A General Theory of Sample Complexity for Multi-Item Revenue Maximization

Ellen Vitercik
Computer Science Department, CMU

Joint work with Nina Balcan and Tuomas Sandholm

China Theory Week 2018

Amazon's profit swells to \$1.6 billion [NY Times '18]

Departments -Best Seller

Your Amazon.com Today's Deals G Showing most relevant results. See all results for economic The Essentia HAYEK by Donald J. Boud Kindle Edition \$000 Get it TODAY, Jur Paperback \$4999 prime FREE Shipping on Only 1 left in stoo More Buying Cho \$35.62 (3 used 8 "Trickle Dow

by Thomas Sowel

Get it TODAY, Jur

Kindle Edition

\$ 1 63

by John Maynard Kindle Edition

The General

\$199 Get it TODAY, Jur

Kindle Edition \$100

Get it TODAY, Jur Other Formats: P

The Wealth by Adam Smith

Kindle Edition \$199

Bidding in government auction of airwaves reaches \$34 billion [NYTimes '14]

	Ad	Total	
	revenue in 2016	revenue in 2016	
Google	\$79 billion	\$89.46 billion	
Facebook	\$27 billion	\$27.64 billion	

Beijing | expedia.com

https://www.expedia.com/beijing/book -

Ad More Choices in Great Locations. Book Your **Beijing** Bundle flight + hotel & save 100% off your flight. Expedia fexpedia.com has been visited by 1M+ users in the past me Expedia's Price Guarantee · Daily Deals up to 40% Off · N

Types: Boutique Hotels, Economy Hotels, Luxury Hotels,

Translator Agency Beijing

www.beijingtranslator1.com -

Ad Provide high-quality business translation and China to

Beijing - Wikipedia

https://en.wikipedia.org/wiki/Beijing •

Country: People's Republic of China

Elevation: 43.5 m (142.7 ft) **Pos**

Postal code: 100

Established date

w Contents

Etymology

Beijing, formerly romanized as Peking, is the capital of the most populous city proper, and most populous capital city. governed as a municipality under the direct administration suburban, and rural districts. Beijing Municipality is surrounneighboring Tianjin Municipality to the southeast; together

See more on en.wikipedia.org · Text under CC-BY-SA lice

Common misconception: There's only one way to hold an auction.

There are infinitely-many ways to hold an auction.

Mechanism design for sales settings

There is a set of items for sale and a set of buyers.

At a high level, a mechanism dictates:

- I. Which buyers receive which items.
- 2. What they pay.

Mechanism design example: Posted price mechanisms

Set price per item.

Buyers buy the items maximizing their utility (value for items minus price).

Mechanism design example: Second-price auction

The highest bidder wins and pays the second highest bid.

Mechanism design example: Second-price auction with a reserve

Auctioneer sets reserve price p.

Highest bidder wins if bid $\geq p$. Pays maximum of second highest bid and p.

Reserve price: \$8 Revenue = \$8

Reserve price: \$6 Revenue = \$7

How to choose the reserve price?

This talk:

How can we use machine learning to design auctions with high revenue?

Booming area of economics and computer science

E.g., Likhodedov and Sandholm, AAAI'04, AAAI'05; Balcan, Blum, Hartline, and Mansour, FOCS'05; Elkind, SODA'07; Dhangwatnotai, Roughgarden, and Yan, EC'10; Mohri and Medina, ICML'14; Cole and Roughgarden STOC'14; Morgenstern and Roughgarden, COLT'16; Cai and Daskalakis FOCS'17; ...

Helps overcome traditional, manual approaches to mechanism design

The revenue-maximizing auction is not known even when there are just two buyers and two items!

Outline

- I. Introduction
- 2. Background
- 3. Machine learning for mechanism design
- 4. Conclusion

Notation

There are m items and n buyers.

Each buyer i has a value $v_i(b) \in \mathbb{R}$ for each bundle $b \subseteq [m]$.

Let $v_i = (v_i(b_1), ..., v_i(b_{2^m}))$ for all $b_1, ..., b_{2^m} \subseteq [m]$.

