The Sample Complexity of Revenue Maximization

in the Hierarchy of Deterministic Combinatorial Auctions

Ellen Vitercik Joint work with Nina Balcan and Tuomas Sandholm

> Theory Lunch 27 April 2016

Combinatorial (multi-item) auctions

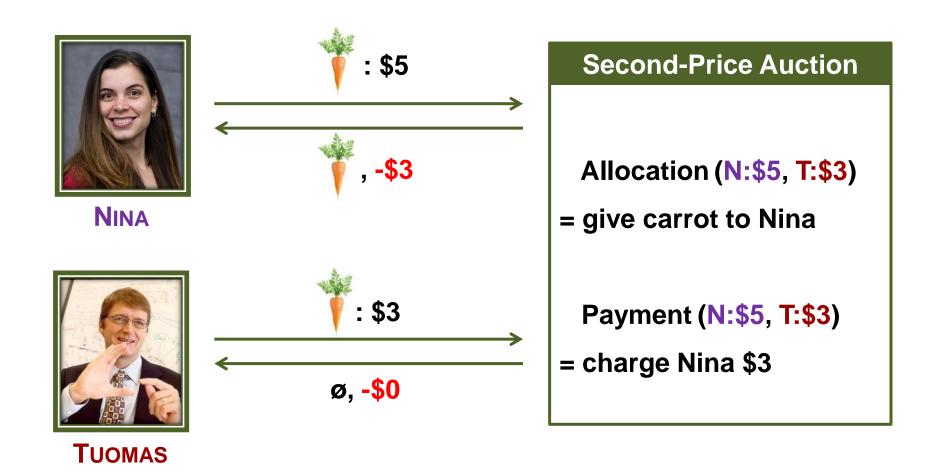
Combinatorial auctions allow bidders to express preferences for bundles of goods

Real-world examples

- US Government wireless spectrum auctions [FCC]
- Sourcing auctions [Sandholm 2013]
- Airport time slot allocation [Rassenti 1982]
- Building development, e.g. office space in GHC (no money)
- Property sales

- Mechanism designer must determine:
 - Allocation function: Who gets what?
 - Payment function: What does the auctioneer charge?
- Goal: design strategy-proof mechanisms
 - Easy for the bidders to compute the optimal strategy
 - Easy for designer to analyze possible outcomes

Warm-up: single-item auctions



Second-price auction: the classic strategy-proof, single-item auction.

Revenue-maximizing combinatorial auctions

- Standard assumptions: bidders' valuations drawn from distribution *D*, mechanism designer knows *D*
 - Allocation and payment rules often depend on *D*

Revenue-maximizing combinatorial auctions

Design Challenges	Feasible Solutions
Support of D might be doubly- exponential	Draw samples from D instead
NP-hard to determine the revenue-maximizing deterministic auction with respect to D [Conitzer and Sandholm 2002]	Fix a rich class of auctions. Can we learn the revenue- maximizing combinatorial auction in that class with respect to D given samples drawn from D?

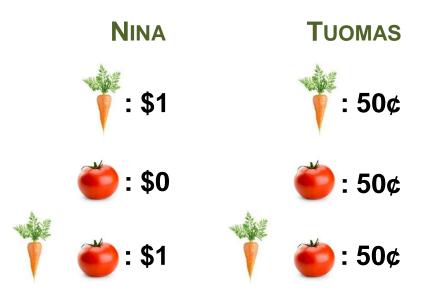
 Central problem in Automated Mechanism Design [Conitzer and Sandholm 2002, 2003, 2004, Likhodedov and Sandholm 2004, 2005, 2015, Sandholm 2003]

No theory that relates the performance of the designed mechanism on the samples to that mechanism's expected performance on *D*, until now.

Outline

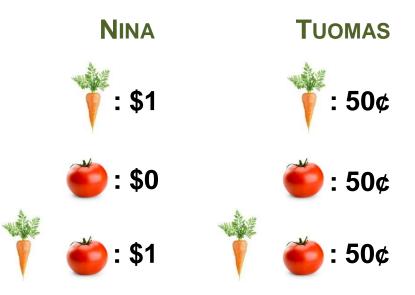
- Introduction
- Hierarchy of deterministic combinatorial auction classes
 - Our contribution: how many samples are needed to learn over the hierarchy of auctions?
 - Affine maximizer auctions and Rademacher complexity
 - Mixed-bundling auctions and pseudo-dimension
 - Summary and future directions

Combinatorial auctions



- 3^2 possible outcomes $o = (o_1, o_2)$
- For example, $o = (\{ \psi \}, \{ \psi \})$

A natural generalization of second price

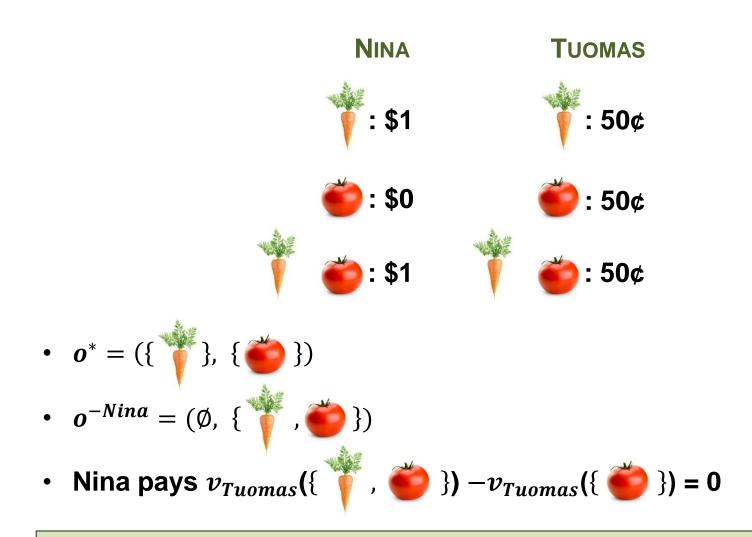


- Social Welfare (o) = $SW(o) = \sum_{i \in Bidders} v_i(o)$
- SW_{-i}(o) = $\sum_{j \in Bidders \{i\}} v_j(o)$
- Allocation: o^*
- Payment: Nina pays SW $_{-Nina}(o^{-Nina}) SW_{-Nina}(o^*)$

The "Vickrey-Clarke-Groves mechanism" (VCG).

