Welcome to Machine Learning for Algorithm Design!

About me

Ellen Vitercik

Assistant Professor at Stanford Management Science & Engineering Computer Science

Research revolves around

- Machine learning for algorithm design
- Interface between economics and computation

About me

Grew up in Lincoln, Vermont

BA: Columbia *Math*

PhD: Carnegie Mellon Computer Science

Postdoc: UC Berkeley

Plan for today

- 1. Introduction
- 2. Course logistics
- 3. Overview of course topics

How to integrate machine learning into algorithm design?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

Algorithm design

Can machine learning guide algorithm discovery?

How to integrate machine learning into algorithm design?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Algorithm configuration

Example: Integer programming solvers

Most popular tool for solving combinatorial (& nonconvex) problems

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has **170-page** manual describing **172** parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

CPX PARAM NODEFILEIND 100 CPX PARAM NODELIM 101 CPX PARAM NODESEL 102 CPX_PARAM_NZREADLIM 103 CPX PARAM OBJDIF 104 CPX_PARAM_OBJLLIM 105 CPX_PARAM_OBJULIM 105 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_PERIND 110 CPX PARAM PERLIM 111 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHAFTERTIME 116 CPX_PARAM_POLISHTIME (deprecated) 116 CPX_PARAM_POPULATELIM 117 CPX PARAM PPRIIND 118 CPX_PARAM_PREDUAL 119 CPX_PARAM_PREIND 120 CPX_PARAM_PRELINEAR 120 CPX_PARAM_PREPASS 121 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPX_PARAM_PROBE 123 CPX_PARAM_PROBEDETTIME 124 CPX_PARAM_PROBETIME 124 CPX_PARAM_QPMAKEPSDIND 125 CPX_PARAM_QPMETHOD 138 CPX PARAM OPNZREADLIM 126

CPX PARAM TRELIM 160 CPX_PARAM_TUNINGDETTILIM 160 CPX PARAM TUNINGDISPLAY 162 CPX_PARAM_NUMERICALEMPHASIS_102CPX_PARAM_TUNINGMEASURE_163 CPX_PARAM_TUNINGREPEAT 164 CPX_PARAM_TUNINGTILIM 165 CPX_PARAM_VARSEL 166 CPX_PARAM_WORKDIR 167 CPX_PARAM_WORKMEM 168 CPX PARAM WRITELEVEL 169 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPXPARAM_DistMIP_Rampup_Duration 128 CPXPARAM_LPMethod 136 CPXPARAM_MIP_Cuts_BQP 38 CPXPARAM_MIP_Cuts_LocalImplied 77 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM_MIP_Cuts_ZeroHalfCut 170 CPXPARAM_MIP_Limits_CutsFactor 52 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP Limits Solutions 79 CPXPARAM MIP Limits StrongCand 154 CPXPARAM_MIP_Limits_StrongIt 154 CPXPARAM_MIP_Limits_TreeMemory 160 CPXPARAM_MIP_OrderType 91 CPXPARAM_MIP_Pool_AbsGap 146 CPXPARAM_MIP_Pool_Capacity 147 CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130 CPX PARAM REDUCE 131 CPX_PARAM_REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX PARAM REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX_PARAM_RLT 136 CPX_PARAM_ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX_PARAM_SOLNPOOLAGAP_146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX_PARAM_SOLUTIONTYPE 152 CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX_PARAM_STRONGITLIM 154 CPX PARAM SUBALG 99 CPX_PARAM_SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156 CPX_PARAM_THREADS 157 CPX_PARAM_TILIM 159

CPXPARAM_MIP_Pool_RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM MIP SubMIP NodeLimit 155 CPXPARAM OptimalityTarget 106 CPXPARAM_Output_WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM Sifting Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM_Tune_DetTimeLimit 160 CPXPARAM Tune Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM_Tune_TimeLimit 165 CPXPARAM_WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX_PARAM_FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX_PARAM_GUBCOVERS 75 CPX_PARAM_HEURFREQ 76 CPX_PARAM_IMPLBD 76 CPX_PARAM_INTSOLFILEPREFIX 78 CPX_PARAM_COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX_PARAM_NETITLIM 98 CPX PARAM NETPPRIIND 98

CPX_PARAM_BRDIR 39 CPX_PARAM_BTTOL 40 CPX_PARAM_CALCOCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX_PARAM_COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 83CPX_PARAM_DATACHECK 54 CPX_PARAM_DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX PARAM FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Algorithm configuration

IP solvers (CPLEX, Gurobi) have a **ton** parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

How to integrate machine learning into algorithm design?

