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Amazon’s profit swells to $1.6 billion

[NY Times ‘18]



Bidding in government auction of 

airwaves reaches $34 billion

[NYTimes ‘14]



Very-large-scale generalized 
combinatorial multi-attribute 
auctions: Lessons from conducting 
$60 billion of sourcing
[Sandholm ‘13]

Ad 

revenue in 

2016

Total 

revenue in 

2016

Google $79 billion $89.46 billion

Facebook $27 billion $27.64 billion



Common misconception: There’s only one way to hold an auction.

There are infinitely-many ways to hold an auction.



Mechanism design for sales settings
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There is a set of items for sale and a 

set of buyers.

At a high level, a mechanism dictates:

1. Which buyers receive which items.

2. What they pay.
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Mechanism design example:

Posted price mechanisms

: 1.50

: 3.50

Set price per item.

Buyers buy the items maximizing their 

utility (value for items minus price).

: 6

: 3

: 2



Mechanism design example:

Second-price auction

The highest bidder wins and pays the second highest bid.

$5$6$7$9



Mechanism design example:

Second-price auction with a reserve

Auctioneer sets reserve price 𝑝. 

Highest bidder wins if bid ≥ 𝑝. Pays maximum of second highest bid and 𝑝.

Reserve price: $8         Revenue = $8

Reserve price: $6         Revenue = $7

$5$6$7$9

How to choose the reserve price?



This talk:

How can we use machine learning to design 

auctions with high revenue?

Booming area of economics and computer science

E.g., Likhodedov and Sandholm, AAAI‘04, AAAI’05; Balcan, Blum, Hartline, and 

Mansour, FOCS’05; Elkind, SODA’07; Dhangwatnotai, Roughgarden, and Yan, 

EC’10; Mohri and Medina, ICML’14;  Cole and Roughgarden STOC’14; 

Morgenstern and Roughgarden, COLT’16;  Cai and Daskalakis FOCS’17; …

Helps overcome traditional, manual approaches to mechanism design

The revenue-maximizing auction is not known even when there are 

just two buyers and two items!



Outline

1. Introduction

2. Background

3. Machine learning for mechanism design

4. Conclusion



Notation

There are 𝑚 items and 𝑛 buyers.

Each buyer 𝑖 has a value 𝑣𝑖(𝑏) ∈ ℝ for each bundle 𝑏 ⊆ [𝑚].

Let 𝒗𝑖 = 𝑣𝑖 𝑏1 , … , 𝑣𝑖 𝑏2𝑚 for all 𝑏1, … , 𝑏2𝑚 ⊆ 𝑚 .

Example

Items = {    ,    }

𝒗𝑖 = 𝑣𝑖 , 𝑣𝑖 , 𝑣𝑖 , 𝑣𝑖 ,       f

𝑣𝑖 = 2 𝑣𝑖 = 3 𝑣𝑖 ,       = 6

∅

𝑣𝑖 = 0∅
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Let 𝒗𝑖 = 𝑣𝑖 𝑏1 , … , 𝑣𝑖 𝑏2𝑚 for all 𝑏1, … , 𝑏2𝑚 ⊆ 𝑚 .
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A buyer’s valuations are defined by a probability distribution over all the 

possible valuations she might have for all bundles of goods.

The mechanism designer knows this distribution.

Classical mechanism design

Where does this information come from?

Standard assumption

Example

𝒗1, … , 𝒗𝑛 ~𝒟, where 𝒗𝑖 = 𝑣𝑖 , 𝑣𝑖 , 𝑣𝑖 , 𝑣𝑖 ,∅
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Mechanism design as a learning problem

Goal: Given mechanism family ℳ and set of buyers’ values sampled from 

unknown distribution 𝒟, find mechanism with high expected revenue

• Large family 𝓜 of parametrized mechanisms

(E.g., 2nd-price auctions w/ reserves or posted price mechanisms)

• Set of buyers’ values sampled from unknown distribution 𝓓

2nd price auctions with reserves:

reserve

Sample 1 Sample 𝑁
…

𝑣1 𝑣𝑛…𝑣2 𝑣1 𝑣𝑛𝑣2 …



Mechanism design as a learning problem

Goal: Given mechanism family ℳ and set of buyers’ values sampled from 

unknown distribution 𝒟, find mechanism with high expected revenue

• Large family 𝓜 of parametrized mechanisms

(E.g., 2nd-price auctions w/ reserves or posted price mechanisms)

• Set of buyers’ values sampled from unknown distribution 𝓓

Posted price mechanisms:

Sample 1 Sample 𝑁

…

𝑣1
𝑣1
𝑣1

…

𝑣𝑛
𝑣𝑛
𝑣𝑛

𝑣1
𝑣1
𝑣1

…

𝑣𝑛
𝑣𝑛
𝑣𝑛

𝑝2

𝑝1



Mechanism design as a learning problem

Goal: Given mechanism family ℳ and set of buyers’ values sampled from 

unknown distribution 𝒟, find mechanism with high expected revenue

Approach: Find ෡𝑀 (nearly) optimal mechanism over the set of samples.