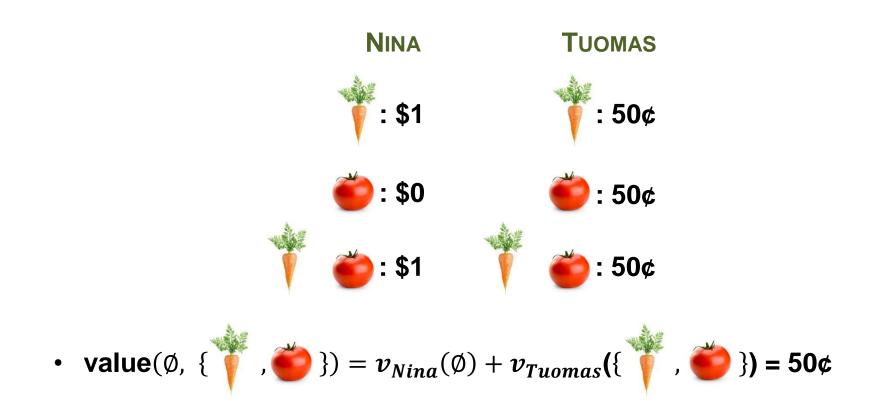
o^{*} maximizes SW(o)
 o⁻ⁱ maximizes SW_{-i}(o)

VCG in action

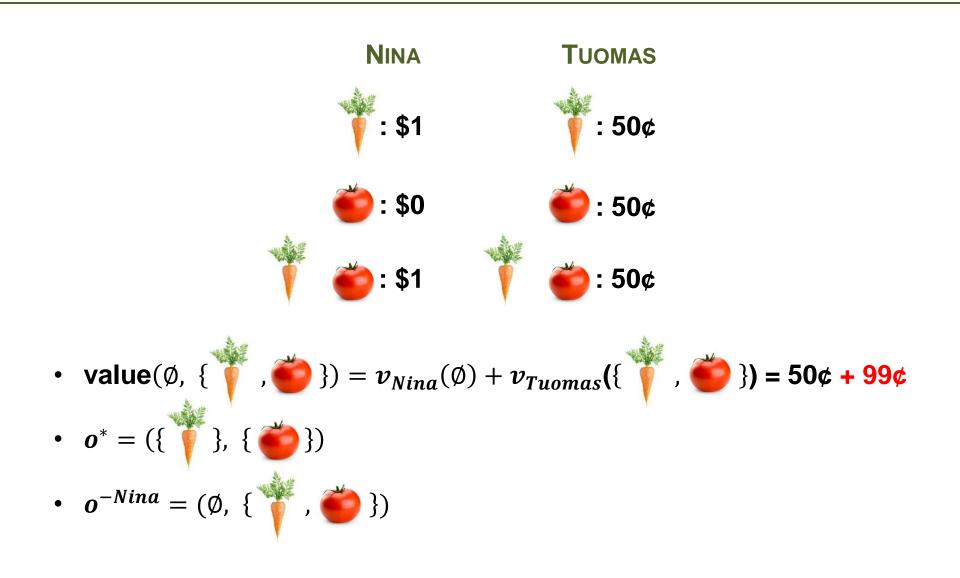


How do we get the bidders to pay more?

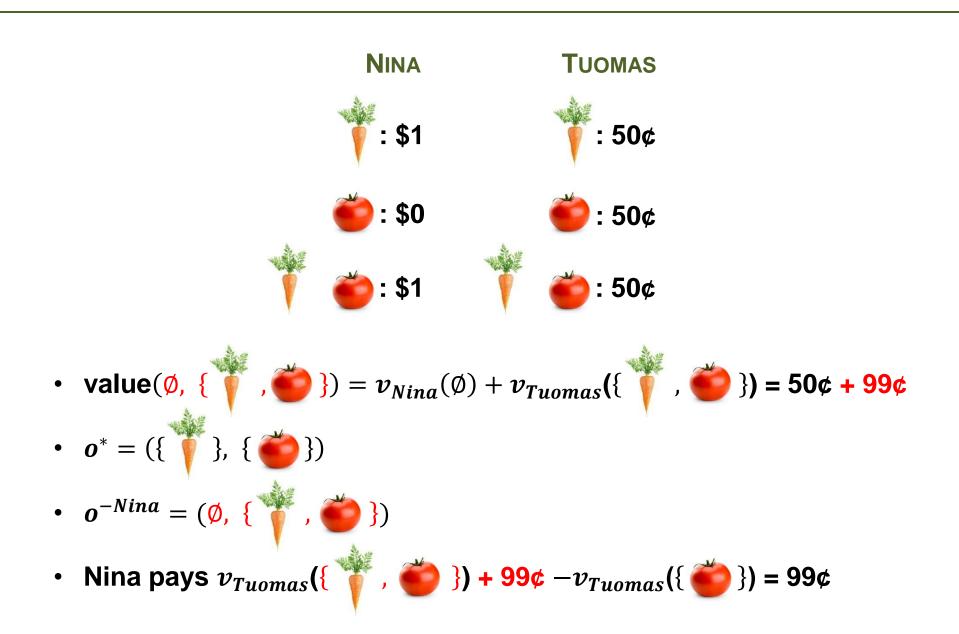
Outcome boosting



Outcome boosting



Outcome boosting



- Boost outcomes: $\lambda(o)$
- Take bids v
- Compute outcome:

