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Combinatorial (multi-item) auctions 

Combinatorial auctions allow bidders to express preferences for bundles 

of goods 

: $5 : $5 : $6 



Real-world examples 

• US Government wireless spectrum auctions [FCC] 

• Sourcing auctions [Sandholm 2013] 

• Airport time slot allocation [Rassenti 1982] 

• Building development, e.g. office space in GHC (no money) 

• Property sales 

 



• Mechanism designer must determine: 

– Allocation function: Who gets what? 

– Payment function: What does the auctioneer charge? 

• Goal: design strategy-proof mechanisms 

– Easy for the bidders to compute the optimal strategy 

– Easy for designer to analyze possible outcomes 

 

Mechanism design 



Warm-up: single-item auctions 

NINA 

TUOMAS 

: $5 

: $3 

Second-price auction: the classic strategy-proof, single-item auction. 

 

 

 

   Allocation (N:$5, T:$3) 

= give carrot to Nina 

 

   Payment (N:$5, T:$3) 

= charge Nina $3 

 

, -$3 

ø, -$0 

Second-Price Auction 



• Standard assumptions: bidders’ valuations drawn from 

distribution 𝑫, mechanism designer knows 𝑫 

– Allocation and payment rules often depend on 𝑫 

Revenue-maximizing combinatorial auctions 



• Central problem in Automated Mechanism Design 

     [Conitzer and Sandholm 2002, 2003, 2004, Likhodedov and  

     Sandholm 2004, 2005, 2015, Sandholm 2003] 

Revenue-maximizing combinatorial auctions 

No theory that relates the performance of the designed mechanism on the 

samples to that mechanism’s expected performance on 𝑫, until now. 

Design Challenges Feasible Solutions 

Support of 𝐃 might be doubly-

exponential 

Draw samples from 𝐃 instead 

NP-hard to determine the 

revenue-maximizing 

deterministic auction with 

respect to 𝐃 

[Conitzer and Sandholm 2002] 

Fix a rich class of auctions. Can 

we learn the revenue-

maximizing combinatorial 

auction in that class with 

respect to 𝐃 given samples 

drawn from 𝐃? 
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• 𝟑𝟐 possible outcomes 𝒐 = (𝒐𝟏, 𝒐𝟐) 
 

• For example, 𝒐 = (         ,          ) 
 

 

Combinatorial auctions 

: $1 

: $0 

: $1 

: 50¢ 

: 50¢ 

: 50¢ 

NINA TUOMAS 



• Social Welfare 𝒐  

    = SW 𝒐  =  𝒗𝒊 𝒐𝒊∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔                     𝒐∗ maximizes SW 𝒐  

• SW-i 𝒐  =  𝒗𝒋 𝒐𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔− 𝒊                           𝒐−𝒊 maximizes SW-i 𝒐  

• Allocation: 𝒐∗ 

• Payment: Nina pays SW −𝑵𝒊𝒏𝒂 𝒐−𝑵𝒊𝒏𝒂 − SW−𝑵𝒊𝒏𝒂 𝒐∗  

A natural generalization of second price 

The “Vickrey-Clarke-Groves mechanism” (VCG). 

: $1 

: $0 

: $1 

: 50¢ 

: 50¢ 

: 50¢ 

NINA TUOMAS 



• 𝒐∗ =         ,           

 

• 𝒐−𝑵𝒊𝒏𝒂 = (∅,          ,         ) 
 

• Nina pays 𝒗𝑻𝒖𝒐𝒎𝒂𝒔(          ,           ) −𝒗𝑻𝒖𝒐𝒎𝒂𝒔(           ) = 0 

 

 

VCG in action 

How do we get the bidders to pay more? 