Algorithm configuration

How to tune an algorithm's parameters?

Algorithm selection

Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades Has led to beautiful, practical algorithms

Worst-case instances rarely occur in practice

In practice:

Instances solved in **past** are similar to **future** instances...

In practice, we have data about the application domain

Routing problems a shipping company solves

In practice, we have data about the application domain

Clustering problems a biology lab solves

In practice, we have data about the application domain

Scheduling problems an airline solves

Course topics

Range of techniques for integrating ML into algorithm design

1. Applied topics

- i. Graph neural networks
- ii. Integer programming and SAT
- iii. Reinforcement learning
- iv. Data structures

2. Theoretical topics

- i. Statistical guarantees and online algorithm configuration
- ii. Algorithms with predictions

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
- 4. Theoretical topics
- 5. Plan for the next 2 weeks

Course logistics

Website: witercik.github.io/ml4algs

Office hours:

- Tuesday 11am-12pm in Huang 250
- Or by appointment, please feel free to reach out!

Course setup

1. Lectures given by the instructor

- Key techniques for integrating ML into algorithm design
- E.g., graph neural networks, reinforcement learning, theoretical ML

2. Paper discussions

• Covering influential papers in the field

Paper discussions

- 10 paper discussion classes
- Each student will take on a **presenter role** for 5 discussions
 - Archaeologist
 - Researcher
 - Industry R&D expert
 - Private investigator
 - NeurIPS reviewer
 - (Based on a course design by <u>Alec Jacobson and Colin Raffel</u>)
- (Students may need to pair up depending on class size)

Paper discussions

- Presentations will be approximately 7 minutes + 5 min Q&A
- I'll distribute a Google spreadsheet next week to select roles

Presenter role: Archaeologist

- Determine where the paper sits in the context of previous and subsequent work
- Find and report on:
 - 1. One older paper cited by the current paper, and
 - 2. One newer paper citing this current paper

Presenter role: Researcher

- Propose a follow-up project on the current paper
 - Should only be possible due to the paper's existence and success

Presenter role: Industry R&D expert

- Convince your industry bosses that it's worth your time and money to implement this paper into the company's pipeline
- Choose an appropriate company and product or application

Presenter role: Private investigator

- Find out background information on one of the paper authors
 - Where have they worked?
 - What did they study?
 - What previous projects might have led to working on this one?

Presenter role: NeurIPS reviewer

Answer the questions on the NeurIPS review form *Originality, quality, clarity, significance, etc.*

Non-presenter assignment

By 1pm on the day of class, post to Ed discussion: **at least one question about the paper**. E.g.

- Something you're confused about
- Something you'd like to hear discussed more

Course project

- All students will write a "mini-paper" as a final project
- Can be empirical, theoretical, or both

Project policies

- Encouraged to work in groups!
 - Up to 3 people (except with special permission)
- Groups of 2 should put twice as much work into the final project than for a sole-author project
 - Similarly for groups of 3
- Paper length for a final project write-up is 3 + n where n is the number of people in the group that worked on the project

• Not including references or the contributions paragraph

• Required to include a "contributions" paragraph in final paper that concretely lists each author's contributions

Milestones

April 17-21: All groups meet with me to discuss project ideas

- Please come prepared with ideas/interests!
- Look out for an email about scheduling this meeting
- May 5: Submit a progress report of 1-2 pages
 - Describe your project and partial progress

May 11: Short presentation about a paper related to your project

June 8: Present your final project during class

June 12: Submit your final report

Grading

Out of 100 points:

- Discussion: 60 points
 - Each **presentation** is worth 10 points
 - Each **non-presenter assignment** is worth 2 points
- Project: 40 points
 - Progress report: 7 points
 - Midterm presentation: 8 points.
 - Novelty: 5 points
 - Project should propose something new (new application, method, perspective)
 - Writing: 10 points
 - Final paper should be readable and complete and situate itself among related work
 - Final presentation: 10 points
 - Final presentation should be clear and provide a solid picture of what you did