$$o^* = argmax_o\{SW(o) + \lambda(o)\}$$

$$SW_{-i}(o^{-i}) + \lambda(o^{-i}) - (SW_{-i}(o^*) + \lambda(o^*))$$

- Boost outcomes: $\lambda(o)$
- Take bids v
- Compute outcome:

$$o^* = argmax_o \left\{ \sum_{j \in Bidders}^n v_j(o) + \lambda(o) \right\}$$

$$\left[\left(\sum_{j\in Bidders-\{i\}} v_j(o^{-i}) + \lambda(o^{-i})\right) - \left(\sum_{j\in Bidders-\{i\}} v_j(o^*) + \lambda(o^*)\right)\right]$$

- Boost outcomes: $\lambda(o)$; Weight bidders: w_i
- Take bids v
- Compute outcome:

$$o^* = argmax_o \left\{ \sum_{j \in Bidders}^n v_j(o) + \lambda(o) \right\}$$

$$\left[\left(\sum_{j\in Bidders-\{i\}} v_j(o^{-i}) + \lambda(o^{-i})\right) - \left(\sum_{j\in Bidders-\{i\}} v_j(o^*) + \lambda(o^*)\right)\right]$$

- Boost outcomes: $\lambda(o)$; Weight bidders: w_i
- Take bids v
- Compute outcome:

$$o^* = \operatorname{argmax}_{o} \left\{ \sum_{j \in Bidders}^{n} \mathbf{w}_j v_j(o) + \lambda(o) \right\}$$

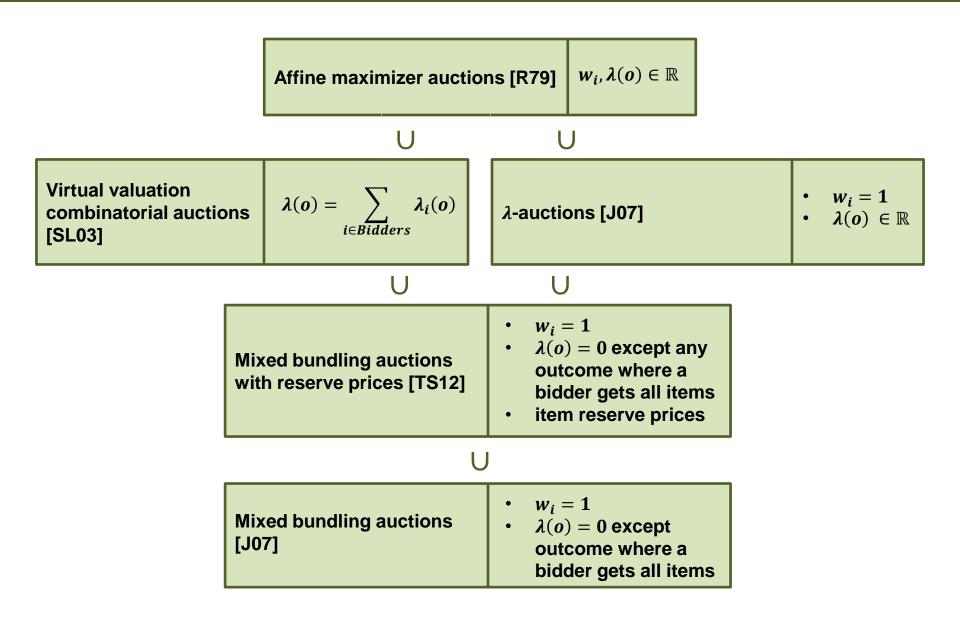
$$\left[\left(\sum_{j\in Bidders-\{i\}}\nu_j(o^{-i})+\lambda(o^{-i})\right)-\left(\sum_{j\in Bidders-\{i\}}\nu_j(o^*)+\lambda(o^*)\right)\right]$$

- Boost outcomes: $\lambda(o)$; Weight bidders: w_i
- Take bids v
- Compute outcome:

$$o^* = \operatorname{argmax}_{o} \left\{ \sum_{j \in Bidders}^{n} w_j v_j(o) + \lambda(o) \right\}$$

• Compute Bidder *i*'s payment: $\frac{1}{w_i} \left[\left(\sum_{j \in Bidders - \{i\}} w_j v_j(o^{-i}) + \lambda(o^{-i}) \right) - \left(\sum_{j \in Bidders - \{i\}} w_j v_j(o^*) + \lambda(o^*) \right) \right]$

Hierarchy of parameterized auction classes



Outline

- Introduction
- Hierarchy of deterministic combinatorial auction classes
- Our contribution: how many samples are needed to learn over the hierarchy of auctions?
 - Affine maximizer auctions and Rademacher complexity
 - Mixed-bundling auctions and pseudo-dimension
 - Summary and future directions