Example

Items =
$$\{ \mathbf{g}, \mathbf{m} \}$$

$$v_i(\emptyset) = 0$$

$$v_i(\mathbf{\Xi}) = 2 \qquad v_i(\mathbf{\oplus}) = 3$$

$$v_i(\clubsuit) = 3$$

$$v_i$$
 (Ξ, \clubsuit) = 6

$$\boldsymbol{v}_i = \left(v_i(\emptyset), v_i(\Xi), v_i(\Xi), v_i(\Xi, \boldsymbol{\oplus})\right)$$

Notation

There are m items and n buyers.

Each buyer i has a value $v_i(b) \in \mathbb{R}$ for each bundle $b \subseteq [m]$.

Let $v_i = (v_i(b_1), ..., v_i(b_{2^m}))$ for all $b_1, ..., b_{2^m} \subseteq [m]$.

Example

Items =
$$\{ \mathbf{g}, \mathbf{m} \}$$

$$v_i(\emptyset) = 0$$

$$v_i(\mathfrak{T}) = 2 \qquad \qquad v_i(\mathfrak{T}) = 3$$

$$v_i(\clubsuit) = 3$$

$$v_i \left(\mathbf{\Xi}, \mathbf{\oplus} \right) = 6$$

Classical mechanism design

Standard assumption

A buyer's valuations are defined by a probability **distribution** over all the possible valuations she might have for all bundles of goods.

The mechanism designer knows this distribution.

Example

$$(v_1, ..., v_n) \sim \mathcal{D}$$
, where $v_i = [v_i(\emptyset), v_i(\Xi), v_i(\Xi), v_i(\Xi)]$

Where does this information come from?

Outline

- I. Introduction
- 2. Background
- 3. Machine learning for mechanism design
- 4. Conclusion

Goal: Given mechanism family \mathcal{M} and set of buyers' values sampled from unknown distribution \mathcal{D} , find mechanism with high expected revenue

- Large family \mathcal{M} of parametrized mechanisms (E.g., 2^{nd} -price auctions w/ reserves or posted price mechanisms)
- Set of buyers' values sampled from unknown distribution ${\cal D}$

2nd price auctions with reserves:

Sample I				
v ₁ (2)	v ₂ (2)	•••	$v_n(\Xi)$	

Goal: Given mechanism family \mathcal{M} and set of buyers' values sampled from unknown distribution \mathcal{D} , find mechanism with high expected revenue

- Large family \mathcal{M} of parametrized mechanisms (E.g., 2^{nd} -price auctions w/ reserves or posted price mechanisms)
- Set of buyers' values sampled from unknown distribution ${oldsymbol{\mathcal{D}}}$

Posted price mechanisms:

Sample I			
v ₁ (2)		$v_n(\Xi)$	
v_1	•••	v_n (\clubsuit)	
v ₁ (₹ ♦)		$v_n(\mathbf{\overline{z}} \mathbf{\bullet})$	

Goal: Given mechanism family \mathcal{M} and set of buyers' values sampled from unknown distribution \mathcal{D} , find mechanism with high expected revenue

Approach: Find \widehat{M} (nearly) optimal mechanism over the set of samples.

Goal: Given mechanism family \mathcal{M} and set of buyers' values sampled from unknown distribution \mathcal{D} , find mechanism with high expected revenue

Approach: Find \widehat{M} (nearly) optimal mechanism over the set of samples.

Key question: Will \widehat{M} have high expected revenue?

Will \widehat{M} have high revenue over \mathcal{D} ?

Goal: Given mechanism family \mathcal{M} and set of buyers' values sampled from unknown distribution \mathcal{D} , find mechanism with high expected revenue

Approach: Find \widehat{M} (nearly) optimal mechanism over the set of samples

Key question: Will \widehat{M} have high expected revenue?

Technical tool: uniform convergence

For any mechanism in class \mathcal{M} , average revenue over samples close to its expected revenue

Implies \widehat{M} has high expected revenue

Goal: Given mechanism family \mathcal{M} and set of buyers' values sampled from unknown distribution \mathcal{D} , find mechanism with high expected revenue

Approach: Find \widehat{M} (nearly) optimal mechanism over the set of samples

Key question: Will \widehat{M} have high expected revenue?