: $1 

: $0 

: $1 

: 50¢ 

: 50¢ 

: 50¢ 

NINA TUOMAS 



Outcome boosting 

• value ∅,          ,         = 𝒗𝑵𝒊𝒏𝒂 ∅ + 𝒗𝑻𝒖𝒐𝒎𝒂𝒔(          ,          ) = 50¢  

 

 

: $1 

: $0 

: $1 

: 50¢ 

: 50¢ 

: 50¢ 
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Outcome boosting 

• value ∅,          ,         = 𝒗𝑵𝒊𝒏𝒂 ∅ + 𝒗𝑻𝒖𝒐𝒎𝒂𝒔(          ,          ) = 50¢ + 99¢  

 

• 𝒐∗ =         ,           

 

• 𝒐−𝑵𝒊𝒏𝒂 = (∅,          ,          ) 
 

: $1 
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Outcome boosting 

• value ∅,          ,         = 𝒗𝑵𝒊𝒏𝒂 ∅ + 𝒗𝑻𝒖𝒐𝒎𝒂𝒔(          ,          ) = 50¢ + 99¢  

 

• 𝒐∗ =         ,           

 

• 𝒐−𝑵𝒊𝒏𝒂 = (∅,          ,          ) 
 

• Nina pays 𝒗𝑻𝒖𝒐𝒎𝒂𝒔(          ,           ) + 99¢ −𝒗𝑻𝒖𝒐𝒎𝒂𝒔(          ) = 99¢  

: $1 

: $0 

: $1 

: 50¢ 

: 50¢ 

: 50¢ 

NINA TUOMAS 



• Boost outcomes: 𝝀(𝒐) 

• Take bids 𝒗 

• Compute outcome: 

 

𝒏

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔

𝝀     𝒐∗ = 𝒂𝒓𝒈𝒎𝒂𝒙𝒐 𝑺𝑾 𝒐 + 𝝀 𝒐  

• Compute Bidder 𝒊’s payment: 

 

𝑺𝑾−𝒊 𝒐
−𝒊 + 𝝀 𝒐−𝒊 − 𝑺𝑾−𝒊 𝒐

∗ + 𝝀 𝒐∗  

Affine maximizer auctions (AMAs) 



• Boost outcomes: 𝝀(𝒐) 

• Take bids 𝒗 

• Compute outcome: 

𝒐∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 
𝒐

 𝒗𝒋 𝒐 +

𝒏

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔

𝝀 𝒐  

• Compute Bidder 𝒊’s payment: 

 𝒗𝒋 𝒐
−𝒊

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔−{𝒊}

+ 𝝀 𝒐−𝒊 −  𝒗𝒋 𝒐
∗

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔−{𝒊}

+ 𝝀 𝒐∗  

Affine maximizer auctions (AMAs) 



• Boost outcomes: 𝝀(𝒐); Weight bidders: 𝒘𝒊 

• Take bids 𝒗 

• Compute outcome: 

𝒐∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 
𝒐

 𝒗𝒋 𝒐 +

𝒏

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔

𝝀 𝒐  

• Compute Bidder 𝒊’s payment: 

 𝒗𝒋 𝒐
−𝒊

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔−{𝒊}

+ 𝝀 𝒐−𝒊 −  𝒗𝒋 𝒐
∗

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔−{𝒊}

+ 𝝀 𝒐∗  

Affine maximizer auctions (AMAs) 



• Boost outcomes: 𝝀(𝒐); Weight bidders: 𝒘𝒊 

• Take bids 𝒗 

• Compute outcome: 

𝒐∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 
𝒐

 𝒘𝒋𝒗𝒋 𝒐 +

𝒏

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔

𝝀 𝒐  
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∗

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔−{𝒊}

+ 𝝀 𝒐∗  

Affine maximizer auctions (AMAs) 



• Boost outcomes: 𝝀(𝒐); Weight bidders: 𝒘𝒊 

• Take bids 𝒗 

• Compute outcome: 

𝒐∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 
𝒐

 𝒘𝒋𝒗𝒋 𝒐 +

𝒏

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔

𝝀 𝒐  

• Compute Bidder 𝒊’s payment: 