Mechanism design as a learning problem

Goal: Given mechanism family ℳ and set of buyers’ values sampled from 

unknown distribution 𝒟, find mechanism with high expected revenue

Approach: Find ෡𝑀 (nearly) optimal mechanism over the set of samples.

Key question: Will ෡𝑀 have high expected revenue?

Seen: 𝑣1 𝑣𝑛…𝑣2

… 𝑣1 𝑣𝑛…𝑣2New 𝒗 ∼ 𝒟:

𝑣1 𝑣𝑛…𝑣2

𝑣1 𝑣𝑛…𝑣2

…

Will ෡𝑴 have high revenue over 𝓓?



Mechanism design as a learning problem

Goal: Given mechanism family ℳ and set of buyers’ values sampled from 

unknown distribution 𝒟, find mechanism with high expected revenue

Approach: Find ෡𝑀 (nearly) optimal mechanism over the set of samples

Key question: Will ෡𝑀 have high expected revenue?

Technical tool: uniform convergence

For any mechanism in class ℳ, average revenue over samples close to 

its expected revenue

Implies ෡𝑀 has high expected revenue



Mechanism design as a learning problem

Goal: Given mechanism family ℳ and set of buyers’ values sampled from 

unknown distribution 𝒟, find mechanism with high expected revenue

Approach: Find ෡𝑀 (nearly) optimal mechanism over the set of samples

Key question: Will ෡𝑀 have high expected revenue?

Technical tool: uniform convergence

Challenge: Analyze dim(ℳ) for complex combinatorial, modular mechanisms

Learning theory: 𝑁 = ෨𝑂 dim ℳ /𝜖2 samples suffice for 𝜖-close



Mechanism design as a learning problem

Goal: Given mechanism family ℳ and set of buyers’ values sampled from 

unknown distribution 𝒟, find mechanism with high expected revenue

Learning theory: 𝑁 = ෨𝑂 dim ℳ /𝜖2 samples suffice for 𝜖-close

Our results:

General way to bound dim ℳ for any mechanism class satisfying key 

structural property: revenue is piecewise linear function of class’s 

parameters

Many applications to multi-item, multi-buyer scenarios

Second-price auctions with reserves, posted price mechanisms, two-part 

tariffs, parameterized VCG mechanisms, etc.
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VC dimension

Complexity measure characterizing the sample complexity of binary-valued

function classes

(Classes of functions ℎ ∶ 𝒳 → {−1,1})

E.g., linear separators



VC dimension 

VC-dimension of a function class ℋ = ℎ ∶ 𝒳 → −1,1 is the cardinality 

of the largest set 𝒮 ⊆ 𝒳 that can be labeled in all 2|𝒮| ways by functions in ℋ.

Example: ℋ = Linear separators in ℝ2. VCdim(ℋ) ≥ 3.



VC dimension 

VC-dimension of a function class ℋ = ℎ ∶ 𝒳 → −1,1 is the cardinality 

of the largest set 𝒮 ⊆ 𝒳 that can be labeled in all 2|𝒮| ways by functions in ℋ.

Example: ℋ = Linear separators in ℝ2. VCdim(ℋ) ≥ 3.

VCdim(ℋ) ≤ 3.

VCdim({Linear separators in ℝ𝑑}) = 𝑑 + 1.



VC dimension 

VC-dimension of a function class ℋ = ℎ ∶ 𝒳 → −1,1 is the cardinality 

of the largest set 𝒮 ⊆ 𝒳 that can be labeled in all 2|𝒮| ways by functions in ℋ.

For any 𝜖 ∈ (0,1) and any distribution 𝒟 over 𝒳, with high probability over 

the draw of 𝑁 = ෩Θ
𝐕𝐂𝐝𝐢𝐦(𝓗)

𝜖2
samples 𝑥1, … , 𝑥𝑁 ~𝒟𝑁, for all ℎ ∈ ℋ,

𝔼𝑥~𝒟 ℎ 𝑥 −
1

𝑁
෍

𝑖=1

𝑁

ℎ 𝑥𝑖 ≤ 𝜖.

