
Stanford MS&E 215 / CS 264:

Algorithms with predictions

Ellen Vitercik∗

vitercik@stanford.edu

May 27, 2025

1 Motivation

These lecture notes describe a line of research on algorithms with predictions [3] that attempt
to achieve nearly optimal performance on “natural” inputs without sacrificing worst-case
guarantees. This line of research is built on the key observation that for natural inputs, we
may have some predictions about the optimal solutions (for example, that they resemble
instances that we have encountered in the past). These lecture notes overview a few easy-
to-follow approaches, but many papers have been written on this topic in the past few years,
which have been cataloged on the website algorithms-with-predictions.github.io.

2 Online algorithms

Much of the literature on algorithms with predictions has focused on online problems, where
the algorithm’s full input is not revealed upfront but only gradually or at some later stage.
For example, in caching, memory requests arrive over time, and we must decide what to keep
in the cache. However, we may have some predictions about the next time an element will be
requested, which we can use to fine-tune our caching policy [2]. Similarly, job lengths may be
unknown when scheduling jobs on a machine until the job terminates, but nonetheless, we
must decide which jobs to schedule when. However, we may reasonably have some predictions
about the job lengths before they begin [5].

2.1 Rent-or-buy (the ski rental problem)

The ski rental problem has emerged as a common test case in the algorithms-with-predictions
literature, used to test new ideas and methodologies. It models an abstract, common problem
involving a decision: incur a recurring expense or pay a one-time fee that eliminates the
ongoing cost. The problem is phrased in terms of a skier who will ski for an unknown
number of days (they do not know if they will like skiing or how long the season will be).
They can rent skis each day for $1 a day or buy for $b. For example, if they rent for five
days and then buy, they will pay 5 + b dollars. If the person was clairvoyant and knew they

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

https://algorithms-with-predictions.github.io

would ski for exactly x days, they should rent if x < b and buy immediately on the first day
otherwise. Thus, the optimal clairvoyant strategy pays OPT = min{x, b}.

Under the breakeven algorithm, the skier rents for b − 1 days, and if they want to keep
skiing, buy on the bth day. Under this algorithm, the skier will pay x if x < b and b−1+ b =
2b− 1 if x ≥ b, so ALG = x1{x<b} + (b− 1 + b)1{x≥b}. To evaluate an online algorithm, we
typically bound its competitive ratio (CR), which is the ratio between ALG and OPT. For
the breakeven algorithm,

CR =
ALG

OPT
=

x1{x<b} + (b− 1 + b)1{x≥b}

min{x, b}
.

By a simple case analysis, it is not hard to show that CR ≤ 2. Moreover, there is no
deterministic algorithm with a worst-case competitive ratio better than 2 [1].

2.2 Ski rental with predictions

We now describe a formulation of ski rental with predictions proposed by Purohit et al. [5].
Suppose the skier has a prediction y of the number of days he will ski with an error bound of
|x− y| ≤ η. In the algorithms-with-predictions literature, the goal is to design an algorithm
with the following guarantees [2]:

α-consistency: As η → 0, the algorithm’s competitive ratio converges to some value α.
Ideally, α should be close to 1, meaning the algorithm becomes nearly optimal as the
predictions improve.

β-robustness: No matter how large η is, the algorithm’s competitive ratio is bounded by
some β. The value of β should be independent of η, and ideally should not be too much
larger than the best-known worst-case competitive ratio (which is 2 for the ski rental
problem).

We will warm up with a naive algorithm, which buys immediately if y > b and otherwise
rents for however long the skier ends up skiing. In other words, this naive algorithm blindly
follows the prediction. The issue with this algorithm is best illustrated by the case where η
is enormous, x > b, and y = 1. In this case,

CR =
ALG

OPT
=

x

b
≤ y + η

b
=

1 + η

b
.

In other words, we cannot satisfy β-robustness for any β independent of η, except β = ∞.

Algorithm 1 Ski rental with predictions algorithm by Purohit et al. [5]

Input: Prediction y, parameter λ ∈ [0, 1].
1: if y ≥ b then
2: Buy on the start of day ⌈λb⌉
3: else
4: Buy on the start of day

⌈
b
λ

⌉
.

This warm-up motivates the algorithm by Purohit et al. [5], Algorithm 1, which is defined
by a parameter λ ∈ [0, 1]. To interpret this algorithm, it is helpful to analyze the extreme
cases where λ ∈ {0, 1}:

2

Figure 1: Figure by Purohit et al. [5] illustrating the tradeoff between consistency and robustness
for the ski rental problem. Check out the paper for details about the randomized algorithm, which
is not covered in these lecture notes.

• If λ = 1, Algorithm 1 can be simplified as follows: buy on the start of day b (if the
skier is still skiing). This is the breakeven algorithm with a competitive ratio of 2.

• If λ = 0, Algorithm 1 buys immediately if y ≥ b, and otherwise rents for however long
the skier ends up skiing. This corresponds to blindly following the predictions.

Thus, λ can be viewed as a parameter the user can tune based on how much they “trust”
the prediction, with λ = 1 corresponding to zero trust and λ = 0 corresponding to complete
trust.

Purohit et al. [5] prove the following guarantee.

Theorem 2.1. The competitive ratio of Algorithm 1 is bounded as follows:

CR ≤ min

{
1 + λ

λ
, 1 + λ+

η

(1− λ)OPT

}
.

We can see that Algorithm 1 is (1+λ)-consistent because as η → 0, this bound approaches
1+λ. Meanwhile, Algorithm 1 is 1+λ

λ
-robust because no matter how large η is, the competitive

ratio is bounded by 1+λ
λ
. By varying λ, we obtain a tradeoff between consistency and

robustness, illustrated by Figure 1.