Prerequisites

- Introductory algorithms class
- Machine learning class is helpful but not required

Outline

- 1. Introduction
- 2. Course logistics

3. Applied topics

- i. Graph neural networks
- ii. Integer programming and SAT
- iii. Reinforcement learning
- iv. Data structures
- 4. Theoretical topics
- 5. Plan for the next 2 weeks

Many types of data are graphs

Event Graphs

Image credit: <u>Wikipedia</u>

Food Webs

Image credit: SalientNetworks

Computer Networks

Image credit: Pinterest

Particle Networks

Disease Pathways

Image credit: visitlondon.com

Underground Networks

GNN motivation

Special type of NN architecture for tasks involving graphs How to utilize relational structure for better prediction?

Shortest path prediction

Example: predicting the shortest path in a graph

MST prediction

Example: predicting a minimum spanning tree

Bellman-Ford: Message passing

Why use GNNs for algorithm design?

- Classical algorithms are designed with abstraction in mind
 - Enforce their inputs to conform to stringent preconditions
- Challenges:
 - Natural inputs may be only partially observable
 - Manually converting natural inputs into abstract inputs leads to information loss
- Goal: end-to-end neural pipeline which is fully differentiable

Papers we'll read

Veličković, Petar, et al. "Neural execution of graph algorithms." *ICLR*. 2020.

- GNNs don't work off-the-shelf for combinatorial tasks
- How to **align** GNN architectures to these tasks

Cappart, Quentin, et al. "Combinatorial optimization and reasoning with GNNs." *arXiv*.

• **Broad overview** of the field; current & future directions

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
 - i. Graph neural networks
 - ii. Integer programming and SAT
 - iii. Reinforcement learning
 - iv. Data structures
- 4. Theoretical topics
- 5. Plan for the next 2 weeks

SAT

 $(x_1 \lor x_4)$ **SAT:** Is there an assignment of $x_1, \ldots, x_{12} \in \{0,1\}$ such that this formula evaluates to **True**? $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee x_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$

Integer program

Integer program (IP)

 $\begin{array}{ll} \max & \boldsymbol{c} \cdot \boldsymbol{z} \\ \text{s.t.} & A \boldsymbol{z} \leq \boldsymbol{b} \\ & \boldsymbol{z} \in \mathbb{Z}^n \end{array}$

Tons of applications:

Robust ML

MAP estimation

Clustering

Routing

Scheduling

Branch and bound (B&B)

Tree-building policies

Tree-building policies can have a huge effect on tree size

E.g., node selection, variable selection,

Example: variable selection policies

Score-based variable selection policies:

At leaf Q, branch on variable z_i maximizing score $(Q, i) \in \mathbb{R}$

Many options! Little known about which to use when

Gauthier, Ribière, Math. Prog. '77; Beale, Annals of Discrete Math. '79; Linderoth, Savelsbergh, INFORMS JoC '99; Achterberg, Math. Prog. Computation '09; Gilpin, Sandholm, Disc. Opt. '11; ...

Example: variable selection policies

Score-based variable selection policies:

At leaf Q, branch on variable z_i maximizing score $(Q, i) \in \mathbb{R}$

Given d scoring rules score₁, ..., score_d, possible to **learn** best convex combination ρ_1 score₁ + ··· + ρ_d score_d?

History: For a specific score¹ and score²:

- ¹/₂ score₁ + ¹/₂ score₂ Gauthier and Ribière '79
 score₁ Bénichou et al. '71 and Beale '71
- $\frac{1}{3}$ score₁ + $\frac{2}{3}$ score₂ Linderoth and Savelsbergh '99 $\frac{1}{6}$ score₁ + $\frac{2}{6}$ score₂ Achterberg '09

ML + algorithm design: Potential impact

Example: integer programming

- Used heavily throughout industry and science
- Many different ways to incorporate learning into solving
- Solving is very difficult, so ML can make a huge difference

Primary challenge

Algorithmic performance is a **volatile** function of parameters **Complex** connection between parameters and performance

