Welcome to
Machine Learning for
Algorithm Design!

About me

Ellen Vitercik

Assistant Professor at Stanford
Management Science & Engineering
Computer Science

Research revolves around
* Machine learning for algorithm design
* Interface between economics and computation

About me

BA: Columbia
Math

PhD: Carnegie Mellon
Computer Science

Postdoc: UC Berkeley

Grew up in Lincoln, Vermont

Plan for today

1. Introduction
2. Course logistics
3. Overview of course topics

How to integrate machine learning
into algorithm design”?

(O Algorithm configuration
How to tune an algorithm’s parameters?

(O Algorithm selection
Given a variety of algorithms, which to use?

(O Algorithm design

Can machine learning guide algorithm discovery?

How to integrate machine learning
into algorithm design”?

(O Algorithm configuration
How to tune an algorithm’s parameters?

O Algorithm selection
Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Algorithm contiguration

Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

Algorithm contiguration

IP solvers (CPLEX, Gurobi) have a ton parameters
« CPLEX has 170-page manual describing 172 parameters
* Tuning by hand is notoriously slow, tedious, and error-prone

CPX_PARAM_NODEFILEIND 100
CPX_PARAM_NODELIM 101
CPX_PARAM_NODESEL 102

CPX_PARAM_TRELIM 160
CPX_PARAM_TUNINGDETTILIM 160
CPX_PARAM_TUNINGDISPLAY 162

CPX_PARAM_NUMERICALEMPHASIS 102CPX_PARAM_TUNINGMEASURE 163

CPX_PARAM_NZREADLIM 103
CPX_PARAM_OBJDIF 104
CPX_PARAM_OBJLLIM 105
CPX_PARAM_OBJULIM 105
CPX_PARAM_PARALLELMODE 108
CPX_PARAM_PERIND 110
CPX_PARAM_PERLIM 111

CPX_PARAM_TUNINGREPEAT 164
CPX_PARAM_TUNINGTILIM 165
CPX_PARAM_VARSEL 166
CPX_PARAM_WORKDIR 167
CPX_PARAM_WORKMEM 168
CPX_PARAM_WRITELEVEL 169
CPX_PARAM_ZEROHALFCUTS 170

CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30
CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut
CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut
CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46

CPX_PARAM_POLISHAFTERNODE 115
CPX_PARAM_POLISHAFTERTIME 116
CPX_PARAM_POLISHTIME
(deprecated) 116
CPX_PARAM_POPULATELIM 117
CPX_PARAM_PPRIIND 118
CPX_PARAM_PREDUAL 119
CPX_PARAM_PREIND 120
CPX_PARAM_PRELINEAR 120
CPX_PARAM_PREPASS 121
CPX_PARAM_PRESLVND 122
CPX_PARAM_PRICELIM 123
CPX_PARAM_PROBE 123
CPX_PARAM_PROBEDETTIME 124
CPX_PARAM_PROBETIME 124
CPX_PARAM_QPMAKEPSDIND 125
CPX_PARAM_QPMETHOD 138
CPX_PARAM_QPNZREADLIM 126

CPXPARAM_CPUmask 48
CPXPARAM_DistMIP_Rampup_Duration 128
CPXPARAM_LPMethod 136
CPXPARAM_MIP_Cuts_BQP 38
CPXPARAM_MIP_Cuts_Locallmplied 77
CPXPARAM_MIP_Cuts_RLT 136
CPXPARAM_MIP_Cuts_ZeroHalfCut 170
CPXPARAM_MIP_Limits_CutsFactor 52
CPXPARAM_MIP_Limits_RampupDetTimeLimit