𝟏

𝒘𝒊
 𝒘𝒋𝒗𝒋 𝒐

−𝒊

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔−{𝒊}

+ 𝝀 𝒐−𝒊 −  𝒘𝒋𝒗𝒋 𝒐
∗
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+ 𝝀 𝒐∗  

Affine maximizer auctions (AMAs) 



Hierarchy of parameterized auction classes 

Affine maximizer auctions [R79] 𝒘𝒊, 𝝀 𝒐 ∈ ℝ 

Virtual valuation 

combinatorial auctions 

[SL03] 

𝝀 𝒐 =  𝝀𝒊 𝒐

𝒊∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔

 𝝀-auctions [J07] 
• 𝒘𝒊 = 𝟏 
• 𝝀 𝒐  ∈ ℝ 

Mixed bundling auctions 

with reserve prices [TS12] 

• 𝒘𝒊 = 𝟏 
• 𝝀 𝒐 = 𝟎 except any 

outcome where a     

bidder gets all items 

• item reserve prices 

∪ ∪ 

∪ ∪ 

∪ 
• 𝒘𝒊 = 𝟏 
• 𝝀 𝒐 = 𝟎 except 

outcome where a     

bidder gets all items 

Mixed bundling auctions 

[J07] 
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• Optimize 𝝀 𝒐  and 𝒘 given a sample 𝑺~𝑫𝑵 

– (Automated Mechanism Design) 

• We want: 

– The auction with best revenue over the sample has almost 
optimal expected revenue 

– Any approximately revenue-maximizing auction over the 
sample will have approximately optimal expected revenue 

• For any auction we output, we want |𝑺| large enough such that: 

|empirical revenue – expected revenue| < 𝝐 

• In other words, how many samples 𝐒 = 𝑵 do we need to ensure 
that  

|empirical revenue – expected revenue| 

=
𝟏

𝑵
 𝒓𝒆𝒗𝑨 𝒗

𝒗∈𝑺

− 𝔼𝒗~𝑫 𝒓𝒆𝒗𝑨 𝒗 < 𝝐 

     for all auctions 𝑨 in the class? 

• (We can only do this with high probability.) 

Our contribution 



How many samples do we need? 

Affine maximizer auctions [R79] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

Virtual valuation combinatorial auctions 

[SL03] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

𝝀-auctions [J07] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

Mixed bundling auctions [J07] 

𝑵 = 𝑶 𝑼/𝝐 𝟐  

Mixed bundling auctions with reserve prices 

[TS12] 

𝑵 = 𝑶 𝑼/𝝐 𝟐𝒎𝟑  

∪ ∪ 

∪ ∪ 

∪ 

Variables 

𝑵: sample size 

𝒏: # bidders 

𝒎: # items 

𝑼: maximum revenue 

achievable over the 

support of the 

bidders’ valuation 

distributions 



How many samples do we need? 

Affine maximizer auctions [R79] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

Virtual valuation combinatorial auctions 

[SL03] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

𝝀-auctions [J07] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

Mixed bundling auctions [J07] 

𝑵 = 𝑶 𝑼/𝝐 𝟐  

Mixed bundling auctions with reserve prices 

[TS12] 

𝑵 = 𝑶 𝑼/𝝐 𝟐𝒎𝟑  
Variables 

𝑵: sample size 

𝒏: # bidders 

𝒎: # items 

𝑼: maximum revenue 

achievable over the 

support of the 

bidders’ valuation 

distributions 

∪ ∪ 

∪ ∪ 

∪ 

Nearly-matching exponential lower bounds. 



How many samples do we need? 