Performance

Papers we'll read

- Hutter, Frank, et al. "ParamILS: an automatic algorithm configuration framework." *JAIR* 36 (2009): 267-306.
 - Methods for **searching** through combinatorial parameter space
- Xu, Lin, et al. "SATzilla: portfolio-based algorithm selection for SAT." *JAIR* 32 (2008): 565-606.
 - How to compile a **portfolio** of algorithm configurations
 - At runtime, use **ML** to **select** a configuration from portfolio
- Gasse, Maxime, et al. "Exact combinatorial optimization with graph convolutional neural networks." *NeurIPS*. (2019).
 - Use **GNNs** to design **variable selection** policies

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
 - i. Graph neural networks
 - ii. Integer programming and SATiii. Reinforcement learning
 - iv. Data structures
- 4. Theoretical topics
- 5. Plan for the next 2 weeks

Learner interaction with environment

Markov decision process

S: set of states

A: set of actions

Transition probability distribution P(s'|s,a)Probability of entering state s' from state s after taking action a

Reward function $R: S \rightarrow \mathbb{R}$

Goal: Policy $\pi: S \rightarrow A$ that maximizes total (discounted) reward

RL for combinatorial optimization [Dai et al., NeurIPS'17]

Minimum vertex cover:

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

RL for combinatorial optimization

Goal: learn a scoring function to guide greedy algorithm

Problem	Greedy operation
Minimum vertex cover	Insert node into cover
Maximum cut	Insert node into subset
Traveling salesman problem	Insert node into sub- tour

RL for combinatorial optimization

Greedy algorithm	Reinforcement learning
Partial solution	State
Scoring function	Q-function
Select best node	Greedy policy

Repeat until all edges are covered:1. Compute node scores2. Select best node with respect to score3. Add best node to partial solution

Paper we'll read

Dai, Hanjun, Khalil, Elias, et al. "Learning combinatorial optimization algorithms over graphs." *NeurIPS'17*.

- Develop RL algorithms for a variety of combinatorial problems
- Suggest RL could be used for **algorithm discovery** "New and interesting" greedy strategies for MAXCUT and MVC "which **intuitively make sense** but have **not been analyzed** before," thus could be a "good **assistive tool** for discovering new algorithms."

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
 - i. Graph neural networks
 - ii. Integer programming and SAT
 - iii. Reinforcement learning
 - iv. Data structures
- 4. Theoretical topics
- 5. Plan for the next 2 weeks

Classical databases

In classical data structures,

databases are **general purpose**. 1-size-fits all.

Example: B-trees

- Self-balancing tree data structure
- Maintains sorted data
- Searches, insertions, and deletions in logarithmic time

B-trees

Slide by Alex Beutel

If data is all integers from 0 to 1 million?

If data is all integers from 0 to 1 million?

No need for B-tree

- O(1) look-up
- O(1) memory

B-trees

Slide by Alex Beutel

B-trees

B-trees are models

Slide by Alex Beutel
B-trees are models

Model:
$$f(key) \rightarrow pos$$

Then searches from

[pos - err, pos + err]

Replace B-tree with **neural network**?

Paper we'll read

Kraska, Tim, et al. "The case for learned index structures." *SIGMOD*. 2018.

- Naïve approach **fails**
- Investigate how to successfully **integrate** ML into databases:
 - B-trees
 - Hash maps
 - Bloom filters

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
- 4. Theoretical topics
 - i. Statistical guarantees and online algorithm configuration
 - ii. Algorithms with predictions
- 5. Plan for the next 2 weeks

Algorithm configuration

Example: IP solvers (CPLEX, Gurobi) have a **ton** parameters

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

Modeling the application domain

Problem instances drawn from application-specific dist. ${\cal D}$

E.g., distribution over routing problems

Widely assumed in applied research, e.g.:

Horvitz, Ruan, Gomez, Kautz, Selman, Chickering Xu, Hutter, Hoos, Leyton-Brown He, Daumé, Eisner UAI'01 JAIR'08 NeurIPS'14

And theoretical research on algorithm configuration, e.g.:

Gupta, Roughgarden Balcan

ITCS'16 Book Chapter'20

Automated configuration procedure

- 1. Fix parameterized algorithm
- 2. Receive set of "typical" inputs sampled from unknown ${\cal D}$

3. Return parameter setting $\widehat{\rho}$ with good avg performance

Runtime, solution quality, etc.

Automated configuration procedure

Statistical question: Will $\hat{\rho}$ have good future performance? More formally: Is the expected performance of $\hat{\rho}$ also good?

