithm returns as we

range over all parameters ρ ≥ 0. In other words, T = {Aρ (M) |

ρ ≥ 0}. Since each TAD set is a subset of [n] × [n], |T | ≤ 2
n2

. For

any TAD set T ∈ T , the algorithm Aρ will return T if and only if∑
(i , j)∈T

ci j

(j − i)ρ
>

∑
(i′, j′)∈T ′

ci′j′

(j ′ − i ′)ρ

for all T ′ ∈ T \ {T }. This means that as we range ρ over R≥0, the
TAD set returned by algorithm Aρ (M) will only change when∑

(i , j)∈T

ci j

(j − i)ρ
−

∑
(i′, j′)∈T ′

ci′j′

(j ′ − i ′)ρ
= 0 (16)

for some T ,T ′ ∈ T . As a result of Rolle’s Theorem (detailed in the

full version [7]), we know that Equation (16) has at most |T |+ |T ′ | ≤

2n2 solutions. This means there are t ≤ 2n2
(|T |
2

)
≤ 2n24n

2

intervals

[ρ1, ρ2) , [ρ2, ρ3) , . . . , [ρt , ρt+1) with ρ1 := 0 < ρ2 < · · · < ρt <
∞ := ρt+1 that partition R≥0 such that across all ρ within any one

interval [ρi , ρi+1), the TAD set returned by algorithm Aρ (M) is

fixed. Therefore, there exists a real value ci such that uρ (M) = ci
for all ρ ∈ [ρi , ρi+1). By definition of the dual, this means that

u∗M (uρ) = uρ (M) = ci as well.
We now use this structure to show that the dual class U∗

is(
F , G, 2n24n2

)
-piecewise decomposable, as per Definition 3.2. Re-

call that G = {дa : U → {0, 1} | a ∈ R} consists of threshold
functions дa : uρ 7→ I{ρ<a } and F = { fc : U → R | c ∈ R}
consists of constant functions fc : uρ 7→ c . We claim that there

exists a function f (b) ∈ F for every vector b ∈ {0, 1}t such that

for every ρ ≥ 0,

u∗M (uρ) =
∑

b ∈{0,1}t
I{дρi (uρ)=b[i],∀i ∈[t]}

f (b)(uρ). (17)

To see why, suppose ρ ∈ [ρi , ρi+1) for some i ∈ [t]. Then дρ j (uρ) =
I{ρ≤ρ j } = 1 for all j ≥ i + 1 and дρ j (uρ) = I{ρ≤ρ j } = 0 for all

j ≤ i . Let bi ∈ {0, 1}t be the vector that has only 0’s in its first i
coordinates and all 1’s in its remaining t − i coordinates. For all

i ∈ [t], we define f (bi) = fci , so f (bi)
(
uρ

)
= ci for all ρ ∈ [0, 1].

For any other b, we set f (b) = f0, so f (b)
(
uρ

)
= 0 for all ρ ∈ [0, 1].

Therefore, Equation (17) holds. □

Since constant functions have zero oscillations, Lemmas 3.9 and

4.5 imply that Pdim(U) = O
(
n2

)
.

5 PARAMETERIZED VOTING MECHANISMS
A large body of economics research studies how to design protocols—

or mechanisms—that help groups of agents come to collective de-

cisions. For example, when children inherit an estate, how should

they divide the property? When a jointly-owned company is dis-

solved, which partner should buy the others out? There is no one

protocol that best answers these questions; the optimal mechanism

depends on the setting at hand.

We study a family of mechanisms called neutral affinemaximizers
(NAMs) [55, 59, 65]. A NAM takes as input a set of agents’ reported

values for each possible outcome and returns one of those outcomes.

A NAM can thus be thought of as an algorithm that the agents use

to arrive at a single outcome. NAMs are incentive compatible, which

means that each agent is incentivized to report his values truthfully.

In order to satisfy incentive compatibility, each agent may have to

make a payment. NAMs are also budget-balanced which means that

the aggregated payments are redistributed among the agents.

Formally, we study a setting where there is a set ofm alternatives

and a set of n agents. Each agent i has a value vi (j) ∈ R for each

alternative j ∈ [m]. We denote all of his values as vi ∈ Rm and

all n agents’ values as v = (v1, . . . ,vn) ∈ R
nm

. In this case, the

unknown distribution D is over vectorsv ∈ Rnm .

