How much data is sufficient to learn high-performing algorithms?

Generalization guarantees for data-driven algorithm design

Nina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, Ellen Vitercik

Data-driven algorithm design

Algorithms often have many tunable parameters Significant impact on runtime, solution quality, ...

Hand-tuning is time-consuming, tedious, and error prone

Goal: Automate algorithm configuration via machine learning

Input: *Training set* of typical problem instances from application at hand

Sampled from unknown, application-specific distribution

Output: Configuration with strong average empirical performance on training set

Runtime, solution quality, etc.

Parameter setting should-ideally-be good on future inputs

Summary of contributions

Broadly applicable theory for deriving *generalization bounds*:

Algorithm's **average** performance on training set

Algorithm's **expected** performance on unknown distribution

Prior research proved generalization bounds case-by-case

Gupta, Roughgarden, ITCS'16; Balcan, Nagarajan, V, White, COLT'17; Balcan, Dick, Sandholm, V, ICML'18; Balcan, Dick, White, NeurlPS'18; Balcan, Dick, Lang, ICLR'20; ...

configuration

Selling configuration

Greedy algorithm configuration

X

Voting

mechanism configuration

Recover bounds

Prove **novel** bounds

We uncover overarching structure linking these seemingly disparate domains

Guarantees apply to any parameterized algorithm where: Performance is a *piecewise-structured* function of parameters

Piecewise constant

Piecewise linear

Piecewise ...

Additional references

- Book chapter by Balcan [Cambridge University Press '20]
- Online algorithm configuration: Exploited that the dual functions are piecewise Lipschitz to provide regret bounds [Balcan, Dick, V, FOCS'18; Balcan, Dick, Pegden, UAI'20; Balcan, Dick, Sharma, AISTATS'20]

Primary challenge

Performance is a volatile function of parameters Complex connection between parameters and performance

Meanwhile, for well-understood functions in machine learning theory: Simple connection between function parameters and value

Running example: Sequence alignment

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \geq 0$: Return alignment maximizing: (# matches) $-\rho_1 \cdot$ (# mismatches) $-\rho_2 \cdot$ (# indels) $-\rho_3 \cdot$ (# gaps)

"There is considerable disagreement among molecular biologists about the **correct choice** [of ρ] " [Gusfield et al. '94]

Model and problem formulation

 \mathbb{R}^d : Set of all parameters

 \mathcal{X} : Set of all inputs (e.g., sequence pairs)

 $u_{\rho}(x)$ = utility of algorithm parameterized by $\rho \in \mathbb{R}^d$ on input x Runtime, solution quality, ...

Assume $u_{\rho}(x) \in [-1,1]$

Standard assumption: Unknown distribution \mathcal{D} over inputs Models specific application domain at hand

Generalization bound: Given samples $x_1, ..., x_N \sim \mathcal{D}$, for any ρ ,

$$\left| \frac{1}{N} \sum_{i=1}^{N} u_{\rho}(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [u_{\rho}(x)] \right| \leq \frac{2}{N}$$

Empirical average utility

Expected utility

Main result

 $\mathcal{U} = \{ u_{\boldsymbol{\rho}} : \mathcal{X} \to \mathbb{R} \mid \boldsymbol{\rho} \in \mathbb{R}^d \}$ "Primal" function class

Typically, prove generalization guarantees by bounding the $\emph{complexity}$ of $\mathcal U$

VC dimension, Rademacher complexity, ...

Challenge: \mathcal{U} is gnarly. E.g., in sequence alignment:

- Each domain element is a pair of sequences
- Unclear how to plot/visualize functions $u_{
 ho}$
- No obvious notions of Lipschitzness or smoothness to rely on

This is where dual functions come in handy!

 $u_x^*(\boldsymbol{\rho}) = \text{utility as function of parameters}$

 $u_x^*(\boldsymbol{\rho}) = u_{\boldsymbol{\rho}}(x)$

$$\mathcal{U}^* = \{u_x^* : \mathbb{R}^d \to \mathbb{R} \mid x \in \mathcal{X}\}$$
 "Dual" function class

Across algorithm configuration, ubiquitously, the duals are *piecewise-structured*

Theorem

Lemma: Given k boundaries, how many sign patterns do they make?

$$\left| \left\{ \begin{pmatrix} g_1(\boldsymbol{\rho}) \\ \vdots \\ g_k(\boldsymbol{\rho}) \end{pmatrix} : \boldsymbol{\rho} \in \mathbb{R}^d \right\} \right| \leq (ek)^{\text{VCdim}(\mathcal{G}^*)}$$

Proof idea: Transition to dual and apply Sauer's lemma: for any $ho_1, ...,
ho_k$

$$\left| \left\{ \begin{pmatrix} g(\boldsymbol{\rho}_1) \\ \vdots \\ g(\boldsymbol{\rho}_k) \end{pmatrix} : g \in \mathcal{G} \right\} \right| \leq (ek)^{\text{VCdim}(\mathcal{G})}$$

Example application: Sequence alignment

With high probability, for any $\rho \in \mathbb{R}^3$,

| avg utility on training set – expected utility| =
$$\tilde{O}\left(\sqrt{\frac{\ln(\text{seq. length})}{N}}\right)$$

Distance between algorithm's output and ground-truth alignment