Theorem [Vapnik and Chervonenkis, ‘71]

What about real-valued functions?



Pseudo-dimension

Complexity measure characterizing the sample complexity of real-valued

function classes

(Classes of functions 𝑓 ∶ 𝒳 → [0,1])

E.g., affine functions



Pseudo-dimension

The pseudo-dimension of a class ℱ = 𝑓 ∶ 𝒳 → 0,1 is the cardinality of 

the largest set 𝒮 = 𝑥1, … , 𝑥𝑁 ⊆ 𝒳 s.t. for some thresholds 𝑦1, … , 𝑦𝑁 ∈ ℝ, all 

2𝑁 above/below binary patterns can be achieved by functions 𝑓 ∈ ℱ.

Example: ℱ = Affine functions in ℝ. Pdim(ℱ) ≥ 2.

𝑥1 𝑥2

𝑦1

𝑦2

𝑥1 𝑥2

𝑦1

𝑦2

𝑥1 𝑥2

𝑦1

𝑦2

𝑥1 𝑥2

𝑦1

𝑦2



Pseudo-dimension

The pseudo-dimension of a class ℱ = 𝑓 ∶ 𝒳 → 0,1 is the cardinality of 

the largest set 𝒮 = 𝑥1, … , 𝑥𝑁 ⊆ 𝒳 s.t. for some thresholds 𝑦1, … , 𝑦𝑁 ∈ ℝ, all 

2𝑁 above/below binary patterns can be achieved by functions 𝑓 ∈ ℱ.

For any 𝜖 ∈ (0,1) and any distribution 𝒟 over 𝒳, with high probability over 

the draw of 𝑁 = ෩Θ
𝐏𝐝𝐢𝐦(𝓕)

𝜖2
samples 𝑥1, … , 𝑥𝑁 ~𝒟𝑁, for all 𝑓 ∈ ℱ,

𝔼𝑥~𝒟 𝑓 𝑥 −
1

𝑁
෍

𝑖=1

𝑁

𝑓 𝑥𝑖 ≤ 𝜖.

Theorem [Pollard, 1984]
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Example:

P-dim of 2nd-price auctions with reserves

Revenue

Reserve 𝑝
2nd highest 

bid

Highest bid

2nd-price auction with a reserve

• Auctioneer sets reserve price 𝑝

• Highest bidder wins if bid ≥ 𝑝. 

Pays maximum of second highest 

bid and 𝑝

Claim

For a fixed set of bids, revenue is a piecewise linear function of the reserve.



Example:

P-dim of 2nd-price auctions with reserves

Key idea: Consider some valuation vector 𝒗 and revenue-threshold 𝑦.

• Ranging 𝑝 from 0 to ∞, will be (at most) two cutoff values 𝑐1,𝑐2 where 

revenue goes from “below” to “above” to “below”

Theorem [Mohri-Medina’14; Morgenstern-Roughgarden‘16; Balcan-Sandholm-V.’18]

ℳ = {rev𝑝 ≔ revenue of 2nd-price auction with reserve 𝑝}. Pdim ℳ ≤ 2.

• With 𝑁 examples, look at all 2𝑁 cutoff values

• All 𝑝 in same interval between consecutive 

cutoff values will give same binary pattern

• So, at most 2𝑁 + 1 binary patterns

• Pseudo-dimension is max 𝑁 s.t. all 2𝑁 binary 

above/below patterns are achievable

o Need 2𝑁 ≤ 2𝑁 + 1, so 𝑁 ≤ 2

Rev on 𝒗

𝑝
𝑐1 𝑐2

𝑦
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Bounding pseudo-dim of mechanism classes

Theorem

Suppose:

1. The mechanism class ℳ is parameterized by vectors 𝒑 ∈ ℝ𝒅

For example, 𝒑 =   price           , price



Bounding pseudo-dim of mechanism classes

Theorem

Suppose:

1. The mechanism class ℳ is parameterized by vectors 𝒑 ∈ ℝ𝒅

2. For every set 𝒗 of buyers’ values, a set of ≤ 𝒕 hyperplanes partition 

ℝ𝒅 such that in every cell of this partition, revenue𝒗(𝒑) is linear

Price

P
ri

ce In this example, 

𝑑 = 2 and 𝑡 = 5.