A NAM is defined by n parameters (one per agent)

ρ = (ρ[1], . . . , ρ[n]) ∈ Rn≥0

such that at least one agent is assigned a weight of zero. There is a

social choice functionψρ : Rnm → [m] which uses the valuesv ∈

Rnm to choose an alternativeψρ (v) ∈ [m]. In particular,ψρ (v) =
argmaxj ∈[m]

∑n
i=1 ρ[i]vi (j)maximizes the agents’ weighted values.

Each agent i with zero weight ρ[i] = 0 is called a sink agent because
his values do not influence the outcome. For every agent who is not

a sink agent (ρ[i] , 0), their payment is defined as in the weighted

version of the classic Vickrey-Clarke-Grovesmechanism [20, 36, 71].

To achieve budget balance, these payments are given to the sink

agent(s). More formally, let j∗ = ψρ (v) and for each agent i , let j−i =
argmaxj ∈[m]

∑
i′,i ρ[i

′]vi′(j). The payment function is defined as

pi (v) =
1

ρ[i]
(∑

i′,i ρ[i
′]vi′ (j

∗) −
∑
i′,i ρ[i

′]vi′ (j−i)
)
if ρ[i] , 0,

pi (v) = −
∑
i′,i pi′(v) if i = min {i ′ : ρ[i ′] = 0}, and pi (v) = 0

otherwise.

We aim to optimize the expected social welfare

E
v∼D

[n∑
i=1

vi
(
ψρ (v)

)]
of the NAM’s outcome ψρ (v), so we define the utility function

uρ (v) =
∑n
i=1vi

(
ψρ (v)

)
.

Lemma 5.1. Let U be the set of functions

U =
{
uρ | ρ ∈ Rn≥0, {i | ρ[i] = 0} , ∅

}
.

The dual class U∗ is
(
F , G,m2

)
-piecewise decomposable, where G =

{дa : U → {0, 1} | a ∈ Rn } consists of halfspace indicators дa :

uρ 7→ I{ρ ·a≤0} and F = { fc : U → R | c ∈ R} consists of constant
functions fc : uρ 7→ c .

Proof. Fix a valuation vectorv ∈ Rnm . We know that for any

two alternatives j, j ′ ∈ [m], the alternative j would be selected over
j ′ so long as

n∑
i=1

ρ[i]vi (j) >
n∑
i=1

ρ[i]vi
(
j ′
)
. (18)

Therefore, there is a set H of

(m
2

)
hyperplanes such that across all

parameter vectors ρ in a single connected component of Rn \H,

the outcome of the NAM defined by ρ is fixed. When the outcome

of the NAM is fixed, the social welfare is fixed as well. This means

that for a single connected component R of Rn \H, there exists a

real value cR such that uρ (v) = cR for all ρ ∈ R. By definition of

the dual, this means that u∗v
(
uρ

)
= uρ (v) = cR as well.

We now use this structure to show that the dual class U∗
is(

F , G,m2
)
-piecewise decomposable, as per Definition 3.2. Recall

that G = {дa : U → {0, 1} | a ∈ Rn } consists of halfspace indicator
functions дa : uρ 7→ I{a ·ρ<0} and F = { fc : U → R | c ∈ R}

STOC ’21, June 21–25, 2021, Virtual, Italy Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

consists of constant functions fc : uρ 7→ c . For each pair of al-

ternatives j, j ′ ∈ L, let д(j , j′) ∈ G correspond to the halfspace

represented in Equation (18). Order these k :=
(m
2

)
functions arbi-

trarily as д(1), . . . ,д(k). Every connected component R of Rn \H
corresponds to a sign pattern of the k hyperplanes. For a given

region R, let bR ∈ {0, 1}k be the corresponding sign pattern. Define

the function f (bR) ∈ F as f (bR) = fcR , so f (bR)
(
uρ

)
= cR for all

ρ ∈ Rn . Meanwhile, for every vector b not corresponding to a sign

pattern of the k hyperplanes, let f (b) = f0, so f (b)
(
uρ

)
= 0 for all

ρ ∈ Rn . In this way, for every ρ ∈ Rn ,

u∗v
(
uρ

)
=

∑
b ∈{0,1}k

I{д(i)(uρ)=b[i],∀i ∈[k]} f
(b)(uρ),

as desired. □

Theorem 3.3 and Lemma 5.1 imply that the pseudo-dimension

of U is O(n lnm). Next, we prove that the pseudo-dimension of U
is at least

n
2
, which means that our pseudo-dimension upper bound

is tight up to log factors.