Affine maximizer auctions [R79] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

Virtual valuation combinatorial auctions 

[SL03] 
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Mixed bundling auctions [J07] 

𝑵 = 𝑶 𝑼/𝝐 𝟐  

Mixed bundling auctions with reserve prices 

[TS12] 

𝑵 = 𝑶 𝑼/𝝐 𝟐𝒎𝟑  

∪ ∪ 

∪ ∪ 

∪ 

Variables 

𝑵: sample size 

𝒏: # bidders 

𝒎: # items 

𝑼: maximum revenue 

achievable over the 

support of the 

bidders’ valuation 

distributions 

Learning theory tool: Rademacher complexity 



How many samples do we need? 
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𝑵 = 𝑶 𝑼/𝝐 𝟐𝒎𝟑  

∪ ∪ 

∪ ∪ 
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Variables 

𝑵: sample size 
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achievable over the 

support of the 

bidders’ valuation 

distributions 

Learning theory tool: Pseudo-dimension 
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• Boost outcomes: 𝝀(𝒐); Weight bidders: 𝒘𝒊 

• Take bids 𝒗 

• Compute outcome: 

𝒐∗ = 𝒂𝒓𝒈𝒎𝒂𝒙 
𝒐

 𝒘𝒋𝒗𝒋 𝒐 +

𝒏

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔

𝝀 𝒐  

• Compute Bidder 𝒊’s payment: 

𝟏

𝒘𝒊
 𝒘𝒋𝒗𝒋 𝒐

−𝒊

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔−{𝒊}

+ 𝝀 𝒐−𝒊 −  𝒘𝒋𝒗𝒋 𝒐
∗

𝒋∈𝑩𝒊𝒅𝒅𝒆𝒓𝒔−{𝒊}

+ 𝝀 𝒐∗  

 

Key challenge 

Our 

problem... 

Whereas 

typically in 

machine 

learning… 



• More expressive function classes need more samples to learn 

• How to measure expressivity? 

– How well do functions from the class fit random noise? 

 

• Empirical Rademacher complexity: 

𝒙𝟏, … , 𝒙𝑵 ~ −𝟏, 𝟏 𝑵, 𝑺 = 𝒗𝟏, … , 𝒗𝑵  

𝑹𝑺 𝓐 = 𝔼𝒙 𝒔𝒖𝒑𝑨∈𝓐
𝟏

𝑵
 𝒙𝒊 ∙ 𝒓𝒆𝒗𝑨 𝒗𝒊 , where 

• Rademacher complexity: 

𝑹𝑵 𝓐 = 𝔼𝑺~𝑫𝑵 𝑹𝑺 𝓐  

Rademacher complexity 

 

• With probability at least 𝟏 − 𝜹, for all 𝑨 ∈ 𝓐, 

|empirical revenue – expected revenue| ≤ 𝟐𝑹𝑵 𝓐 +𝑼
𝟐 𝒍𝒏 𝟐/𝜹

𝑵
 

*𝑼 is the maximum revenue achievable over the support of the bidders’ valuation distributions 



• More expressive function classes need more samples to learn 

• How to measure expressivity? 

– How well do functions from the class fit random noise? 

 

• Empirical Rademacher complexity: 

𝒙𝟏, … , 𝒙𝑵 ~ −𝟏, 𝟏 𝑵, 𝑺 = 𝒗𝟏, … , 𝒗𝑵  

𝑹𝑺 𝓐 = 𝔼𝒙 𝒔𝒖𝒑𝑨∈𝓐
𝟏

𝑵
 𝒙𝒊 ∙ 𝒓𝒆𝒗𝑨 𝒗𝒊 , where 

• Rademacher complexity: 

𝑹𝑵 𝓐 = 𝔼𝑺~𝑫𝑵 𝑹𝑺 𝓐  

Rademacher complexity 

 

𝓐 = all binary valued functions 
𝑹𝑵 𝓐 =

𝟏

𝟐
 

𝓐 = one binary valued function 𝑹𝑵 𝓐 = 𝟎 



• Key idea: split revenue function into its simpler components 

– Weighted social welfare without any one bidder’s 

participation (𝒏 components) 

– Amount of revenue subtracted out to maintain strategy-

proof property 

• Then use compositional properties of Rademacher complexity 

and other tricks, for example: 

If 𝑭 = 𝒇 | 𝒇 = 𝒈 + 𝒉,𝒈 ∈ 𝑮, 𝒉 ∈ 𝑯 , then 𝑹𝑵 𝑭 ≤ 𝑹𝑵 𝑮 + 𝑹𝑵 𝑯  

Rademacher complexity of AMAs 

Let 𝓐 be the class of 𝒏-bidder, 𝒎-item AMA revenue functions. If 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

, 

then with high probability over a sample 𝑺~𝑫𝑵, 

|empirical revenue – expected revenue| < 𝝐 for all 𝒓𝒆𝒗𝑨 ∈ 𝓐. 

