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How to integrate machine learning
into algorithm design?

Algorithm design
Can machine learning guide algorithm discovery?
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Given a variety of algorithms, which to use?

Algorithm configuration
How to tune an algorithm’s parameters?
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Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

Algorithm configuration



IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone
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IP solvers (CPLEX, Gurobi) have a ton parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Algorithm configuration

Best configuration for routing problems
likely not suited for scheduling

What’s the best configuration for the application at hand?
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Algorithm selection in theory

Worst-case analysis has been the main framework for decades
Has led to beautiful, practical algorithms

Worst-case instances rarely occur in practice

In practice:
Instances solved in past are similar to future instances…



In practice, we have data about 
the application domain

Routing problems a shipping company solves



Clustering problems a biology lab solves

In practice, we have data about 
the application domain



Scheduling problems an airline solves

In practice, we have data about 
the application domain



Course topics
Range of techniques for integrating ML into algorithm design

1. Applied topics
i. Graph neural networks
ii. Integer programming and SAT
iii. Reinforcement learning
iv. Data structures

2. Theoretical topics
i. Statistical guarantees and online algorithm configuration
ii. Algorithms with predictions
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2. Course logistics
3. Applied topics
4. Theoretical topics
5. Plan for the next 2 weeks



Course logistics

Website: vitercik.github.io/ml4algs 

Office hours:
• Tuesday 11am-12pm in Huang 250
• Or by appointment, please feel free to reach out!

vitercik.github.io/ml4algs


Course setup

1. Lectures given by the instructor
• Key techniques for integrating ML into algorithm design
• E.g., graph neural networks, reinforcement learning, theoretical ML

2. Paper discussions
• Covering influential papers in the field



Paper discussions

• 10 paper discussion classes
• Each student will take on a presenter role for 5 discussions
• Archaeologist
• Researcher
• Industry R&D expert
• Private investigator
• NeurIPS reviewer
• (Based on a course design by Alec Jacobson and Colin Raffel)

• (Students may need to pair up depending on class size)

https://colinraffel.com/blog/role-playing-seminar.html


Paper discussions

• Presentations will be approximately 7 minutes + 5 min Q&A
• I’ll distribute a Google spreadsheet next week to select roles



Presenter role: Archaeologist

• Determine where the paper sits in the context of previous and 
subsequent work
• Find and report on:

1. One older paper cited by the current paper, and
2. One newer paper citing this current paper



Presenter role: Researcher

• Propose a follow-up project on the current paper
• Should only be possible due to the paper’s existence and success



Presenter role: Industry R&D expert

• Convince your industry bosses that it's worth your time and 
money to implement this paper into the company's pipeline
• Choose an appropriate company and product or application



Presenter role: Private investigator

• Find out background information on one of the paper authors
• Where have they worked?
• What did they study?
• What previous projects might have led to working on this one?



Presenter role: NeurIPS reviewer

Answer the questions on the NeurIPS review form
Originality, quality, clarity, significance, etc.



Non-presenter assignment

By 1pm on the day of class, post to Ed discussion:
at least one question about the paper. E.g.
• Something you're confused about
• Something you'd like to hear discussed more



Course project

• All students will write a "mini-paper" as a final project
• Can be empirical, theoretical, or both



Project policies

• Encouraged to work in groups!
• Up to 3 people (except with special permission)

• Groups of 2 should put twice as much work into the final 
project than for a sole-author project
• Similarly for groups of 3

• Paper length for a final project write-up is 3 + n where n is the 
number of people in the group that worked on the project
• Not including references or the contributions paragraph

• Required to include a “contributions” paragraph in final paper 
that concretely lists each author's contributions



Milestones

April 17-21: All groups meet with me to discuss project ideas
• Please come prepared with ideas/interests!
• Look out for an email about scheduling this meeting

May 5: Submit a progress report of 1-2 pages
• Describe your project and partial progress

May 11: Short presentation about a paper related to your 
project
June 8: Present your final project during class
June 12: Submit your final report



Grading
Out of 100 points:
• Discussion: 60 points

• Each presentation is worth 10 points
• Each non-presenter assignment is worth 2 points

• Project: 40 points
• Progress report: 7 points
• Midterm presentation: 8 points.
• Novelty: 5 points

• Project should propose something new (new application, method, perspective)
• Writing: 10 points

• Final paper should be readable and complete and situate itself among related work
• Final presentation: 10 points

• Final presentation should be clear and provide a solid picture of what you did



Prerequisites

• Introductory algorithms class
• Machine learning class is helpful but not required
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Many types of data are graphs

Slide by Leskovec



GNN motivation

Special type of NN architecture for tasks involving graphs
How to utilize relational structure for better prediction?