Our contribution

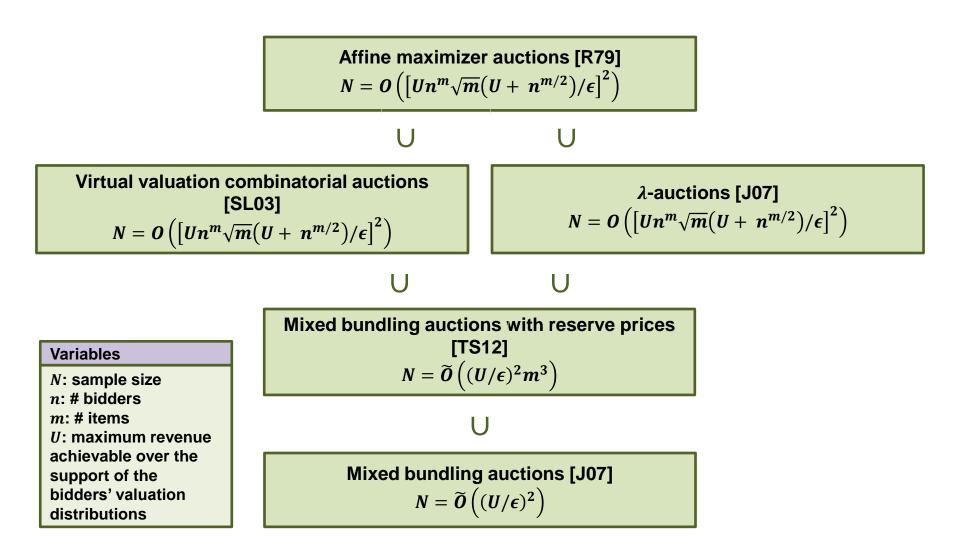
- Optimize $\lambda(o)$ and w given a sample $S \sim D^N$
 - (Automated Mechanism Design)
- We want:
 - The auction with best revenue over the sample has almost optimal expected revenue
 - Any approximately revenue-maximizing auction over the sample will have approximately optimal expected revenue
- For any auction we output, we want |S| large enough such that: empirical revenue – expected revenue | < ϵ
- In other words, how many samples |S| = N do we need to ensure that

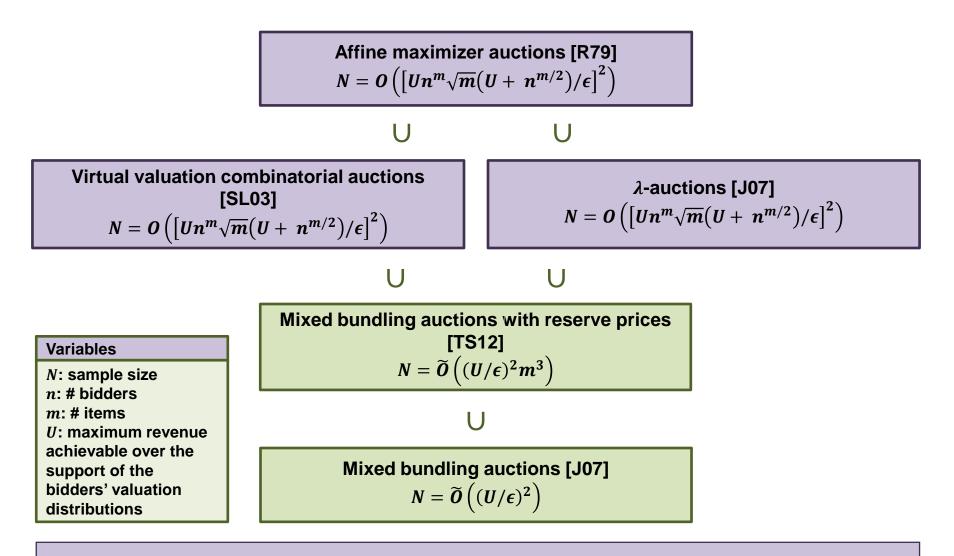
empirical revenue – expected revenue

$$= \left| \frac{1}{N} \sum_{v \in S} rev_A(v) - \mathbb{E}_{v \sim D}[rev_A(v)] \right| < \epsilon$$

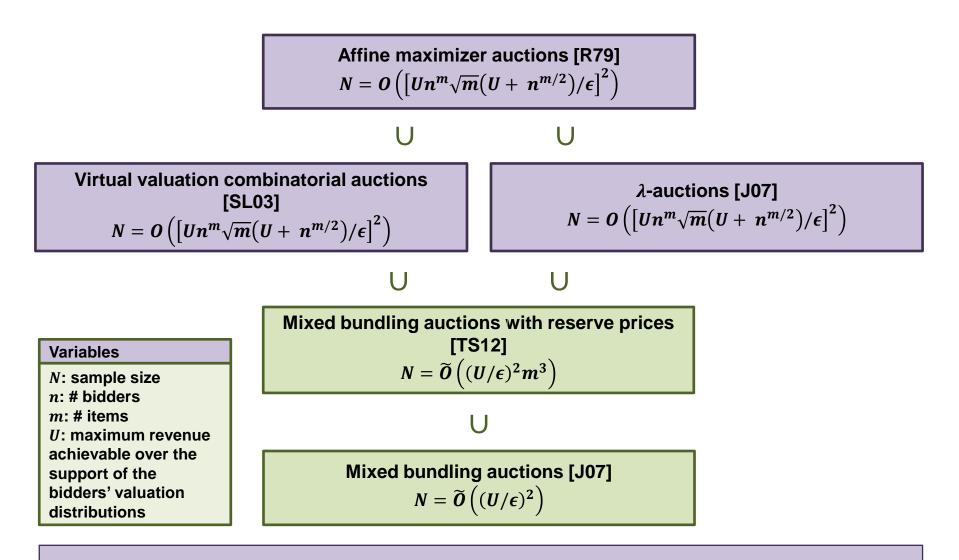
for all auctions A in the class?

• (We can only do this with high probability.)