Technical tool: uniform convergence

Learning theory: $N = \tilde{O}(\dim(\mathcal{M})/\epsilon^2)$ samples suffice for ϵ -close

Challenge: Analyze $\dim(\mathcal{M})$ for complex combinatorial, modular mechanisms

Goal: Given mechanism family \mathcal{M} and set of buyers' values sampled from unknown distribution \mathcal{D} , find mechanism with high expected revenue

Learning theory: $N = \tilde{O}(\dim(\mathcal{M})/\epsilon^2)$ samples suffice for ϵ -close

Our results:

General way to bound $\dim(\mathcal{M})$ for any mechanism class satisfying **key** structural property: revenue is piecewise linear function of class's parameters

Many applications to multi-item, multi-buyer scenarios

Second-price auctions with reserves, posted price mechanisms, two-part tariffs, parameterized VCG mechanisms, etc.

Outline

- I. Introduction
- 2. Background
- 3. Machine learning for mechanism design
 - a. Learning theory tools
 - b. Simple example
 - c. General theory
 - d. Applications of general theory
- 4. Conclusion

Complexity measure characterizing the sample complexity of **binary-valued** function classes

(Classes of functions
$$h: \mathcal{X} \to \{-1,1\}$$
)

E.g., linear separators

VC-dimension of a function class $\mathcal{H} = \{h : \mathcal{X} \to \{-1,1\}\}$ is the cardinality of the largest set $\mathcal{S} \subseteq \mathcal{X}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{H} .

Example: $\mathcal{H} = \text{Linear separators in } \mathbb{R}^2$. $VCdim(\mathcal{H}) \geq 3$.

VC-dimension of a function class $\mathcal{H} = \{h: \mathcal{X} \to \{-1,1\}\}$ is the cardinality of the largest set $S \subseteq \mathcal{X}$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{H} .

Example: $\mathcal{H} = \text{Linear separators in } \mathbb{R}^2$. $VCdim(\mathcal{H}) \geq 3$.

 $VCdim(\{Linear separators in \mathbb{R}^d\}) = d + 1.$

VC-dimension of a function class $\mathcal{H} = \{h : \mathcal{X} \to \{-1,1\}\}$ is the cardinality of the largest set $S \subseteq \mathcal{X}$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{H} .

Theorem [Vapnik and Chervonenkis, '71]

For any $\epsilon \in (0,1)$ and any distribution \mathcal{D} over \mathcal{X} , with high probability over the draw of $N = \widetilde{\Theta}\left(\frac{\operatorname{VCdim}(\mathcal{H})}{\epsilon^2}\right)$ samples $\{x_1, \dots, x_N\} \sim \mathcal{D}^N$, for all $h \in \mathcal{H}$,

$$\left| \mathbb{E}_{x \sim \mathcal{D}}[h(x)] - \frac{1}{N} \sum_{i=1}^{N} h(x_i) \right| \le \epsilon.$$

What about real-valued functions?

Pseudo-dimension

Complexity measure characterizing the sample complexity of **real-valued** function classes

(Classes of functions $f: \mathcal{X} \to [0,1]$)

E.g., affine functions

Pseudo-dimension

The **pseudo-dimension** of a class $\mathcal{F} = \{f : \mathcal{X} \to [0,1]\}$ is the cardinality of the largest set $\mathcal{S} = \{x_1, ..., x_N\} \subseteq \mathcal{X}$ s.t. for some thresholds $y_1, ..., y_N \in \mathbb{R}$, all 2^N above/below binary patterns can be achieved by functions $f \in \mathcal{F}$.

Example: $\mathcal{F} = Affine functions in \mathbb{R}$.

 $Pdim(\mathcal{F}) \geq 2$.