Theorem 5.2. Define U =
{
uρ | ρ ∈ Rn

≥0
, {ρ[i] | i = 0} , ∅

}
.

Then Pdim(U) ≥ n
2
.

Proof. Let the number of alternativesm = 2 and without loss

of generality, suppose that n is even. To prove this theorem, we will

identify a set of N = n
2
valuation vectors v(1), . . . ,v(N)

that are

shattered by the set U of social welfare functions.

Let ϵ be an arbitrary number in

(
0, 1

2

)
. For each ℓ ∈ [N], define

agent i’s values for the first and second alternatives under the ℓth

valuation vectorv(ℓ)
—namely, v

(ℓ)
i (1) and v

(ℓ)
i (2)—as follows:

v
(ℓ)
i (1) =

{
1 if ℓ = i

0 otherwise

and v
(ℓ)
i (2) =

{
ϵ if ℓ = n

2
+ i

0 otherwise.

For example, if there are n = 6 agents, then across the N = n
2
= 3

valuation vectors v(1),v(2),v(3)
, the agents’ values for the first

alternative are defined as
v
(1)

1
(1) · · · v

(1)

6
(1)

v
(2)

1
(1) · · · v

(2)

6
(1)

v
(3)

1
(1) · · · v

(3)

6
(1)

 =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

and their values for the second alternative are defined as

v
(1)

1
(2) · · · v

(1)

6
(2)

v
(2)

1
(2) · · · v

(2)

6
(2)

v
(3)

1
(2) · · · v

(3)

6
(2)

 =

0 0 0 ϵ 0 0

0 0 0 0 ϵ 0

0 0 0 0 0 ϵ

 .
Let b ∈ {0, 1}N be an arbitrary bit vector. We will construct a

NAM parameter vector ρ such that for any ℓ ∈ [N], if b[ℓ] = 0,

then the outcome of the NAM given bids v(ℓ)
will be the second

alternative, so uρ
(
v(ℓ)

)
= ϵ because there is always exactly one

agent who has a value of ϵ for the second alternative, and every

other agent has a value of 0. Meanwhile, if b[ℓ] = 0, then the

outcome of the NAM given bidsv(ℓ)
will be the first alternative, so

uρ
(
v(ℓ)

)
= 1 because there is always exactly one agent who has a

value of 1 for the first alternative, and every other agent has a value

of 0. To construct this parameter vector ρ, when b[ℓ] = 0, ρ must

ignore the values of agent ℓ in favor of the values of agent
n
2
+ ℓ.

After all, underv(ℓ)
, agent ℓ has a value of 1 for the first alternative

and agent
n
2
+ ℓ has a value of ϵ for the second alternative, and all

other values are 0. By a similar argument, when b[ℓ] = 1, ρ must

ignore the values of agent
n
2
+ ℓ in favor of the values of agent ℓ.

Specifically, we define ρ ∈ {0, 1}n as follows: for all ℓ ∈ [N] =
[n
2

]
,

if b[ℓ] = 0, then ρ[ℓ] = 0 and ρ
[n
2
+ ℓ

]
= 1 and if b[ℓ] = 1, then

ρ[ℓ] = 1 and ρ
[n
2
+ ℓ

]
= 0. All other entries of ρ are set to 0.

We claim that if b[ℓ] = 0, then uρ
(
v(ℓ)

)
= ϵ . To see why, we

know that

∑n
i=1 ρ[i]v

(ℓ)
i (1) = ρ[ℓ]v

(ℓ)
ℓ

(1) = ρ[ℓ] = 0. Meanwhile,∑n
i=1 ρ[i]v

(ℓ)
i (2) = ρ

[n
2
+ ℓ

]
v
(ℓ)
n
2
+ℓ
(1) = ϵ . Therefore, the outcome

of the NAM is the second alternative. The social welfare of this

alternative is ϵ , so uρ
(
v(ℓ)

)
= ϵ .