Theorem 
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[SL03] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

𝝀-auctions [J07] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

Mixed bundling auctions [J07] 

𝑵 = 𝑶 𝑼/𝝐 𝟐  

Mixed bundling auctions with reserve prices 

[TS12] 

𝑵 = 𝑶 𝑼/𝝐 𝟐𝒎𝟑  

Variables 

𝑵: sample size 

𝒏: # bidders 

𝒎: # items 

𝑼: maximum revenue 

achievable over the 

support of the 

bidders’ valuation 

distributions 

∪ ∪ 

∪ ∪ 

∪ 



• Class of auctions parameterized by a scalar 𝒄  

• Boost the allocations where one bidder gets all goods by 𝒄 
 

• value ∅,          ,         = 𝒗𝑵𝒊𝒏𝒂 ∅ + 𝒗𝑻𝒖𝒐𝒎𝒂𝒔(         ,         ) = 50¢ + 99¢ 

 

• value         ,          , ∅ = 𝒗𝑵𝒊𝒏𝒂         ,          + 𝒗𝑻𝒖𝒐𝒎𝒂𝒔(∅) = 50¢ + 99¢ 
 

• How large must the sample 𝑺 be in order to ensure that for all 
MBAs, |empirical revenue – expected revenue| < 𝝐? 

 

Mixed bundling auctions (MBAs) 

: $1 

: $0 

: $1 

 

: 50¢ 

: 50¢ 

: 50¢ 

NINA TUOMAS 



𝒄 

Structural properties of MBA revenue functions 

Fix 𝒗 ∈ 𝑺. Then 𝒓𝒆𝒗𝒗 𝒄  is piecewise linear with at most 𝒏 + 𝟏 

discontinuities. 

Lemma 
re

v
e

n
u

e
 



• Complexity measure for binary-valued functions only 

• Example: 𝑭 = {single interval on the real line} 

• No set of size 3 can be labeled in all 𝟐𝟑 ways by 𝑭 

 

VC-dimension 

How can we extend VC-dim to real-valued functions? 

+ + - 

• Class of functions 𝑭 shatters set 𝑺 = 𝒙𝟏, … , 𝒙𝑵  if 

    for all 𝐛 ∈ 𝟎, 𝟏 𝑵, there exists 𝒇 ∈ 𝑭 such that 𝒇 𝒙𝒊 = 𝒃𝒊 
• VC-dimension of 𝑭 is the 
    cardinality of the largest set 𝑺 that can be shattered by 𝑭 
 



• Sample 𝑺 = 𝒙𝟏, … , 𝒙𝑵  

• Class of functions 𝑭 into −𝑼,𝑼  

• 𝒓 = 𝒓(𝟏), … , 𝒓(𝑵) ∈ ℝ𝑵 

     witnesses the shattering of 𝑺 by 𝑭   

     if for all 𝑻 ⊆ 𝑺, there exists 𝒇𝑻 ∈ 𝑭  

     such that 𝒇𝑻 𝒙𝒊 ≤ 𝒓(𝒊) iff 𝒙𝒊 ∈ 𝑻 

• Pseudo-dimension of 𝑭 is the 

cardinality of the largest sample 𝑺 
that can be shattered by 𝑭 

Pseudo-dimension 

P-dim(𝑭) = VC-dim( (𝒙, 𝒓) ⟼ 𝟏𝒇 𝒙 −𝒓>𝟎| 𝒇 ∈ 𝑭 ) 