Shortest path prediction

Example: predicting the shortest path in a graph



MST prediction

Example: predicting a minimum spanning tree



GNN: Message passing

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks
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GNN: Message passing

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



Bellman-Ford: Message passing
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Why use GNNs for algorithm design?

• Classical algorithms are designed with abstraction in mind
• Enforce their inputs to conform to stringent preconditions

• Challenges:
• Natural inputs may be only partially observable
• Manually converting natural inputs into abstract inputs leads to 

information loss
• Goal: end-to-end neural pipeline which is fully differentiable

Slide inspired by Petar Veličković

Natural inputs Natural outputs



Papers we’ll read

Veličković, Petar, et al. "Neural execution of graph algorithms." 
ICLR. 2020.
• GNNs don’t work off-the-shelf for combinatorial tasks
• How to align GNN architectures to these tasks

Cappart, Quentin, et al. "Combinatorial optimization and 
reasoning with GNNs." arXiv.
• Broad overview of the field; current & future directions
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SAT

∧ 𝑥! ∨ 𝑥"
∧ 𝑥! ∨ �̅�# ∨ �̅�$
∧ 𝑥! ∨ 𝑥$ ∨ 𝑥!%
∧ 𝑥% ∨ 𝑥!!
∧ �̅�& ∨ �̅�# ∨ 𝑥'
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∧ 𝑥& ∨ 𝑥!( ∨ �̅�!%

SAT: Is there an assignment of 𝑥!, … , 𝑥!% ∈ {0,1}
such that this formula evaluates to True? 



Integer program

Integer program (IP) 
max 𝒄 - 𝒛
s.t. 𝐴𝒛 ≤ 𝒃

𝒛 ∈ ℤ)

Tons of applications:

Robust ML MAP estimation SchedulingClustering Routing
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Tree-building policies can have a huge effect on tree size

Tree-building policies

E.g., node selection, variable selection, ….



Example: variable selection policies
Score-based variable selection policies:
At leaf 𝑄, branch on variable 𝑧* maximizing 𝐬𝐜𝐨𝐫𝐞 𝑸, 𝒊 ∈ ℝ

Given 𝑑 scoring rules score!, … , score+, possible to
learn best convex combination 𝜌!score! +⋯+ 𝜌,score+?

History: For a specific score! and score%:
• *

+
score* +

*
+
score+ Gauthier and Ribière ’79

• score* Bénichou et al. ‘71 and Beale ’71
• *

,
score* +

+
,
score+ Linderoth and Savelsbergh ‘99

• *
/
score* +

-
/
score+ Achterberg ‘09

Many options! Little known about which to use when
Gauthier, Ribière, Math. Prog. ‘77; Beale, Annals of Discrete Math. ‘79; Linderoth, Savelsbergh, 
INFORMS JoC ’99; Achterberg, Math. Prog. Computation ’09; Gilpin, Sandholm, Disc. Opt. ‘11; …



Example: variable selection policies
Score-based variable selection policies:
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ML + algorithm design: Potential impact

Example: integer programming
• Used heavily throughout industry and science
• Many different ways to incorporate learning into solving
• Solving is very difficult, so ML can make a huge difference



Primary challenge

Algorithmic performance is a volatile function of parameters
Complex connection between parameters and performance

Performance

Parameter 𝜌



Papers we’ll read

• Hutter, Frank, et al. "ParamILS: an automatic algorithm 
configuration framework." JAIR 36 (2009): 267-306.
• Methods for searching through combinatorial parameter space

• Xu, Lin, et al. "SATzilla: portfolio-based algorithm selection for 
SAT." JAIR 32 (2008): 565-606.
• How to compile a portfolio of algorithm configurations
• At runtime, use ML to select a configuration from portfolio

• Gasse, Maxime, et al. "Exact combinatorial optimization with 
graph convolutional neural networks." NeurIPS. (2019).
• Use GNNs to design variable selection policies
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Learner interaction with environment