Next, we claim that if b[ℓ] = 1, then uρ
(
v(ℓ)

)
= 1. To see

why, we know that

∑n
i=1 ρ[i]v

(ℓ)
i (1) = ρ[ℓ]v

(ℓ)
ℓ

(1) = ρ[ℓ] = 1.

Meanwhile,

∑n
i=1 ρ[i]v

(ℓ)
i (2) = ρ

[n
2
+ ℓ

]
v
(ℓ)
n
2
+ℓ
(1) = 0. Therefore,

the NAM’s outcome is the first alternative. The social welfare of

this alternative is 1, so uρ
(
v(ℓ)

)
= 1.

We conclude that the valuation vectors v(1), . . . ,v(N)
that are

shattered by the set U of social welfare functions with witnesses

z1 = · · · = zN =
1

2
. □

Theorem 5.2 implies that the pseudo-dimension upper bound

from Lemma 5.1 is tight up to logarithmic factors.

6 SUBSUMPTION OF PRIOR RESEARCH ON
GENERALIZATION GUARANTEES

Theorem 3.3 also recovers existing guarantees for data-driven algo-

rithm design. In all of these cases, Theorem 3.3 implies generaliza-

tion guarantees that match the existing bounds, but in many cases,

our approach provides a more succinct proof.

(1) In the full version [7], we analyze several parameterized clus-

tering algorithms [10], which have piecewise-constant dual

functions. These algorithms first run a linkage routine which

builds a hierarchical tree of clusters. The parameters inter-

polate between the popular single, average, and complete

linkage. The linkage routine is followed by a dynamic pro-

gramming procedure that returns a clustering corresponding

to a pruning of the hierarchical tree.

(2) In the full version [7], we analyze two integer programming

algorithms, which have piecewise-constant and piecewise-

inverse-quadratic dual functions (as in Figure 3c). The first

is branch-and-bound, which is used by commercial solvers

such as CPLEX. Branch-and-bound always finds an optimal

solution and its parameters control runtime and memory us-

age. We also study semidefinite programming approximation

algorithms for integer quadratic programming. We analyze a

parameterized algorithm introduced by Feige and Langberg

[28] which includes the Goemans-Williamson algorithm [32]

as a special case. We recover previous generalization bounds

in both settings [8, 10].

How Much Data Is Sufficient to Learn High-Performing Algorithms? STOC ’21, June 21–25, 2021, Virtual, Italy

(3) Gupta and Roughgarden [38] introduced parameterized greedy

algorithms for the knapsack and maximum weight indepen-

dent set problems, which we show have piecewise-constant

dual functions. We recover their generalization bounds in

the full version [7].

(4) We provide generalization bounds for parameterized selling

mechanisms when the goal is to maximize revenue, which

have piecewise-linear dual functions (as in Figure 3b). A

long line of research has studied revenue maximization via

machine learning [6, 11, 18, 21, 23, 25, 33, 34, 37, 50, 51, 57,

58, 67]. In the full version [7], we recover Balcan, Sandholm,

and Vitercik’s generalization bounds [12] which apply to a

variety of pricing, auction, and lottery mechanisms. They

proved new bounds for mechanism classes not previously

studied in the sample-based mechanism design literature

and matched or improved over the best known guarantees

for many classes.

7 CONCLUSIONS
Weprovided a general sample complexity theorem for learning high-

performing algorithm configurations. Our bound applies whenever

a parameterized algorithm’s performance is a piecewise-structured

function of its parameters: for any fixed problem instance, boundary

functions partition the parameters into regions where performance

is a well-structured function. We proved this guarantee by exploit-

ing intricate connections between primal function classes (measur-

ing the algorithm’s performance as a function of its input) and dual

function classes (measuring the algorithm’s performance on a fixed

input as a function of its parameters). We demonstrated that many

parameterized algorithms exhibit this structure and thus our main

theorem implies sample complexity guarantees for a broad array

of algorithms and application domains.

