
Stanford MS&E 215 / CS 264:

Guarantees for automated algorithm configuration

Ellen Vitercik∗

vitercik@stanford.edu

May 27, 2025

Today, we will discuss automated algorithm configuration, a broadly applicable way of
using ML to optimize the parameters of any parameterized algorithm, such as an integer
programming (IP) solver. Integer programming solvers like CPLEX and Gurobi each come
with over one hundred tunable parameters. In automated algorithm configuration, our goal
is to use a data-driven approach to find optimized, application-specific parameter settings.
This lecture is based on a paper by Gupta and Roughgarden [2], which was later covered in
a book chapter by Balcan [1].

1 Notation and problem definition

Our goal is to optimally configure an algorithm with parameters θ. We use the notation Π
to denote the set of all possible inputs to this algorithm. For example, if the algorithm is
an integer programming solver, then π ∈ Π would be an integer program. To model the
application domain, we assume there is an application-specific distribution D over Π. For
example, D might be a distribution over the particular routing IPs that a Bay Area shipping
company has to solve on a day-to-day basis. Alternatively, if Π is a known benchmark set,
then D might be the uniform distribution over this set.

We use the notation rθ(π) ∈ R to denote the “performance” of the algorithm parameter-
ized by θ on the input π, measured, for example, by its runtime or the quality of the solution
returned by the algorithm (we will see an example of this in Section 2).

Our goal is to find a parameter setting θ with good expected performance Eπ∼D[rθ(π)].
For example, if D represents the distribution of routing IPs that a shipping company has
to solve on a day-to-day basis, then Eπ∼D[rθ(π)] represents the expected performance (e.g.,
runtime) of our solver on IPs that we’ll encounter in the future. Since we do not know the
distribution D, we will sample a “training set” S = {π1, . . . , πN} ∼ DN and find a parameter
setting θ with good empirical performance

1

N

N∑
i=1

rθ(πi). (1)

This lecture will address two questions:

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

Question 1. Is it possible to find a parameter setting θ̂ that provably optimizes Equation (1)?

Question 2. How many sample instances do we need to avoid overfitting? In other words,
how many samples are sufficient to ensure that if we find a parameter setting θ̂ with good
empirical performance, then its expected future performance Eπ∼D [rθ̂(π)] will also be good?

2 Maximum weight independent set

For concreteness, this lecture is centered on a parameterized algorithm for the maximum
weight independent set (MWIS) problem. (In the homework, you will apply the same ideas
to another computational problem. Moreover, Balcan [1] provides a more general treatment
in her book chapter.) The input is a graph G = (V,E) with n = |V | vertex weights
w1, . . . , wn ≥ 0. For simplicity, we assume these weights are normalized so that

∑
wi ≤ 1.

The set S ⊆ V is an independent set if no two vertices in S are connected by an edge. The
goal is to find an independent set S with maximum weight∑

i∈S

wi.

For each vertex i ∈ V , let N(i) = {j : (i, j) ∈ E} be the neighborhood of i. A classic
greedy heuristic for MWIS is to greedily add vertices in decreasing order of

wi

1 + |N(i)|

while maintaining independence. Gupta and Roughgarden [2] propose a parameterized vari-
ant of this heuristic, which is defined by a parameter θ ≥ 0. It greedily adds vertices in
decreasing order of

wi

(1 + |N(i)|)θ

while maintaining independence.
In this context, we will measure algorithmic performance based on the weight of the

set that the algorithm returns. In particular, if S is the set returned by the algorithm
parameterized by θ on input G, then

rθ(G) =
∑
i∈S

wi.

Instantiating the notation from Section 1, D will be a distribution over graphs. Given a
“training set” of graphs S = {G1, . . . , GN} ∼ DN , our algorithm configuration goal is to
find a parameter setting that maximizes

1

N

N∑
i=1

rθ(Gi). (2)

To this end, we will begin with a useful lemma.

Lemma 2.1 (Gupta and Roughgarden [2]). Let G be a graph with vertex weights w1, . . . , wn.
There are

(
n
2

)
thresholds in [0,∞) such that if θ and θ′ lie between the same consecutive

thresholds, then rθ(G) = rθ′(G).

2

Figure 1: For θ smaller than the threshold, the greedy algorithm parameterized by θ would add
node 1 to the independent set before node 2. Otherwise, it would add node 2 before node 1.