Pseudo-dimension

The **pseudo-dimension** of a class $\mathcal{F} = \{f : \mathcal{X} \to [0,1]\}$ is the cardinality of the largest set $\mathcal{S} = \{x_1, ..., x_N\} \subseteq \mathcal{X}$ s.t. for some thresholds $y_1, ..., y_N \in \mathbb{R}$, all 2^N above/below binary patterns can be achieved by functions $f \in \mathcal{F}$.

Theorem [Pollard, 1984]

For any $\epsilon \in (0,1)$ and any distribution \mathcal{D} over \mathcal{X} , with high probability over the draw of $N = \widetilde{\Theta}\left(\frac{\operatorname{Pdim}(\mathcal{F})}{\epsilon^2}\right)$ samples $\{x_1, \dots, x_N\} \sim \mathcal{D}^N$, for all $f \in \mathcal{F}$,

$$\left| \mathbb{E}_{x \sim \mathcal{D}}[f(x)] - \frac{1}{N} \sum_{i=1}^{N} f(x_i) \right| \le \epsilon.$$

Outline

- I. Introduction
- 2. Background
- 3. Machine learning for mechanism design
 - a. Learning theory tools
 - b. Simple example
 - c. General theory
 - d. Applications of general theory
- 4. Conclusion

Example: P-dim of 2nd-price auctions with reserves

2nd-price auction with a reserve

- Auctioneer sets reserve price p
- Highest bidder wins if bid $\geq p$. Pays maximum of second highest bid and p

Claim

For a fixed set of bids, revenue is a piecewise linear function of the reserve.

Example: P-dim of 2nd-price auctions with reserves

Theorem [Mohri-Medina'14; Morgenstern-Roughgarden'16; Balcan-Sandholm-V.'18]

 $\mathcal{M} = \{ \operatorname{rev}_p \coloneqq \operatorname{revenue} \text{ of } 2^{\operatorname{nd}} \text{-price auction with reserve } p \}. \operatorname{Pdim}(\mathcal{M}) \leq 2.$

Key idea: Consider some valuation vector \boldsymbol{v} and revenue-threshold \boldsymbol{y} .

- Ranging p from 0 to ∞ , will be (at most) two cutoff values c_1, c_2 where revenue goes from "below" to "above" to "below"
- With N examples, look at all 2N cutoff values
- All p in same interval between consecutive cutoff values will give same binary pattern
- So, at most 2N + 1 binary patterns
- Pseudo-dimension is max N s.t. all 2^N binary above/below patterns are achievable
 - \circ Need $2^N \leq 2N+1$, so $N \leq 2$

Outline

- I. Introduction
- 2. Background
- 3. Machine learning for mechanism design
 - a. Learning theory tools
 - b. Simple example
 - c. General theory
 - d. Applications of general theory
- 4. Conclusion

Theorem

Suppose:

I. The mechanism class \mathcal{M} is parameterized by vectors $oldsymbol{p} \in \mathbb{R}^d$

For example,
$$p = \left(\text{price} \left(\begin{array}{c} \bullet \end{array} \right), \text{price} \left(\begin{array}{c} \bullet \end{array} \right) \right)$$

Theorem

Suppose:

- I. The mechanism class ${\mathcal M}$ is parameterized by vectors ${m p} \in {\mathbb R}^d$
- 2. For every set v of buyers' values, a set of $\leq t$ hyperplanes partition \mathbb{R}^d such that in every cell of this partition, revenue v(p) is linear

In this example, d = 2 and t = 5.

Theorem

Suppose:

- I. The mechanism class ${\mathcal M}$ is parameterized by vectors ${m p} \in {\mathbb R}^d$
- 2. For every set v of buyers' values, a set of $\leq t$ hyperplanes partition \mathbb{R}^d such that in every cell of this partition, revenue v(p) is linear

Then $Pdim(\mathcal{M}) = O(\mathbf{d} \log(\mathbf{dt})).$

Corollary

Suppose:

- I. The mechanism class \mathcal{M} is parameterized by vectors $\boldsymbol{p} \in \mathbb{R}^d$
- 2. For every set v of buyers' values, a set of $\leq t$ hyperplanes partition \mathbb{R}^d such that in every cell of this partition, revenue v(p) is linear

For any $\epsilon \in (0,1)$, with high probability over the draw of $N = \widetilde{\Theta}\left(\frac{d \log(dt)}{\epsilon^2}\right)$ samples $S = \{v^{(1)}, \dots, v^{(N)}\} \sim \mathcal{D}^N$, for all mechanisms in \mathcal{M} :

|average revenue over S – expected revenue| $\leq \epsilon$.