A great direction for future research is to build on these ideas for

the sake of learning a portfolio of configurations, rather than a single
high-performing configuration. At runtime, machine learning is

used to determinewhich configuration in the portfolio to employ for

the given input. Gupta and Roughgarden [38] and Balcan et al. [15]

have provided initial results in this direction, but a general theory

of portfolio-based algorithm configuration is yet to be developed.

ACKNOWLEDGMENTS
This research is funded in part by the Gordon and Betty Moore

Foundation’s Data-Driven Discovery Initiative (GBMF4554 to C.K.),

the US National Institutes of Health (R01GM122935 to C.K.), the

US National Science Foundation (a Graduate Research Fellowship

to E.V., and grants IIS-1901403 to M.B. and T.S., IIS-1618714, CCF-

1535967, CCF-1910321, and SES-1919453 to M.B., IIS-1718457, IIS-

1617590, and CCF-1733556 to T.S., and DBI-1937540 to C.K.), the

US Army Research Office (W911NF-17-1-0082 and W911NF2010081

to T.S.), the Defense Advanced Research Projects Agency under

cooperative agreement HR00112020003 to M.B., an AWS Machine

Learning Research Award to M.B., an Amazon Research Award to

M.B., a Microsoft Research Faculty Fellowship to M.B., a Bloomberg

Research Grant to M.B., a fellowship from Carnegie Mellon Univer-

sity’s Center for Machine Learning and Health to E.V., and by the

generosity of Eric and Wendy Schmidt by recommendation of the

Schmidt Futures program.

REFERENCES
[1] Daniel Alabi, Adam Tauman Kalai, Katrina Ligett, Cameron Musco, Christos

Tzamos, and Ellen Vitercik. 2019. Learning to Prune: Speeding up Repeated

Computations. In Conference on Learning Theory (COLT).
[2] Patrick Assouad. 1983. Densité et dimension. Annales de l’Institut Fourier 33, 3

(1983), 233–282.

[3] Maria-Florina Balcan, Travis Dick, and Manuel Lang. 2020. Learning to Link. In

Proceedings of the International Conference on Learning Representations (ICLR).
[4] Maria-Florina Balcan, Travis Dick, and Wesley Pegden. 2020. Semi-bandit Opti-

mization in the Dispersed Setting. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence (UAI).

[5] Maria-Florina Balcan. 2020. Data-Driven Algorithm Design. In BeyondWorst Case
Analysis of Algorithms, Tim Roughgarden (Ed.). Cambridge University Press.

[6] Maria-Florina Balcan, Avrim Blum, Jason D Hartline, and Yishay Mansour. 2005.

Mechanism design via machine learning. In Proceedings of the Annual Symposium
on Foundations of Computer Science (FOCS). 605–614.

[7] Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sand-

holm, and Ellen Vitercik. 2021. How Much Data Is Sufficient to Learn High-

performing Algorithms? Generalization Guarantees for Data-driven Algorithm

Design. arXiv preprint arXiv:1908.02894 (2021).
[8] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. 2018.

Learning to Branch. International Conference on Machine Learning (ICML) (2018).
[9] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. 2018. Dispersion for

Data-Driven Algorithm Design, Online Learning, and Private Optimization. In

Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS).
[10] Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and ColinWhite. 2017.

Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial

Partitioning Problems. Conference on Learning Theory (COLT) (2017).
[11] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2016. Sample Com-

plexity of Automated Mechanism Design. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS).

[12] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2018. A General

Theory of Sample Complexity for Multi-Item Profit Maximization. In Proceedings
of the ACM Conference on Economics and Computation (EC). Extended abstract.

Full version available on arXiv with the same title.

[13] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2020. Learning to

Optimize Computational Resources: Frugal Training with Generalization Guar-

antees. AAAI Conference on Artificial Intelligence (AAAI) (2020).
[14] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2020. Refined

Bounds for Algorithm Configuration: The Knife-edge of Dual Class Approxima-

bility. In International Conference on Machine Learning (ICML).
[15] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2021. Generaliza-

tion in Portfolio-based Algorithm Selection. In AAAI Conference on Artificial
Intelligence (AAAI).