Figure 2: In any interval between consecutive thresholds, the algorithm returns the exact same
independent set.

Proof. To simplify notation, we let ki = |N(i)|+ 1. The greedy algorithm parameterized by
θ would add node 1 to the independent set before node 2 if

w1

kθ
1

≥ w2

kθ
2

⇔ θ ≥ log k2
k1

w2

w1

,

as illustrated in Figure 1. Applying the same logic for all pairs of nodes i, j ∈ [n], we
obtain a total of

(
n
2

)
thresholds, as illustrated in Figure 2. If θ and θ′ lie between the same

consecutive thresholds, the algorithm parameterized by θ adds the same set of vertices to
the independent set as the algorithm parameterized by θ′. Consequently, rθ(G) = rθ′(G), as
illustrated in Figure 3.

Across all graphs G1, . . . , GN in the training set, we have a total of N
(
n
2

)
thresholds.

These thresholds partition the positive reals into M = N
(
n
2

)
+1 intervals I1, I2, . . . , IM such

that if θ, θ′ ∈ Ij, then for all graphs i ∈ [N], rθ(Gi) = rθ′(Gi). In other words,

1

N

N∑
i=1

rθ(Gi) =
1

N

N∑
i=1

rθ′(Gi).

This observation suggests the following natural algorithm for finding a parameter setting θ̂
that maximizes Equation (2):

1. Compute the N
(
n
2

)
thresholds corresponding to all graphs G1, . . . , GN in the training

set.

2. Calculate Equation (2) using an arbitrary θ between subsequent thresholds.

3. Return the parameter setting θ̂ that maximizes Equation (2).

We’ve now answered Question 1 for this problem.

3 Statistical guarantees

We now move on to Question 2: how many sample instances do we need to avoid overfitting?
In other words, how many samples are sufficient to ensure that for the parameter setting θ̂
returned by the algorithm above, Eπ∼D [rθ̂(G)] is also large?

3

Figure 3: Illustration of Lemma 2.1.

(a) Above/above (b) Below/below (c) Above/below (d) Below/above

Figure 4: Pseudo-dimension illustration. We pick two values π1, π2 ∈ [0, 1] and two targets z1, z2 ∈
R such that we can “achieve all above/below patterns” using affine functions.

3.1 Pseudo-dimension

We will use pseudo-dimension to answer Question 2. Pseudo-dimension is a complexity mea-
sure that applies to any class R of real-valued functions that map a set Π to some interval
[−H,H]. We first state pseudo-dimension informally in words. It’s ok if this informal de-
scription doesn’t make complete sense at first; it’s best illustrated with a picture. Informally,
the pseudo-dimension of R, denoted Pdim(R), is the size of the largest set {π1, . . . , πN} ⊆ Π
such that for some set of targets z1, z2, . . . , zN ∈ R, we can “achieve all above/below pat-
terns” using functions in R. You are probably wondering: what are these targets, and what
does it mean to “achieve all above/below patterns”? Let’s illustrate with an example.

Let Π = [0, 1] and let R be the set of all affine functions over R. An affine function ra,b(x)
is defined by a slope a and offset b, with ra,b(x) = ax+ b. We will show that Pdim(R) ≥ 2.
To do so, we need to identify two values π1, π2 ∈ [0, 1], together with two targets z1, z2 ∈ R,
such that we can “achieve all above/below patterns” using affine functions. In Figure 4, we
choose two arbitrary points π1 < π2 and two targets z1 < z2. The affine (constant) function in
Figure 4a achieves the “above/above” pattern because when we evaluate the affine function
at π1, it is larger than (or “above”) the target z1, and when we evaluate the function at π2,
it is larger than z2. Meanwhile, the affine function in Figure 4b achieves the “below/below”
pattern because when we evaluate the affine function at π1, it is smaller than (or “below”)
the target z1, and when we evaluate the function at π2, it is smaller than z2. Similarly, the
affine function in Figure 4c achieves the “above/below” pattern and the affine function in
Figure 4d achieves the “above/below” pattern.

To move toward the formal definition of pseudo-dimension, note that if r1 is the function

4

in Figure 4a, then (
1{r1(π1)≤z1}
1{r1(π2)≤z2}

)
=

(
0
0

)
.