Learner

Environment

Action 𝑎Reward 𝑟State 𝑠



Markov decision process

𝑆: set of states

𝐴: set of actions

Transition probability distribution 𝑃(𝑠-|𝑠, 𝑎)
Probability of entering state 𝑠′ from state 𝑠 after taking action 𝑎

Reward function 𝑅: 𝑆 → ℝ

Goal: Policy 𝜋: 𝑆 → 𝐴 that maximizes total (discounted) reward



RL for combinatorial optimization
[Dai et al., NeurIPS’17]

Minimum vertex cover:
Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm



RL for combinatorial optimization

Goal: learn a scoring function to guide greedy algorithm

Dai et al., NeurIPS’17

Problem Greedy operation
Minimum vertex cover Insert node into cover

Maximum cut Insert node into subset

Traveling salesman 
problem

Insert node into sub-
tour



RL for combinatorial optimization

Greedy algorithm Reinforcement learning
Partial solution State
Scoring function Q-function
Select best node Greedy policy

Dai et al., NeurIPS’17

Repeat until all edges are covered:
1.Compute node scores
2.Select best node with respect to score
3.Add best node to partial solution



Paper we’ll read

Dai, Hanjun, Khalil, Elias, et al. "Learning combinatorial 
optimization algorithms over graphs." NeurIPS’17.

• Develop RL algorithms for a variety of combinatorial problems
• Suggest RL could be used for algorithm discovery 

“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”
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Classical databases

In classical data structures,
databases are general purpose. 1-size-fits all.

Example: B-trees
• Self-balancing tree data structure
• Maintains sorted data
• Searches, insertions, and deletions in logarithmic time



B-trees
999
998
995
990
980
978
975
9743200 6544 111188 19151312 28262525

4 8 12 25 27 30 32 35 940 955 974 990

790 800 940 110027 40 84 100

110 215 415 700

Sorted array

Slide by Alex BeutelPage



If data is all integers from 0 to 1 million?
479
478
477
476
475
474
473
4723210 7654 111098 15141312 19181716

4 8 12 16 24 28 32 36 464 468 472 476

420 440 460 48020 40 60 80

100 200 300 400

Sorted array

Slide by Alex Beutel



If data is all integers from 0 to 1 million?

No need for B-tree
• O(1) look-up
• O(1) memory

479
478
477
476
475
474
473
4723210 7654 111098 15141312 19181716

Sorted array

Slide by Alex Beutel



B-trees

A B-tree maps a key to a page

Then searches within the page

B-tree

Page

key

Slide by Alex Beutel



B-trees

A B-tree: key → pos

Then searches from
[pos, pos + page_size]

B-tree

key

pos pos + page_size

Slide by Alex Beutel



B-trees are models

Model: f(key) → pos

Then searches from
[pos – err, pos + err]

B-tree

key

pos – err pos + err

Slide by Alex Beutel



B-trees are models

Model: f(key) → pos

Then searches from
[pos – err, pos + err]

Replace B-tree
with neural network?

key

pos – err pos + err

Slide by Alex Beutel



Paper we’ll read

Kraska, Tim, et al. "The case for learned index structures." 
SIGMOD. 2018.

• Naïve approach fails
• Investigate how to successfully integrate ML into databases:
• B-trees
• Hash maps
• Bloom filters
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Example: IP solvers (CPLEX, Gurobi) have a ton parameters

Algorithm configuration

Best configuration for routing problems
likely not suited for scheduling

What’s the best configuration for the application at hand?



Modeling the application domain
Problem instances drawn from application-specific dist. 𝒟

Widely assumed in applied research, e.g.:
Horvitz, Ruan, Gomez, Kautz, Selman, Chickering UAI’01
Xu, Hutter, Hoos, Leyton-Brown JAIR’08
He, Daumé, Eisner NeurIPS’14

And theoretical research on algorithm configuration, e.g.:
Gupta, Roughgarden ITCS’16
Balcan Book Chapter’20

E.g., distribution over routing problems



Automated configuration procedure
1. Fix parameterized algorithm 
2. Receive set of “typical” inputs sampled from unknown 𝒟

3. Return parameter setting S𝝆 with good avg performance

Earlier question: How to find S𝝆 with good avg performance?
Hutter et al. [JAIR’09, LION’11], Ansótegui et al. [CP’09], Kleinberg et al. [NeurIPS’19, IJCAI’17], 
Weisz et al. [ICML’19, NeurIPS’19]; Balcan, Sandholm, V [AAAI’20], …

Runtime, solution quality, etc.