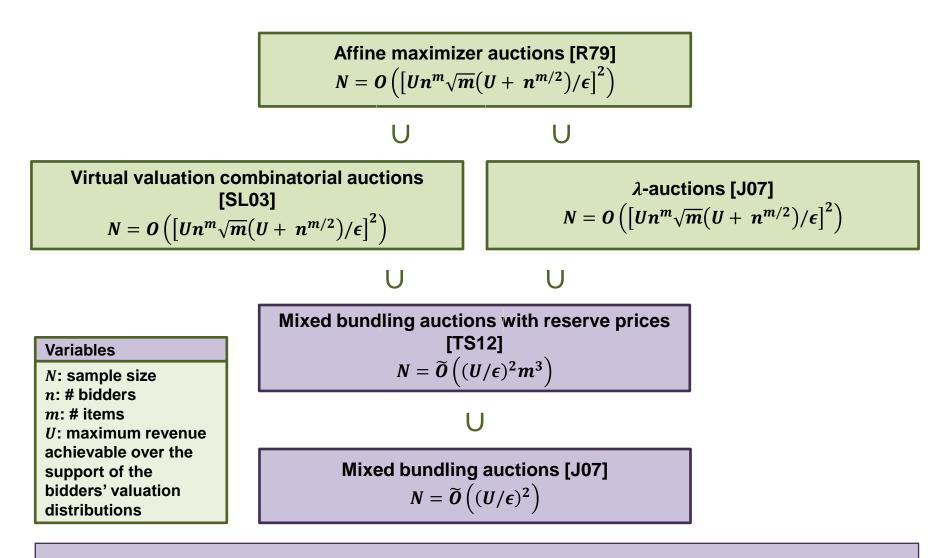




Nearly-matching exponential lower bounds.



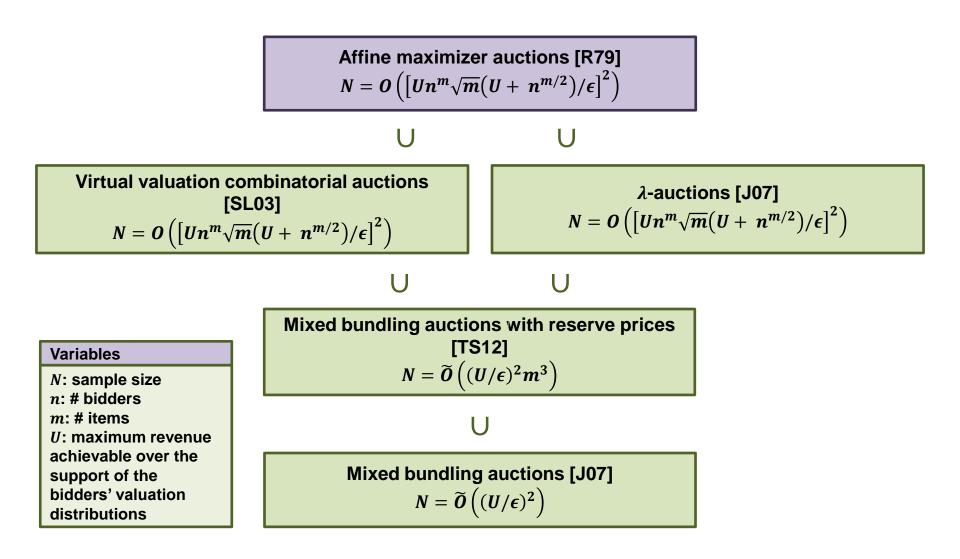
Learning theory tool: Rademacher complexity



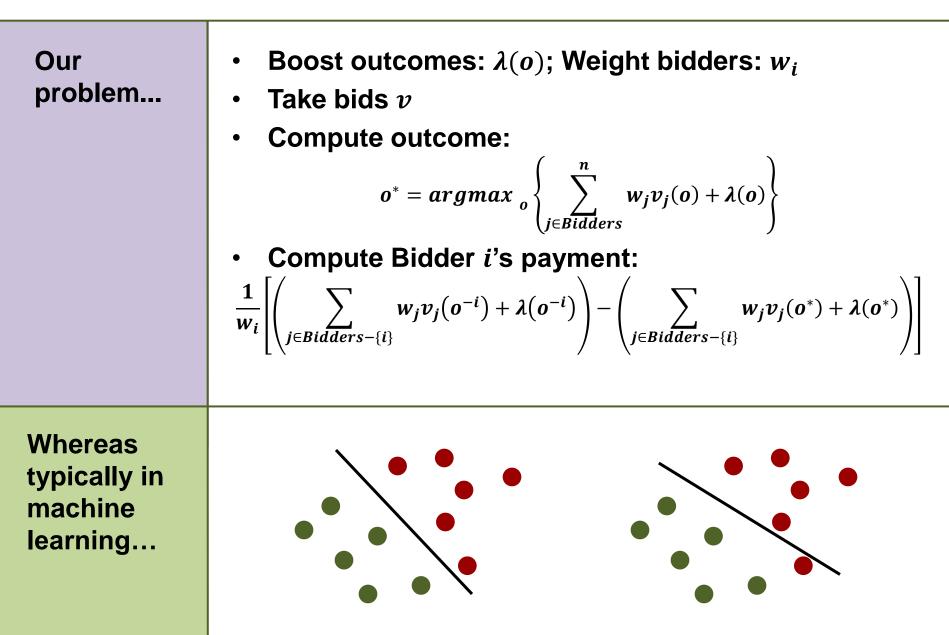
Learning theory tool: Pseudo-dimension

Outline

- Introduction
- Hierarchy of deterministic combinatorial auction classes
- Our contribution: how many samples are needed to learn over the hierarchy of auctions?
- Affine maximizer auctions and Rademacher complexity
 - Mixed-bundling auctions and pseudo-dimension
 - Summary and future directions



Key challenge



Rademacher complexity

- More expressive function classes need more samples to learn
- How to measure expressivity?
 - How well do functions from the class fit random noise?
- Empirical Rademacher complexity: $(x_1, ..., x_N) \sim \{-1, 1\}^N$, $S = \{v^1, ..., v^N\}$ $R_S(\mathcal{A}) = \mathbb{E}_x \left[sup_{A \in \mathcal{A}} \frac{1}{N} \sum x_i \cdot rev_A(v^i) \right]$, where • Rademacher complexity: $R_N(\mathcal{A}) = \mathbb{E}_{S \sim D^N} [R_S(\mathcal{A})]$
- With probability at least 1δ , for all $A \in \mathcal{A}$,