[16] Jon Louis Bentley, David S Johnson, Frank Thomson Leighton, Catherine C

McGeoch, and Lyle A McGeoch. 1984. Some unexpected expected behavior

results for bin packing. In Proceedings of the Annual Symposium on Theory of
Computing (STOC). 279–288.

[17] Avrim Blum, Chen Dan, and Saeed Seddighin. 2020. Learning Complexity of

Simulated Annealing. In International Conference on Artificial Intelligence and
Statistics (AISTATS).

[18] Yang Cai and Constantinos Daskalakis. 2017. Learning Multi-item Auctions with

(or without) Samples. In Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS).

[19] Shuchi Chawla, Evangelia Gergatsouli, Yifeng Teng, Christos Tzamos, and Ruimin

Zhang. 2020. Pandora’s Box with Correlations: Learning and Approximation. In

Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS).
[20] Ed H. Clarke. 1971. Multipart pricing of public goods. Public Choice 11 (1971),

17–33.

[21] Richard Cole and Tim Roughgarden. 2014. The sample complexity of revenue

maximization. In Proceedings of the Annual Symposium on Theory of Computing
(STOC).

[22] Dan DeBlasio and John D Kececioglu. 2018. Parameter Advising for Multiple
Sequence Alignment. Springer.

[23] Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. 2016. The

Sample Complexity of Auctions with Side Information. In Proceedings of the
Annual Symposium on Theory of Computing (STOC).

[24] Robert C Edgar. 2010. Quality measures for protein alignment benchmarks.

Nucleic acids research 38, 7 (2010), 2145–2153.

[25] Edith Elkind. 2007. Designing and learning optimal finite support auctions. In

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
[26] Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. 2020.

Learning Augmented Energy Minimization via Speed Scaling. In Proceedings of

STOC ’21, June 21–25, 2021, Virtual, Italy Balcan, DeBlasio, Dick, Kingsford, Sandholm, and Vitercik

the Annual Conference on Neural Information Processing Systems (NeurIPS).
[27] Étienne Bamas, Andreas Maggiori, and Ola Svensson. 2020. The Primal-Dual

method for Learning Augmented Algorithms. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems (NeurIPS).

[28] Uriel Feige and Michael Langberg. 2006. The RPR
2
rounding technique for

semidefinite programs. Journal of Algorithms 60, 1 (2006), 1–23.
[29] David Fernández-Baca, Timo Seppäläinen, and Giora Slutzki. 2004. Parametric

multiple sequence alignment and phylogeny construction. Journal of Discrete
Algorithms 2, 2 (2004), 271–287.

[30] Darya Filippova, Rob Patro, Geet Duggal, and Carl Kingsford. 2014. Identification

of alternative topological domains in chromatin. Algorithms for Molecular Biology
9 (May 2014), 14. Issue 1.

[31] Vikas Garg and Adam Kalai. 2018. Supervising Unsupervised Learning. In

Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS).

[32] Michel X Goemans and David P Williamson. 1995. Improved approximation

algorithms for maximum cut and satisfiability problems using semidefinite pro-

gramming. Journal of the ACM (JACM) 42, 6 (1995), 1115–1145.
[33] Yannai A Gonczarowski and Noam Nisan. 2017. Efficient empirical revenue

maximization in single-parameter auction environments. In Proceedings of the
Annual Symposium on Theory of Computing (STOC). 856–868.

[34] Yannai A Gonczarowski and S Matthew Weinberg. 2018. The Sample Complex-

ity of Up-to-ε Multi-Dimensional Revenue Maximization. In Proceedings of the
Annual Symposium on Foundations of Computer Science (FOCS).

[35] Osamu Gotoh. 1982. An improved algorithm for matching biological sequences.

Journal of Molecular Biology 162, 3 (1982), 705 – 708.

[36] Theodore Groves. 1973. Incentives in Teams. Econometrica 41 (1973), 617–631.
[37] Chenghao Guo, Zhiyi Huang, and Xinzhi Zhang. 2019. Settling the sample

complexity of single-parameter revenue maximization. Proceedings of the Annual
Symposium on Theory of Computing (STOC) (2019).