Proof sketch of Theorem 2.1. This proof follows a case analysis. In the first case, y ≥ b, in
which case Algorithm 1 buys on the start of day ⌈λb⌉. If x < ⌈λb⌉, then both Algorithm 1
and the optimal clairvoyant strategy will rent all days, leading to a competitive ratio of

CR =
ALG

OPT
=

x

x
= 1. (1)

Next, if ⌈λb⌉ ≤ x ≤ b, Algorithm 1 will rent for ⌈λb⌉ − 1 days and then buy, paying a total
of ⌈λb⌉ − 1 + b. However, the optimal clairvoyant strategy will rent all days, leading to a
competitive ratio of

CR =
ALG

OPT
=

⌈λb⌉ − 1 + b

x
. (2)

3

Figure 2: Three jobs with processing times xblack, xyellow, and xblue. When the black job is scheduled
first, the yellow job is scheduled second, and the blue job is scheduled third, their completion times
are cblack, cyellow, and cblue.

Finally, if x ≥ b, then the optimal clairvoyant strategy will buy on the start of day b, leading
to a competitive ratio of

CR =
ALG

OPT
=

⌈λb⌉ − 1 + b

b
. (3)

Thus, when y ≥ b we have that

CR =
ALG

OPT
=

x
x

if x < ⌈λb⌉
⌈λb⌉−1+b

x
if ⌈λb⌉ ≤ x ≤ b

⌈λb⌉−1+b
b

if x ≥ b.

This is maximized when x = ⌈λb⌉, in which case

CR =
b+ ⌈λb⌉ − 1

⌈λb⌉
≤ 1 + λ

λ
.

The case where y < b follows by a similar case analysis.

3 Job scheduling

Next, we move on to a simple single-machine job scheduling problem. The task is to schedule
n jobs on a single machine. Each job has an unknown processing time xj. The goal is to
minimize the sum of the jobs’ completion times. In other words, if job j completes at time
cj, the goal is to minimize

∑
cj. The job completion times are illustrated in Figure 2. In

this problem, any job can be preempted at any time and resumed at a later time at no cost.
If the processing times are known, the optimal solution is simple: schedule the jobs in

increasing order of xj. If, without loss of generality, the jobs are ordered as x1 ≤ · · · ≤ xn,
then this optimal solution has a total completion time of

OPT =
n∑

i=1

i∑
j=1

xi.

Meanwhile, if the processing times are unknown, a simple round-robin algorithm achieves
a competitive ratio of 2 [4]. This algorithm schedules one unit of time per remaining job,
round-robin, until all jobs have been completed, as illustrated in Figure 3a. In what follows,
it will be useful to think of the round-robin algorithm in its equivalent, continuous form: if
we are scheduling k jobs round-robin, we can think of this as being equivalent to running all
k jobs simultaneously at a rate of 1

k
. This is illustrated in Figure 3b.

4

(a) Round-robin order of the jobs in Figure 2.

(b) Continuous version of the round-robin order. Instead of scheduling the black job, for example, round-
robin for 2 discrete timesteps, we schedule it in parallel with the two other jobs for six timesteps at a rate
of 1

3 .

Figure 3: Illustration of round-robin scheduling.

Figure 4: Illustration of preferential round-robin under the following conditions: λ = 1
2 , there are

three jobs, and the blue job has the shortest predicted processing time. The black and the yellow
jobs are run at a rate of 1−λ

3 = 1
6 and the blue job is run at a rate of λ+ 1−λ

3 = 2
3 .

Scheduling with predictions

Suppose we have predictions y1, . . . , yn of x1, . . . , xn with
∑

|yi − xi| ≤ η. As in Section 2.2,
Purohit et al. [5] define an algorithm that interpolates between two extremes: (1) the worst-
case round-robin (RR) algorithm, and (2) blindly following the predictions. If we completely
trust the predictions, we should schedule jobs in increasing order of yi. We refer to this
algorithm as shortest prediction job first (SPJF).

To interpolate between these extremes, Purohit et al. [5] propose an algorithm called
preferential round-robin, which is defined by a parameter λ ∈ [0, 1]. This algorithm runs
SPJF and RR simultaneously, SPJF at a rate of λ and RR at a rate of 1− λ. To illustrate,
suppose there are k jobs remaining, and the job with the shortest predicting processing
time is job i. Preferential round-robin will run each of the remaining jobs other than job i
simultaneously at a rate of 1−λ

k
. Meanwhile, it will run job i at a rate of 1−λ

k
+ λ. This is

illustrated by Figure 4.
Purohit et al. [5] show that preferential round-robin’s competitive ratio is bounded as

follows:

CR ≤ min

{
1

λ

(
1 +

2η

n

)
,

1

1− λ
· 2
}
. (4)

Thus, this algorithm is 1
λ
-consistent and 2

1−λ
-robust. To help interpret Equation (4), we

observe that 1+ 2η
n
is the CR of SPJF, whereas 2 is the CR of RR, so Equation (4) interpolates

between these two CRs.

5

References

[1] Anna R Karlin, Mark S Manasse, Larry Rudolph, and Daniel D Sleator. Competitive
snoopy caching. Algorithmica, 3:79–119, 1988.

[2] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned
advice. In International Conference on Machine Learning (ICML), 2018.

[3] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Tim
Roughgarden, editor, Beyond the worst-case analysis of algorithms. Cambridge University
Press, 2020.

[4] Rajeev Motwani, Steven Phillips, and Eric Torng. Nonclairvoyant scheduling. Theoretical
computer science, 130(1):17–47, 1994.

[5] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML
predictions. In Conference on Neural Information Processing Systems (NeurIPS), pages
9661–9670, 2018.

6

	Motivation
	Online algorithms
	Rent-or-buy (the ski rental problem)
	Ski rental with predictions

	Job scheduling