Problem instance 1 Problem instance 2



Automated configuration procedure

1. Fix parameterized algorithm/mechanism
2. Receive set of “typical” inputs sampled from unknown 𝒟

3. Return parameter setting S𝝆 with good avg performance
Statistical question: Will S𝝆 have good future performance?
More formally: Is the expected performance of S𝝆 also good?

Seen Unseen ?
New problem instanceProblem instance 1 Problem instance 2



Automated configuration procedure
1. Fix parameterized algorithm 
2. Receive set of “typical” inputs sampled from unknown 𝒟

3. Return parameter setting S𝝆 with good avg performance

Model is known as the “batch-learning setting”
Optimize over a batch of input problem instances

Runtime, solution quality, etc.

Problem instance 1 Problem instance 2



Day 1: 𝝆* Day 2: 𝝆+ Day 3: 𝝆,

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight
• Impossible in the worst case
• Under what conditions is online configuration possible?



Paper we’ll read

Gupta, Rishi, and Tim Roughgarden. "A PAC approach to 
application-specific algorithm selection." ITCS’16.

Statistical guarantees for algorithm configuration
• Greedy algorithms
• Tuning the step-size of gradient decent
• Etc.

Online configuration for max-weight independent set
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Assume you have some predictions about your problem, e.g.:
Probability any given element is in a huge database

Kraska et al., SIGMOD’18; Mitzenmacher, NeurIPS’18
In caching, the next time you’ll see an element

Lykouris, Vassilvitskii, ICML’18

Main question:
How to use predictions to improve algorithmic performance?

Algorithms with predictions



Example: Ski rental problem

• Problem: Skier will ski for unknown number of days
• Can either rent each day for $1/day or buy for $𝑏
• E.g., if ski for 5 days and then buy, total price is 5 + 𝑏

• If ski 𝑥 days, opt clairvoyant strategy pays OPT = min 𝑥, 𝑏
• Breakeven strategy: Rent for 𝑏 − 1 days, then buy

CR = BCD
EFG =

H𝟏 !"# J KLMJK 𝟏 !$#

NOP H,K < 2 (best deterministic)

Competitive ratio



Example: Ski rental problem
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Algorithm (with parameter 𝜆 ∈ (0,1)):
If 𝑦 ≥ 𝑏, buy on start of day 𝜆𝑏 ; else buy on start of day .

/

Theorem: Algorithm has CR ≤ min !0/
/
, 1 + 𝜆 + 1

!2/ 345
• If predictor is perfect 𝜂 = 0 , CR is small ≤ 1 + 𝜆
• No matter how big 𝜂 is, setting 𝜆 = 1 recovers baseline CR = 2

Don’t jump the gun… …but don’t wait too long

Purohit, Svitkina, Kumar, NeurIPS’18



Design principals

Consistency:
Predictions are perfect ⇒ recover offline optimal

Robustness:
Predictions are terrible ⇒ no worse than worst-case

Lykouris, Vassilvitskii, ICML’18



Many different applications

algorithms-with-predictions.github.io

Online advertising
Mahdian, Nazerzadeh, Saberi, EC’07; 
Devanur, Hayes, EC’09; Medina, 
Vassilvitskii, NeurIPS’17; …

Caching
Lykouris, Vassilvitskii, ICML’18; Rohatgi, 
SODA’19; Wei, APPROX-RANDOM’20; …

Frequency estimation
Hsu, Indyk, Katabi, Vakilian, ICLR’19; …

Learning low-rank approximations
Indyk, Vakilian, Yuan, NeurIPS’19; …

Scheduling
Mitzenmacher, ITCS’20; Moseley, 
Vassilvitskii, Lattanzi, Lavastida, SODA’20; …

Matching
Antoniadis, Gouleakis, Kleer, Kolev, 
NeurIPS’20; …

Queuing
Mitzenmacher, ACDA’21; …

Covering problems
Bamas, Maggiori, Svensson, NeurIPS’20; …
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Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course
• Supervised learning model
• Regression
• Classification
• Neural networks (multi-layer perceptrons)



Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course
• Linear programming
• Integer programming solvers
• SAT solving



Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course

Thursday 4/13: GNN crash-course



Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course

Thursday 4/13: GNN crash-course

Starting Tuesday 4/18: GNN paper discussions