[38] Rishi Gupta and Tim Roughgarden. 2017. A PAC approach to application-specific

algorithm selection. SIAM J. Comput. 46, 3 (2017), 992–1017.
[39] Dan Gusfield, Krishnan Balasubramanian, and Dalit Naor. 1994. Parametric

optimization of sequence alignment. Algorithmica 12, 4-5 (1994), 312–326.
[40] Robert W. Holley, Jean Apgar, George A. Everett, James T. Madison, Mark Mar-

quisee, Susan H. Merrill, John Robert Penswick, and Ada Zamir. 1965. Structure

of a Ribonucleic Acid. Science 147, 3664 (1965), 1462–1465.
[41] Eric Horvitz, Yongshao Ruan, Carla Gomez, Henry Kautz, Bart Selman, and

Max Chickering. 2001. A Bayesian Approach to Tackling Hard Computational

Problems. In Proceedings of the Conference on Uncertainty in Artificial Intelligence
(UAI).

[42] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. 2019. Learning-based

frequency estimation algorithms. In Proceedings of the International Conference
on Learning Representations (ICLR).

[43] Frank Hutter, Holger Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009.

ParamILS: An automatic algorithm configuration framework. Journal of Artificial
Intelligence Research 36, 1 (2009), 267–306.

[44] Raj Iyer, David Karger, Hariharan Rahul, and Mikkel Thorup. 2002. An Experi-

mental Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms. ACM
Journal of Experimental Algorithmics 6 (Dec. 2002), 4–es.

[45] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. 2010. ISAC-

Instance-Specific Algorithm Configuration.. In Proceedings of the European Con-
ference on Artificial Intelligence (ECAI).

[46] Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. 2017. Efficiency

Through Procrastination: Approximately Optimal Algorithm Configuration with

Runtime Guarantees. In Proceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI).

[47] Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, and Devon Graham. 2019.

Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm

Configuration. Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS) (2019).

[48] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. 2009. Empirical

hardness models: Methodology and a case study on combinatorial auctions. J.
ACM 56, 4 (2009), 1–52.

[49] Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev,

Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O.

Dorschner, Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark Groudine,

Andreas Gnirke, John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lander, and

Job Dekker. 2009. Comprehensive Mapping of Long-Range Interactions Reveals

Folding Principles of the Human Genome. Science 326, 5950 (2009), 289–293.

https://doi.org/10.1126/science.1181369

[50] Anton Likhodedov and Tuomas Sandholm. 2004. Methods for Boosting Revenue

in Combinatorial Auctions. In Proceedings of the National Conference on Artificial
Intelligence (AAAI). San Jose, CA, 232–237.

[51] Anton Likhodedov and Tuomas Sandholm. 2005. Approximating Revenue-

Maximizing Combinatorial Auctions. In Proceedings of the National Conference
on Artificial Intelligence (AAAI). Pittsburgh, PA.

[52] Darío G Lupiáñez, Malte Spielmann, and Stefan Mundlos. 2016. Breaking TADs:

how alterations of chromatin domains result in disease. Trends in Genetics 32, 4
(2016), 225–237.

[53] Thodoris Lykouris and Sergei Vassilvitskii. 2018. Competitive caching with

machine learned advice. In International Conference on Machine Learning (ICML).
[54] Catherine C McGeoch. 2012. A guide to experimental algorithmics. Cambridge

University Press.

[55] Debasis Mishra and Arunava Sen. 2012. Roberts’ Theorem with neutrality: A

social welfare ordering approach. Games and Economic Behavior 75, 1 (2012),
283–298.

[56] Michael Mitzenmacher. 2018. A model for learned bloom filters and optimizing

by sandwiching. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS). 464–473.

[57] Mehryar Mohri and Andrés Muñoz. 2014. Learning Theory and Algorithms

for revenue optimization in second price auctions with reserve. In International
Conference on Machine Learning (ICML).

[58] Jamie Morgenstern and Tim Roughgarden. 2016. Learning Simple Auctions. In

Conference on Learning Theory (COLT).
[59] Swaprava Nath and Tuomas Sandholm. 2019. Efficiency and budget balance in

general quasi-linear domains. Games and Economic Behavior 113 (2019), 673 –
693.