 $|\text{empirical revenue} - \text{expected revenue}| \le 2R_N(\mathcal{A}) + U_{\sqrt{\frac{2\ln(2/\delta)}{N}}}$

*U is the maximum revenue achievable over the support of the bidders' valuation distributions

Rademacher complexity

- More expressive function classes need more samples to learn
- How to measure expressivity?
 - How well do functions from the class fit random noise?
- Empirical Rademacher complexity: $(x_1, ..., x_N) \sim \{-1, 1\}^N$, $S = \{v^1, ..., v^N\}$ $R_S(\mathcal{A}) = \mathbb{E}_x \left[sup_{A \in \mathcal{A}} \frac{1}{N} \sum x_i \cdot rev_A(v^i) \right]$, where • Rademacher complexity: $R_N(\mathcal{A}) = \mathbb{E}_{S \sim D^N} [R_S(\mathcal{A})]$

\mathcal{A} = all binary valued functions	$R_N(\mathcal{A}) = \frac{1}{2}$
\mathcal{A} = one binary valued function	$R_N(\mathcal{A}) = 0$

Theorem

Let \mathcal{A} be the class of *n*-bidder, *m*-item AMA revenue functions. If

$$N = O\left(\left[Un^m\sqrt{m}(U + n^{m/2})/\epsilon\right]^2\right),$$

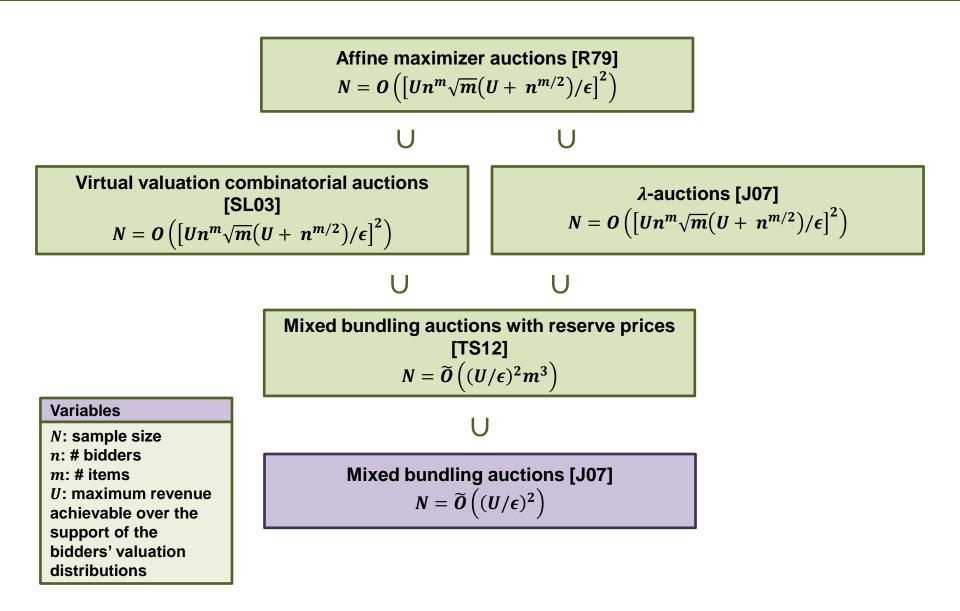
then with high probability over a sample $S \sim D^N$, |empirical revenue – expected revenue| < ϵ for all $rev_A \in A$.

- Key idea: split revenue function into its simpler components
 - Weighted social welfare without any one bidder's participation (*n* components)
 - Amount of revenue subtracted out to maintain strategyproof property
- Then use compositional properties of Rademacher complexity and other tricks, for example:

If $F = \{f \mid f = g + h, g \in G, h \in H\}$, then $R_N(F) \le R_N(G) + R_N(H)$

Outline

- Introduction
- Hierarchy of deterministic combinatorial auction classes
- Our contribution: how many samples are needed to learn over the hierarchy of auctions?
- Affine maximizer auctions and Rademacher complexity
- Mixed-bundling auctions and pseudo-dimension
 - Summary and future directions



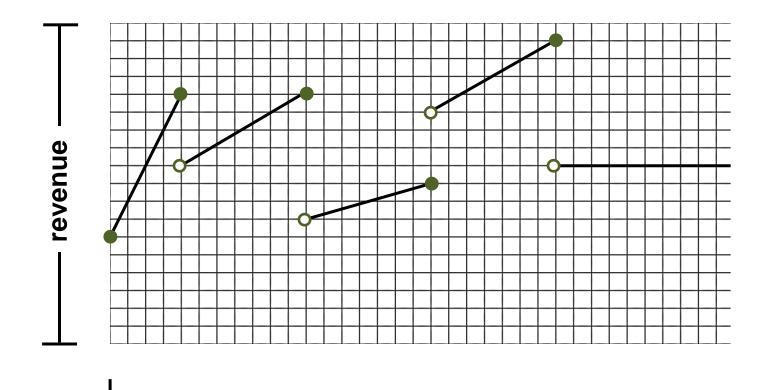
Mixed bundling auctions (MBAs)

- Class of auctions parameterized by a scalar *c*
- Boost the allocations where one bidder gets all goods by c
- value(\emptyset , { $\forall \gamma$, \bigotimes }) = $v_{Nina}(\emptyset) + v_{Tuomas}(\{\forall \gamma, \bigotimes\}) = 50 \notin + 99 \notin$
- value({ \forall , $\textcircled{\phi}$ }, \emptyset) = v_{Nina} ({ \forall , $\textcircled{\phi}$ }) + $v_{Tuomas}(\emptyset)$ = 50¢ + 99¢
- How large must the sample S be in order to ensure that for all MBAs, empirical revenue – expected revenue < ε?