High-level learning theory bit

(Informal) Theorem

d-dim. parameter space, t hyperplanes splitting parameters into linear pieces $\Rightarrow Pdim(\mathcal{M}) = O(d \log(dt))$

Want to prove that for any mechanism parameters p:

$$\frac{1}{|\mathcal{S}|} \sum_{v \in \mathcal{S}} \operatorname{rev}_{p}(v)$$
 close to $\mathbb{E}[\operatorname{rev}_{p}(v)]$

Function class we analyze pseudo-dimension of: $\{\operatorname{rev}_{\boldsymbol{p}} \colon \operatorname{parameters} \boldsymbol{p} \in \mathbb{R}^d \}$

Proof takes advantage of structure exhibited by **dual** class $\{rev_v: buyer values v\}$

$$rev_{\boldsymbol{v}}(\boldsymbol{p}) = rev_{\boldsymbol{p}}(\boldsymbol{v})$$

Outline

- I. Introduction
- 2. Background
- 3. Machine learning for mechanism design
 - a. Learning theory tools
 - b. Simple example
 - c. General theory
 - d. Applications of general theory
- 4. Conclusion

Pseudo-dimension of posted price mechanisms

 \mathcal{M} = multi-item, multi-buyer posted price mechanisms

- Price per item.
- Fixed, arbitrary ordering on buyers.
- First buyer in ordering arrives.
 Buys bundle of goods maximizing his utility.
- 2. Second buyer arrives. Buys bundle of remaining goods maximizing his utility.
- 3. Etc.

[E.g., Feldman, Gravin, Lucier, SODA' 15; Babaioff, Immorlica, Lucier, Weinberg, FOCS' 14; Cai Devanur, Weinberg, STOC' 16]

Pseudo-dimension of posted price mechanisms

Theorem

 $\mathsf{Pdim}(\mathcal{M}) = O(d\log(dt))$ with d = (# dimensions) = (# items) and $t = (\# \text{ hyperplanes}) = (\# \text{ buyers}) \cdot {2 \choose 2}$.

Proof. For **every buyer** and **every pair of bundles**, decision boundary (determining where buyer prefers one bundle over another) is a hyperplane

- (# bundles) = $2^{(\text{# items})}$, so (# buyers) $\binom{2^{(\text{# items})}}{2}$ hyperplanes create partition where across all prices in a single region, all buyers' preference orderings are fixed
- When preference ordering fixed, bundles they buy are fixed. So revenue is linear function of items the buy

Our main applications

- Match or improve over the best-known guarantees for many those classes previously studied.
- Prove bounds for classes not yet studied from a learning perspective.

Mechanism class	Sample complexity studied before?	
Randomized mechanisms (lotteries)	N/A	
Multi-part tariffs and other non-linear pricing mechanisms	N/A	
Posted price mechanisms	E.g., Morgenstern and Roughgarden, '16; Syrgkanis '17	
Affine maximizer auctions	Balcan, Sandholm, and V ., '16	
Second price auctions with reserves	E.g., Devanur et al., '16; Morgenstern and Roughgarden, '16	

Outline

- I. Introduction
- 2. Background
- 3. Machine learning for mechanism design
- 4. Conclusion

Discussion and open directions

- General way to analyze $\dim(\mathcal{M})$ for any class \mathcal{M} of mechanisms whose revenue is a piecewise linear function of the class's parameters
- Many applications to multi-item, multi-buyer scenarios
 - Second-price auctions with reserves, posted price mechanisms, two-part tariffs, parameterized VCG mechanisms, etc.

Open questions

- Algorithmic aspects to data-driven mechanism design
- Other data-driven mechanism design applications beyond selling and/or revenue maximization

Thanks!

Questions?