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Data-driven algorithm design
Algorithms often have many tunable parameters

Significant impact on runtime, solution quality, …

Hand-tuning is time-consuming, tedious, and error prone

Goal: Automate algorithm configuration via machine learning
Input: Training set of typical problem instances from application at hand

Output: Configuration with strong average empirical performance on training set

Parameter setting should—ideally—be good on future inputs

Summary of contributions
Broadly applicable theory for deriving generalization bounds:

Main result
𝒰 = 𝑢𝝆: 𝒳 → ℝ 𝝆 ∈ ℝ" “Primal” function class

Typically, prove generalization guarantees by bounding the complexity of 𝒰

Challenge: 𝒰 is gnarly. E.g., in sequence alignment:
• Each domain element is a pair of sequences
• Unclear how to plot/visualize functions 𝑢𝝆
• No obvious notions of Lipschitzness or smoothness to rely on

This is where dual functions come in handy!
𝑢#∗ 𝝆 = utility as function of parameters
𝑢#∗ 𝝆 = 𝑢𝝆 𝑥
𝒰∗ = 𝑢#∗ : ℝ" → ℝ 𝑥 ∈ 𝒳 “Dual” function class

Across algorithm configuration, ubiquitously, the duals are piecewise-structured

With high probability, for all 𝝆:

|Average utility on training set – expected utility| = +𝑂 𝒫&'() ℱ∗ +,-&'() 𝒢∗ /0 1
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Example application: Sequence alignment
With high probability, for any 𝝆 ∈ ℝ3,

|avg utility on training set – expected utility| = +𝑂 /0(567. /609:;)
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Algorithm’s average performance 
on training set

Algorithm’s expected performance 
on unknown distribution ≤ ?

Prior research proved generalization bounds case-by-case
Gupta, Roughgarden, ITCS’16; Balcan, Nagarajan, V, White, COLT’17; Balcan, Dick, 
Sandholm, V, ICML’18; Balcan, Dick, White, NeurIPS’18; Balcan, Dick, Lang, ICLR’20; …
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We uncover overarching structure linking these seemingly disparate domains

Guarantees apply to any parameterized algorithm where:
Performance is a piecewise-structured function of parameters

𝜌=

𝜌>

Piecewise constant Piecewise linear Piecewise …

Sampled from unknown, application-specific distribution

Runtime, solution quality, etc.

Running example: Sequence alignment

𝑔 ∈ 𝒢

𝑓 ∈ ℱ𝜌>

𝑢#∗(𝝆) Training set size

# boundary functions

𝜌=

Distance between algorithm’s output and ground-truth alignment

Theorem

Model and problem formulation
ℝ": Set of all parameters
𝒳: Set of all inputs (e.g., sequence pairs)

𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ" on input 𝑥
Runtime, solution quality, …

Assume 𝑢𝝆 𝑥 ∈ −1,1

Standard assumption: Unknown distribution 𝒟 over inputs
Models specific application domain at hand

Generalization bound: Given samples 𝑥=, … , 𝑥2~𝒟, for any 𝝆,
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𝑢𝝆 𝑥? − 𝔼#~𝒟 𝑢𝝆 𝑥 ≤ ?
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Standard algorithm with parameters 𝜌=, 𝜌>, 𝜌3 ≥ 0:
Return alignment maximizing:
(# matches)− 𝜌= A (# mismatches) − 𝜌> A (# indels) − 𝜌3 A (# gaps)

“There is considerable disagreement among molecular biologists 
about the correct choice [of 𝝆] ” [Gusfield et al. ’94]

Primary challenge
Performance is a volatile function of parameters

Complex connection between parameters and performance

Performance

𝜌

Meanwhile, for well-understood functions in machine learning theory:
Simple connection between function parameters and value

VC dimension, Rademacher complexity, …

Lemma: Given 𝑘 boundaries, how many sign patterns do they make?
𝑔= 𝝆
⋮

𝑔1 𝝆
: 𝝆 ∈ ℝ" ≤ (𝑒𝑘),-'() 𝒢∗

Proof idea: Transition to dual and apply Sauer’s lemma: for any 𝝆=, … , 𝝆1
𝑔 𝝆=
⋮

𝑔 𝝆1
: 𝑔 ∈ 𝒢 ≤ 𝑒𝑘 ,-'() 𝒢 .
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Additional references
• Book chapter by Balcan [Cambridge University Press ‘20]
• Online algorithm configuration:

Exploited that the dual functions are piecewise Lipschitz to provide regret bounds
[Balcan, Dick, V, FOCS’18; Balcan, Dick, Pegden, UAI’20; Balcan, Dick, Sharma, AISTATS’20]