Structural properties of MBA revenue functions

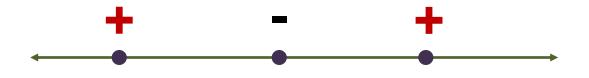
Lemma

Fix $v \in S$. Then $rev_v(c)$ is piecewise linear with at most n + 1 discontinuities.



VC-dimension

- Complexity measure for binary-valued functions only
- **Example**: *F* = {single interval on the real line}
- No set of size 3 can be labeled in all 2^3 ways by F



- Class of functions *F* shatters set $S = \{x_1, ..., x_N\}$ if for all $\mathbf{b} \in \{0, 1\}^N$, there exists $f \in F$ such that $f(x_i) = b_i$
- VC-dimension of *F* is the cardinality of the largest set *S* that can be shattered by *F*

Pseudo-dimension

- $x_1 \quad f(x_1) \leq r^{(1)} \quad 0 \quad \cdot \quad \text{Sample } S = \{x_1, \dots, x_N\}$
 - **0** Class of functions F into [-U, U]

•
$$r = \left(r^{(1)}, ..., r^{(N)}
ight) \in \mathbb{R}^N$$

witnesses the shattering of S by F

if for all $T \subseteq S$, there exists $f_T \in F$

such that $f_T(x_i) \leq r^{(i)}$ iff $x_i \in T$

Pseudo-dimension of *F* is the cardinality of the largest sample *S* that can be shattered by *F*

$$\mathsf{P-dim}(F) = \mathsf{VC-dim}(\{(x,r) \mapsto \mathbf{1}_{f(x)-r>0} | f \in F\})$$

How many samples do we need?

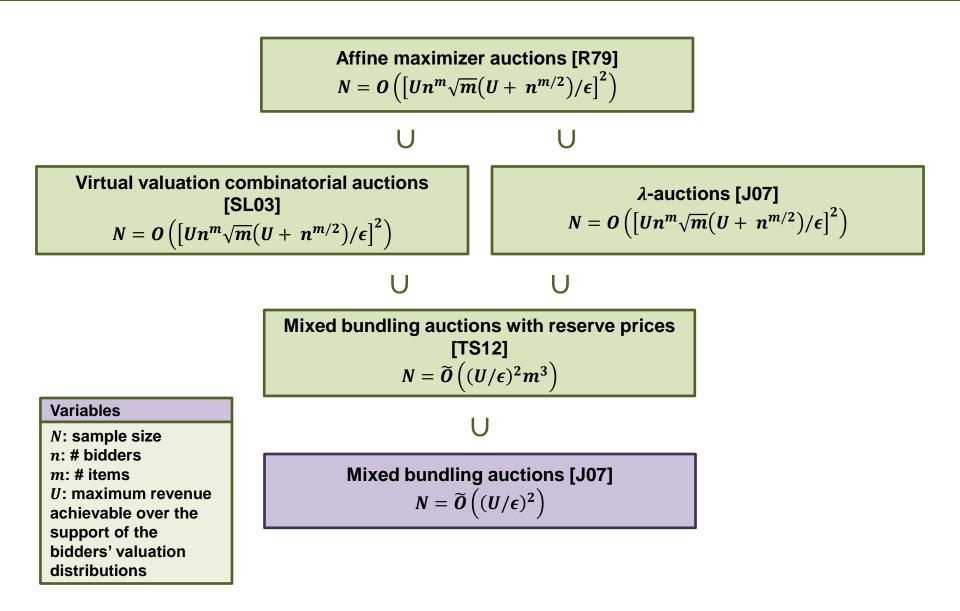
- Set of auction revenue functions \mathcal{A} with range in [0, U], distribution D over valuations v.
- For every $\epsilon > 0, \, \delta \in (0, 1)$, if

$$N = O\left(\left(\frac{U}{\epsilon}\right)^2 \left(\mathsf{P-dim}(\mathcal{A}) * \ln\frac{U}{\epsilon} + \ln\frac{1}{\delta}\right)\right),$$

then with probability at least $1 - \delta$ over a sample $S \sim D^N$, [empirical revenue – expected revenue] $< \epsilon$ for every $rev_A \in A$.

Pseudo-dimension allows us to derive strong sample complexity bounds.

How many samples do we need?



2-bidder MBA pseudo-dimension

Theorem

Let $\mathcal{A} = \{rev_c\}_{c \ge 0}$ be the class of *n*-bidder, *m*-item mixed bundling auction revenue functions. Then P-dim $(\mathcal{A}) = O(\log n)$.

2-bidder MBA pseudo-dimension

Theorem

Let $\mathcal{A} = \{rev_c\}_{c \ge 0}$ be the class of 2-bidder, *m*-item mixed bundling auction revenue functions. Then P-dim $(\mathcal{A}) = 2$.

Proof sketch.

• Fact: there exists a set of 2 samples that is shattered by A.

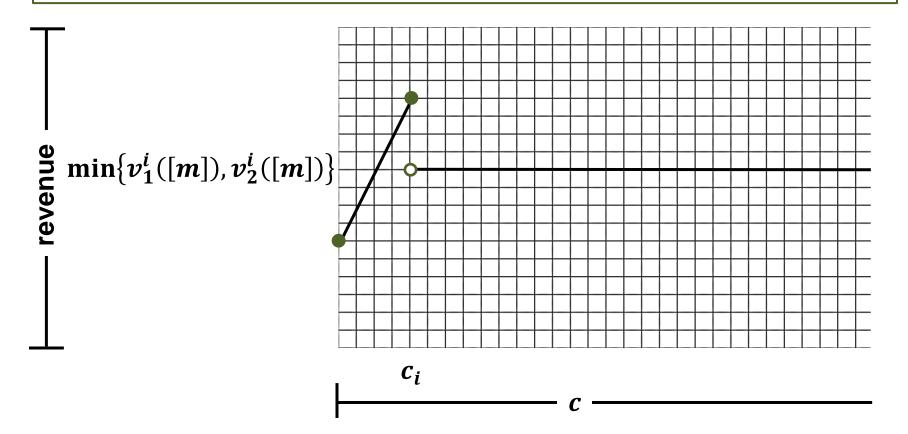
We need to show that no set of 3 samples can be shattered by \mathcal{A} .