𝒙𝟏 𝒇 𝒙𝟏 ≤ 𝒓(𝟏) 𝟎

𝒙𝟐 𝒇 𝒙𝟐 ≤ 𝒓(𝟐) 𝟎

𝒙𝟑 𝒇 𝒙𝟑 > 𝒓(𝟑) 𝟏

𝒙𝟒 𝒇 𝒙𝟒 ≤ 𝒓(𝟒) 𝟎

𝒙𝟓 𝒇 𝒙𝟓 > 𝒓(𝟓) 𝟏

𝒙𝟔 𝒇 𝒙𝟔 ≤ 𝒓(𝟔) 𝟎

𝒙𝟕 𝒇 𝒙𝟕 > 𝒓(𝟕) 𝟏

𝒙𝟖 𝒇 𝒙𝟖 > 𝒓(𝟖) 𝟏

𝒙𝟗 𝒇 𝒙𝟗 ≤ 𝒓(𝟗) 𝟎

 



• Set of auction revenue functions 𝓐 with range in 𝟎, 𝑼 , 

distribution 𝑫 over valuations 𝒗. 

• For every 𝝐 > 𝟎, 𝜹 ∈ 𝟎, 𝟏 , if 

𝑵 = 𝑶
𝑼

𝝐

𝟐
P−dim(𝓐) ∗ 𝐥𝐧

𝑼

𝝐
+ 𝐥𝐧

𝟏

𝜹
, 

 then with probability at least 𝟏 − 𝜹 over a sample 𝑺~𝑫𝑵, 

 |empirical revenue – expected revenue| < 𝝐 

 for every 𝒓𝒆𝒗𝑨 ∈ 𝓐. 

 

 

 

How many samples do we need? 

Pseudo-dimension allows us to derive strong sample complexity bounds. 



How many samples do we need? 

Affine maximizer auctions [R79] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

Virtual valuation combinatorial auctions 

[SL03] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

𝝀-auctions [J07] 

𝑵 = 𝑶 𝑼𝒏𝒎 𝒎 𝑼+ 𝒏𝒎/𝟐 /𝝐
𝟐

 

Mixed bundling auctions [J07] 

𝑵 = 𝑶 𝑼/𝝐 𝟐  

Mixed bundling auctions with reserve prices 

[TS12] 

𝑵 = 𝑶 𝑼/𝝐 𝟐𝒎𝟑  

Variables 

𝑵: sample size 

𝒏: # bidders 

𝒎: # items 

𝑼: maximum revenue 

achievable over the 

support of the 

bidders’ valuation 

distributions 

∪ ∪ 

∪ ∪ 

∪ 



2-bidder MBA pseudo-dimension 

Let 𝓐 = 𝒓𝒆𝒗𝒄 𝒄≥𝟎 be the class of 𝒏-bidder, 𝒎-item mixed bundling 

auction revenue functions. Then P-dim(𝓐) = 𝑶 𝐥𝐨𝐠𝒏 . 

Theorem 



Proof sketch. 

• Fact: there exists a set of 2 samples that is shattered by 𝓐. 

 

 

• Suppose, for a contradiction, that 𝑺 = 𝒗𝟏, 𝒗𝟐, 𝒗𝟑  is shatterable. 

• Recall 𝒗𝟏 = 𝒗𝟏
𝟏, 𝒗𝟐

𝟏  

• This means: 

– There exists 𝒓 = 𝒓𝟏, 𝒓𝟐, 𝒓𝟑 ∈ ℝ𝟑 and 

     𝟐|𝑺| = 𝟖 MBA parameters 𝐂 = 𝒄𝟏, … , 𝒄𝟖  such that 

    𝒓𝒆𝒗𝒄𝟏 , … , 𝒓𝒆𝒗𝒄𝟖  induce all 8 binary labelings on 𝑺 with respect to 𝒓. 

2-bidder MBA pseudo-dimension 

Let 𝓐 = 𝒓𝒆𝒗𝒄 𝒄≥𝟎 be the class of 𝟐-bidder, 𝒎-item mixed bundling 

auction revenue functions. Then P-dim(𝓐) = 𝟐. 