Bounding pseudo-dim of mechanism classes

Theorem

Suppose:

1. The mechanism class ℳ is parameterized by vectors 𝒑 ∈ ℝ𝒅

2. For every set 𝒗 of buyers’ values, a set of ≤ 𝒕 hyperplanes partition 

ℝ𝒅 such that in every cell of this partition, revenue𝒗(𝒑) is linear

Then Pdim ℳ = 𝑂 𝒅 log 𝒅𝒕 .



Bounding pseudo-dim of mechanism classes

Corollary

Suppose:

1. The mechanism class ℳ is parameterized by vectors 𝒑 ∈ ℝ𝒅

2. For every set 𝒗 of buyers’ values, a set of ≤ 𝒕 hyperplanes partition 

ℝ𝒅 such that in every cell of this partition, revenue𝒗(𝒑) is linear

For any 𝜖 ∈ (0,1), with high probability over the draw of 𝑁 = ෩Θ
𝒅 log 𝒅𝒕

𝜖2

samples 𝒮 = 𝒗(1), … , 𝒗(𝑁) ~𝒟𝑁, for all mechanisms in ℳ:

|average revenue over 𝒮 – expected revenue| ≤ 𝜖.



High-level learning theory bit

Want to prove that for any mechanism parameters 𝒑:

1

𝒮
σ𝒗∈𝒮 rev𝒑(𝒗) close to 𝔼 rev𝒑 𝒗

Function class we analyze pseudo-dimension of: 

rev𝒑: parameters 𝒑 ∈ ℝ𝒅

Proof takes advantage of structure exhibited by dual 

class rev𝒗: buyer values 𝒗

Reserve 𝑝

rev𝒗(𝑝)

rev𝒗 𝒑 = rev𝒑(𝒗)

𝒅-dim. parameter space, 𝒕 hyperplanes splitting parameters into linear pieces 

⇒ Pdim ℳ = 𝑂 𝒅 log 𝒅𝒕

(Informal)Theorem
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Pseudo-dimension of posted price mechanisms

ℳ = multi-item, multi-buyer posted price mechanisms

• Price per item.

• Fixed, arbitrary ordering on 

buyers.

1. First buyer in ordering arrives. 

Buys bundle of goods 

maximizing his utility.

2. Second buyer arrives. Buys 

bundle of remaining goods 

maximizing his utility.

3. Etc.

Revenue

Price

Price

[E.g., Feldman, Gravin, Lucier, SODA’15; Babaioff, Immorlica, Lucier, Weinberg, FOCS’14; 

Cai Devanur, Weinberg, STOC’16]



Pseudo-dimension of posted price mechanisms

Theorem

Pdim ℳ = 𝑂 𝑑 log 𝑑𝑡 with 𝑑 = (# dimensions) = (# items) and 

𝑡 = # hyperplanes = (# buyers) ∙ 2(# items)

2
.

Proof. For every buyer and every pair of bundles, decision boundary 

(determining where buyer prefers one bundle over another) is a hyperplane

Price

P
ri

ce

• # bundles = 2(# items), so (# buyers) 2(# items)

2
hyperplanes create partition where across all prices in 

a single region, all buyers’ preference orderings are 

fixed

• When preference ordering fixed, bundles they buy are 

fixed. So revenue is linear function of items the buy



Our main applications

• Match or improve over the best-known guarantees for many those classes 

previously studied.

• Prove bounds for classes not yet studied from a learning perspective.

Mechanism class Sample complexity studied before?

Randomized mechanisms (lotteries) N/A

Multi-part tariffs and other non-linear 

pricing mechanisms

N/A

Posted price mechanisms E.g., Morgenstern and Roughgarden, ’16; 

Syrgkanis ’17

Affine maximizer auctions Balcan, Sandholm, and V., ’16

Second price auctions with reserves E.g., Devanur et al., ‘16; Morgenstern and 

Roughgarden, ’16
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Discussion and open directions

• General way to analyze dim ℳ for any class ℳ of mechanisms whose 

revenue is a piecewise linear function of the class’s parameters

• Many applications to multi-item, multi-buyer scenarios

– Second-price auctions with reserves, posted price mechanisms, two-part 

tariffs, parameterized VCG mechanisms, etc.

Open questions

• Algorithmic aspects to data-driven mechanism design

• Other data-driven mechanism design applications beyond selling and/or 

revenue maximization



Thanks!

Questions?