- Suppose, for a contradiction, that $S = \{v^1, v^2, v^3\}$ is shatterable.
- Recall $v^1 = (v_1^1, v_2^1)$
- This means:
 - There exists $r = (r^1, r^2, r^3) \in \mathbb{R}^3$ and $2^{|S|} = 8$ MBA parameters $C = \{c_1, ..., c_8\}$ such that $\{rev_{c_1}, ..., rev_{c_8}\}$ induce all 8 binary labelings on *S* with respect to *r*.

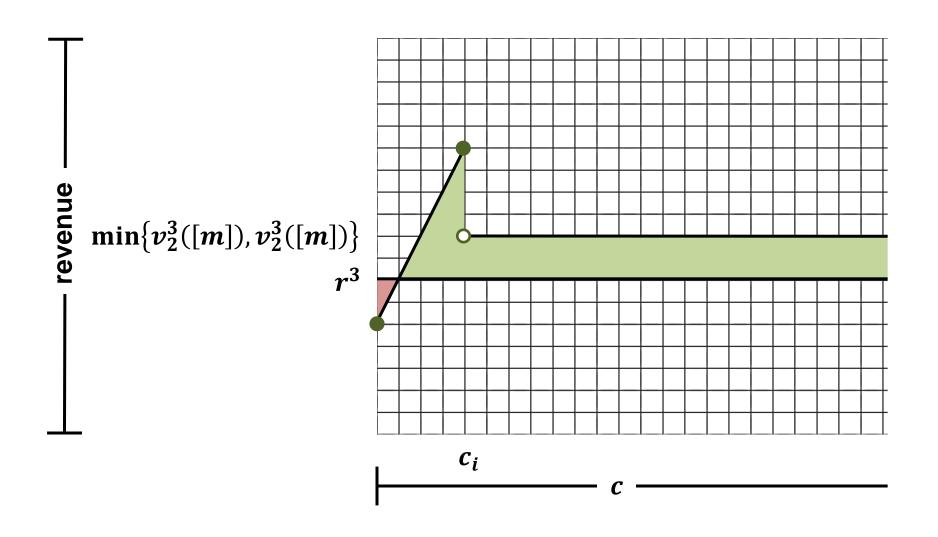
2-bidder MBA pseudo-dimension

Lemma

Fix $v^i \in S$. Then $rev_{v^i}(c)$ is piecewise linear with one discontinuity, with a slope of 2 followed by a constant function with value $\min\{v_1^i([m]), v_2^i([m])\}$.



Case 1: $r^3 < min\{v_1^3([m]), v_2^3([m])\}$



Case 1: $r^3 < min\{v_1^3([m]), v_2^3([m])\}$

$rev_{v^3}(c)$ increasing	$rev_{v^3}(c) = \min\{v_1^3([m]), v_2^3([m])\}$	
<i>c</i> ₃		
<i>c</i>		

Case 1: $r^3 < min\{v_1^3([m]), v_2^3([m])\}$

$rev_{v^3}(c)$ increasing		$rev_{v^3}(c) = \min\{v_1^3([m]), v_2^3([m])\}$	
$rev_{v^2}(c)$ increasing		$rev_{v^2}(c) = \min\{v_1^2([m]), v_2^2([m])\}$	
$c_3 c_2$			

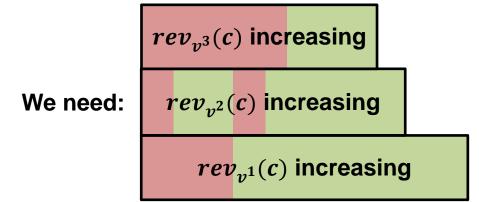
С

Case 1: $r^3 < min\{v_1^3([m]), v_2^3([m])\}$

$rev_{v^3}(c)$ increasing	$rev_{v^3}(c) = \min\{v_1^3([m]), v_2^3([m])\}$			
$rev_{v^2}(c)$ increasing	$rev_{v^2}(c) = \min\{v_1^2([m]), v_2^2([m])\}$			
$rev_{v^1}(c)$ increasing		$rev_{v^1}(c) = \min\{v_1^1([m]), v_2^1([m])\}$		
$c_3 c_2 c_1$				
c —				

Case 1: $r^3 < min\{v_1^3([m]), v_2^3([m])\}$

$rev_{v^3}(c)$ increasing	$rev_{v^3}(c) = \min\{v_1^3([m]), v_2^3([m])\}$			
$rev_{v^2}(c)$ increasing		$v_{v^2}(c) = \min\{v_1^2([m]), v_2^2([m])\}$		
$rev_{v^1}(c)$ increasing		$rev_{v^1}(c) = \min\{v_1^1([m]), v_2^1([m])\}$		
$c_3 c_2 c_1$				



This is impossible, so we reach a contradiction. Therefore, no set of size 3 can be shattered by the class of 2-bidder MBA revenue functions, so the pseudo-dimension is at most 2.

Summary

- Analyzed the sample complexity of learning over a hierarchy of deterministic combinatorial auctions
- Uncovered structural properties of these auctions' revenue functions along the way
 - Of independent interest beyond sample complexity results