[60] Ruth Nussinov and Ann B Jacobson. 1980. Fast algorithm for predicting the

secondary structure of single-stranded RNA. Proceedings of the National Academy
of Sciences 77, 11 (1980), 6309–6313.

[61] Lior Pachter and Bernd Sturmfels. 2004. Parametric inference for biological

sequence analysis. Proceedings of the National Academy of Sciences 101, 46 (2004),
16138–16143. https://doi.org/10.1073/pnas.0406011101

[62] Lior Pachter and Bernd Sturmfels. 2004. Tropical geometry of statistical models.

Proceedings of the National Academy of Sciences 101, 46 (2004), 16132–16137.

https://doi.org/10.1073/pnas.0406010101

[63] David Pollard. 1984. Convergence of Stochastic Processes. Springer.
[64] Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving online algo-

rithms via ML predictions. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS). 9661–9670.

[65] Kevin Roberts. 1979. The characterization of implementable social choice rules.

In Aggregation and Revelation of Preferences, J-J Laffont (Ed.). North-Holland
Publishing Company.

[66] Tuomas Sandholm. 2013. Very-Large-Scale Generalized Combinatorial Multi-

Attribute Auctions: Lessons fromConducting $60 Billion of Sourcing. InHandbook
of Market Design, Zvika Neeman, Alvin Roth, and Nir Vulkan (Eds.). Oxford

University Press.

[67] Tuomas Sandholm and Anton Likhodedov. 2015. Automated Design of Revenue-

Maximizing Combinatorial Auctions. Operations Research 63, 5 (2015), 1000–1025.

Special issue on Computational Economics. Subsumes and extends over a AAAI-

05 paper and a AAAI-04 paper.

[68] J. Michael Sauder, Jonathan W. Arthur, and Roland L. Dunbrack Jr. 2000. Large-

scale comparison of protein sequence alignment algorithms with structure align-

ments. Proteins: Structure, Function, and Bioinformatics 40, 1 (2000), 6–22.
[69] Norbert Sauer. 1972. On the density of families of sets. Journal of Combinatorial

Theory, Series A 13, 1 (1972), 145–147.

[70] Vladimir Vapnik and Alexey Chervonenkis. 1971. On the uniform convergence

of relative frequencies of events to their probabilities. Theory of Probability and
its Applications 16, 2 (1971), 264–280.

[71] William Vickrey. 1961. Counterspeculation, Auctions, and Competitive Sealed

Tenders. Journal of Finance 16 (1961), 8–37.
[72] Michael SWaterman, Temple F Smith, andWilliamA Beyer. 1976. Some biological

sequence metrics. Advances in Mathematics 20, 3 (1976), 367–387.
[73] Alexander Wei and Fred Zhang. 2020. Optimal Robustness-Consistency Trade-

offs for Learning-Augmented Online Algorithms. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS).

[74] Gellért Weisz, András György, and Csaba Szepesvári. 2018. LeapsAndBounds:

A Method for Approximately Optimal Algorithm Configuration. In International
Conference on Machine Learning (ICML).

[75] Gellért Weisz, András György, and Csaba Szepesvári. 2019. CapsAndRuns:

An improved method for approximately optimal algorithm configuration. In

International Conference on Machine Learning (ICML).
[76] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2008. SATzilla:

portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence
Research 32, 1 (2008), 565–606.

[77] Lin Xu, Frank Hutter, Holger HHoos, and Kevin Leyton-Brown. 2011. Hydra-MIP:

Automated algorithm configuration and selection for mixed integer programming.

In RCRA workshop on Experimental Evaluation of Algorithms for Solving Problems
with Combinatorial Explosion at the International Joint Conference on Artificial
Intelligence (IJCAI).

https://doi.org/10.1126/science.1181369
https://doi.org/10.1073/pnas.0406011101
https://doi.org/10.1073/pnas.0406010101

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Additional related research

	2 Notation and problem statement
	3 Generalization guarantees for data-driven algorithm design
	4 Parameterized computational biology algorithms
	4.1 Global pairwise sequence alignment
	4.2 RNA folding
	4.3 Topologically associating domains

	5 Parameterized voting mechanisms
	6 Subsumption of prior research on generalization guarantees
	7 Conclusions
	Acknowledgments
	References