Automated configuration procedure

- 1. Fix parameterized algorithm
- 2. Receive set of "typical" inputs sampled from unknown \mathcal{D}

3. Return parameter setting $\hat{\rho}$ with good avg performance

Runtime, solution quality, etc.

Model is known as the "**batch-learning** setting" Optimize over a **batch** of input problem instances

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight

- Impossible in the worst case
- Under what conditions is online configuration possible?

Paper we'll read

Gupta, Rishi, and Tim Roughgarden. "A PAC approach to application-specific algorithm selection." *ITCS*'16.

Statistical guarantees for algorithm configuration

- Greedy algorithms
- Tuning the step-size of gradient decent
- Etc.

Online configuration for max-weight **independent set**

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
- 4. Theoretical topics
 - i. Statistical guarantees and online algorithm configuration
 - ii. Algorithms with predictions
- 5. Plan for the next 2 weeks

Algorithms with predictions

Assume you have some **predictions** about your problem, e.g.:

Probability any given element is in a huge database
Kraska et al., SIGMOD'18; Mitzenmacher, NeurIPS'18
In caching, the next time you'll see an element
Lykouris, Vassilvitskii, ICML'18

Main question:

How to use predictions to improve algorithmic performance?

Example: Ski rental problem

- **Problem:** Skier will ski for unknown number of days
 - Can either rent each day for \$1/day or buy for \$b
 - E.g., if ski for 5 days and then buy, total price is 5 + b
- If ski x days, **opt clairvoyant** strategy pays $OPT = min\{x, b\}$
- Breakeven strategy: Rent for b 1 days, then buy $CR = \frac{ALG}{OPT} = \frac{x \mathbf{1}_{\{x < b\}} + (b - 1 + b) \mathbf{1}_{\{x \ge b\}}}{\min\{x, b\}} < 2 \text{ (best deterministic)}$

Competitive ratio

Example: Ski rental problem

Prediction y of number of skiing days, error $\eta = |x - y|$

Algorithm (with parameter $\lambda \in (0,1)$): If $y \ge b$, buy on start of day $\lceil \lambda b \rceil$; else buy on start of day $\left\lceil \frac{b}{\lambda} \right\rceil$

Don't jump the gun...

...but don't wait too long

Theorem: Algorithm has $CR \le \min\left\{\frac{1+\lambda}{\lambda}, 1+\lambda+\frac{\eta}{(1-\lambda)OPT}\right\}$

- If predictor is perfect ($\eta = 0$), **CR is small** ($\leq 1 + \lambda$)
- No matter how big η is, setting $\lambda = 1$ recovers baseline CR = 2

Design principals

Consistency:

Predictions are perfect \Rightarrow recover offline optimal

Robustness:

Predictions are terrible \Rightarrow no worse than worst-case

Many different applications

Online advertising

Mahdian, Nazerzadeh, Saberi, EC'07; Devanur, Hayes, EC'09; Medina, Vassilvitskii, NeurIPS'17; ...

Caching

Lykouris, Vassilvitskii, ICML'18; Rohatgi, SODA'19; Wei, APPROX-RANDOM'20; ...

Frequency estimation

Hsu, Indyk, Katabi, Vakilian, ICLR'19; ...

Learning low-rank approximations

Indyk, Vakilian, Yuan, NeurIPS'19; ...

Scheduling

Mitzenmacher, ITCS'20; Moseley, Vassilvitskii, Lattanzi, Lavastida, SODA'20; ...

Matching

Antoniadis, Gouleakis, Kleer, Kolev, NeurIPS'20; ...

Queuing

Mitzenmacher, ACDA'21; ...

Covering problems

Bamas, Maggiori, Svensson, NeurlPS'20; ...

algorithms-with-predictions.github.io

Outline

- 1. Introduction
- 2. Course logistics
- 3. Applied topics
- 4. Theoretical topics
- 5. Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course

- Supervised learning model
- Regression
- Classification
- Neural networks (multi-layer perceptrons)

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course

- Linear programming
- Integer programming solvers
- SAT solving

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course

Thursday 4/13: GNN crash-course

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course

Thursday 4/13: GNN crash-course

Starting Tuesday 4/18: GNN paper discussions