Similarly, if r2, r3, and r4 are the functions in Figures 4b-4d, then(
1{r2(π1)≤z1}
1{r2(π2)≤z2}

)
=

(
1
1

)
,

(
1{r3(π1)≤z1}
1{r3(π2)≤z2}

)
=

(
0
1

)
, and

(
1{r4(π1)≤z1}
1{r4(π2)≤z2}

)
=

(
1
0

)
.

With this intuition, we now formally define pseudo-dimension.

Definition 3.1. The pseudo-dimension of R is the size of the largest set {π1, . . . , πN} ⊆ Π
such that for some set of targets z1, z2, . . . , zN ∈ R∣∣∣∣∣∣

 1{r(π1)≤z1}

...
1{r(πN)≤zN}

 : r ∈ R

∣∣∣∣∣∣ = 2N .

Pseudo-dimension implies an upper bound on the number of samples we need to avoid
overfitting:

Theorem 3.2 (Pollard [3]). For ϵ, δ ∈ (0, 1), let

N = O

(
Pdim(R)

ϵ2
log

1

δ

)
.

With probability at least 1− δ over π1, . . . , πN ∼ D, for all r ∈ R,∣∣∣∣∣ 1N
N∑
i=1

r(πi)− E
π∼D

[r(π)]

∣∣∣∣∣ ≤ ϵH.

3.2 Back to maximum weight independent set

Let’s return back to MWIS. In Section 2, we determined that for N graphs G1, . . . , GN , there
are M = N

(
n
2

)
+ 1 intervals I1, I2, . . . , IM such that if θ, θ′ ∈ Ij, then for all graphs i ∈ [N],

rθ(Gi) = rθ′(Gi). Said another way, 1{rθ(G1)≤z1}
...

1{rθ(GN)≤zN}

 =

 1{rθ′ (G1)≤z1}
...

1{rθ′ (GN)≤zN}

 .

Therefore, ∣∣∣∣∣∣

 1{rθ(G1)≤z1}

...
1{rθ(GN)≤zN}

 : θ ≥ 0

∣∣∣∣∣∣ ≤ N

(
n

2

)
+ 1. (3)

This fact allows us to bound the pseudo-dimension of the set R = {rθ : θ > 0}.

Theorem 3.3 (Gupta and Roughgarden [2]). Let R = {rθ : θ > 0}. Then Pdim(R) =
O(log n).

5

Proof. LetN = Pdim(R). By definition, there exist graphsG1, . . . , GN and targets z1, . . . , zN
such that

2N =

∣∣∣∣∣∣

 1{rθ(G1)≤z1}

...
1{rθ(GN)≤zN}

 : θ > 0

∣∣∣∣∣∣ ≤ N

(
n

2

)
+ 1,

where the inequality follows from Equation (3). By the following lemma, this means that
Pdim(R) = N = O(log n).

Lemma 3.4 (Lemma A.2 by Shalev-Shwartz and Ben-David [4]). Let a ≥ 1 and b > 0. If
x < a log x+ b, then x < 4a log(2a) + 2b.

Finally, if we combine this pseudo-dimension bound with Theorem 3.2, we obtain the
following guarantee: for ϵ, δ ∈ (0, 1), let

N = O

(
log n

ϵ2
log

1

δ

)
.

Then with probability at least 1− δ over G1, . . . , GN ∼ D, for all θ > 0,∣∣∣∣∣ 1N
N∑
i=1

rθ(Gi)− E
G∼D

[rθ(G)]

∣∣∣∣∣ ≤ ϵ.

We have now answered Question 2! Given N = O
(
logn
ϵ2

log 1
δ

)
sample graphs, we know

that since θ̂ (the parameter setting we obtained in Section 2) leads to independent sets with
large weight on average

1

N

N∑
i=1

rθ̂(Gi),

it will also lead to independent sets with large weight in expectation EG∼D [rθ̂(G)]. In fact,

as extra credit in the homework, you will show that θ̂ is nearly optimal in expectation:

E
G∼D

[rθ̂(G)] ≥ max
θ≥0

E
G∼D

[rθ(G)]− 2ϵ.

References

[1] Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden, editor, Be-
yond the Worst-Case Analysis of Algorithms. Cambridge University Press, 2020.

[2] Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992–1017, 2017.

[3] David Pollard. Convergence of Stochastic Processes. Springer, 1984.

[4] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge University Press, 2014.

6