Theorem 

We need to show that no set of 3 samples can be shattered by 𝓐. 



𝐦𝐢𝐧 𝒗𝟏
𝒊 𝒎 ,𝒗𝟐

𝒊 𝒎  

𝒄𝒊 
𝒄 

2-bidder MBA pseudo-dimension 

Fix 𝒗𝒊 ∈ 𝑺. Then 𝒓𝒆𝒗𝒗𝒊 𝒄  is piecewise linear with one discontinuity, 

with a slope of 2 followed by a constant function with value 

𝐦𝐢𝐧 𝒗𝟏
𝒊 𝒎 ,𝒗𝟐

𝒊 𝒎 . 

Lemma 
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𝐦𝐢𝐧 𝒗𝟐
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒄𝒊 
𝒄 

Case 1: 𝒓𝟑 < 𝒎𝒊𝒏 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒓𝟑 re
v
e

n
u

e
 



Case 1: 𝒓𝟑 < 𝒎𝒊𝒏 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒓𝒆𝒗𝒗𝟑(𝒄) increasing 𝒓𝒆𝒗𝒗𝟑 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒄𝟑 

𝒄 



Case 1: 𝒓𝟑 < 𝒎𝒊𝒏 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒓𝒆𝒗𝒗𝟑(𝒄) increasing 𝒓𝒆𝒗𝒗𝟑 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒓𝒆𝒗𝒗𝟐(𝒄) increasing 𝒓𝒆𝒗𝒗𝟐 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟐 𝒎 ,𝒗𝟐

𝟐 𝒎  

𝒄𝟑 𝒄𝟐 

𝒄 



Case 1: 𝒓𝟑 < 𝒎𝒊𝒏 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒓𝒆𝒗𝒗𝟑(𝒄) increasing 𝒓𝒆𝒗𝒗𝟑 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒓𝒆𝒗𝒗𝟐(𝒄) increasing 𝒓𝒆𝒗𝒗𝟐 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟐 𝒎 ,𝒗𝟐

𝟐 𝒎  

𝒓𝒆𝒗𝒗𝟏(𝒄) increasing 𝒓𝒆𝒗𝒗𝟏 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟏 𝒎 ,𝒗𝟐

𝟏 𝒎  

𝒄𝟑 𝒄𝟐 𝒄𝟏 

𝒄 



𝒓𝒆𝒗𝒗𝟑(𝒄) increasing 𝒓𝒆𝒗𝒗𝟑 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒓𝒆𝒗𝒗𝟐(𝒄) increasing 𝒓𝒆𝒗𝒗𝟐 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟐 𝒎 ,𝒗𝟐

𝟐 𝒎  

𝒓𝒆𝒗𝒗𝟏(𝒄) increasing 𝒓𝒆𝒗𝒗𝟏 𝒄 = 𝐦𝐢𝐧 𝒗𝟏
𝟏 𝒎 ,𝒗𝟐

𝟏 𝒎  

𝒄𝟑 𝒄𝟐 𝒄𝟏 

𝒄 

Case 1: 𝒓𝟑 < 𝒎𝒊𝒏 𝒗𝟏
𝟑 𝒎 ,𝒗𝟐

𝟑 𝒎  

𝒓𝒆𝒗𝒗𝟐(𝒄) increasing 

𝒓𝒆𝒗𝒗𝟏(𝒄) increasing 

We need: 

This is impossible, so we reach 

a contradiction. Therefore, no 

set of size 3 can be shattered 

by the class of 2-bidder MBA 

revenue functions, so the 

pseudo-dimension is at most 2. 

𝒓𝒆𝒗𝒗𝟑(𝒄) increasing 



Summary 

• Analyzed the sample complexity of learning over a 

hierarchy of deterministic combinatorial auctions 

• Uncovered structural properties of these auctions’ 

revenue functions along the way 

– Of independent interest beyond sample complexity 

results 