CPXPARAM_MIP_Limits_RampupTimeLimit 128

CPXPARAM_MIP_Limits_Solutions 79
CPXPARAM_MIP_Limits_StrongCand 154
CPXPARAM_MIP_Limits_Stronglt 154
CPXPARAM_MIP_Limits_TreeMemory 160
CPXPARAM_MIP_OrderType 91
CPXPARAM_MIP_Pool_AbsGap 146
CPXPARAM_MIP_Pool_Capacity 147
CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130
CPX_PARAM_REDUCE 131
CPX_PARAM_REINV 131
CPX_PARAM_RELAXPREIND 132
CPX_PARAM_RELOBJDIF 133
CPX_PARAM_REPAIRTRIES 133
CPX_PARAM_REPEATPRESOLVE 134
CPX_PARAM_RINSHEUR 135
CPX_PARAM_RLT 136
CPX_PARAM_ROWREADLIM 141
CPX_PARAM_SCAIND 142
CPX_PARAM_SCRIND 143
CPX_PARAM_SIFTALG 143
CPX_PARAM_SIFTDISPLAY 144
CPX_PARAM_SIFTITLIM 145
CPX_PARAM_SIMDISPLAY 145
CPX_PARAM_SINGLIM 146
CPX_PARAM_SOLNPOOLAGAP 146

CPX_PARAM_SOLNPOOLCAPACITY 147

CPX_PARAM_SOLNPOOLGAP 148

CPXPARAM_MIP_Pool_RelGap 148
CPXPARAM_MIP_Pool_Replace 151
CPXPARAM_MIP_Strategy_Branch 39
CPXPARAM_MIP_Strategy_MIQCPStrat 93

CPX_PARAM_FLOWCOVERS 70
CPX_PARAM_FLOWPATHS 71
CPX_PARAM_FPHEUR 72
CPX_PARAM_FRACCAND 73

CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73

CPXPARAM_MIP_Strategy_VariableSelect 166
CPXPARAM_MIP_SubMIP_NodeLimit 155
CPXPARAM_OptimalityTarget 106
CPXPARAM_Output_WriteLevel 169
CPXPARAM_Preprocessing_Aggregator 19
CPXPARAM_Preprocessing_Fill 19
CPXPARAM_Preprocessing_Linear 120
CPXPARAM_Preprocessing_Reduce 131
CPXPARAM_Preprocessing_Symmetry 156
CPXPARAM_Read_DataCheck 54
CPXPARAM_Read_Scale 142
CPXPARAM._ScreenOutput 143
CPXPARAM_Sifting_Algorithm 143
CPXPARAM _Sifting_Display 144
CPXPARAM_Sifting_Iterations 145

CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145

CPX_PARAM_SOLNPOOLREPLACE 151

CPX_PARAM_SOLUTIONTARGET
deprecated: see
CPXPARAM_OptimalityTarget 106
CPX_PARAM_SOLUTIONTYPE 152
CPX_PARAM_STARTALG 139
CPX_PARAM_STRONGCANDLIM 154
CPX_PARAM_STRONGITLIM 154
CPX_PARAM_SUBALG 99
CPX_PARAM_SUBMIPNODELIMIT 155
CPX_PARAM_SYMMETRY 156
CPX_PARAM_THREADS 157
CPX_PARAM_TILIM 159

CPXPARAM_Simplex_Limits_Singularity 146
CPXPARAM._ SolutionType 152
CPXPARAM_Threads 157
CPXPARAM_TimeLimit 159
CPXPARAM_Tune_DetTimeLimit 160
CPXPARAM_Tune_Display 162
CPXPARAM_Tune_Measure 163
CPXPARAM_Tune_Repeat 164
CPXPARAM_Tune_TimeLimit 165
CPXPARAM_WorkDir 167
CPXPARAM_WorkMem 168
Cralnd 50

CPX_PARAM_FRACPASS 74
CPX_PARAM_GUBCOVERS 75
CPX_PARAM_HEURFREQ 76
CPX_PARAM_IMPLBD 76
CPX_PARAM_INTSOLFILEPREFIX 78
CPX_PARAM_INTSOLLIM 79
CPX_PARAM_ITLIM 80
CPX_PARAM_LANDPCUTS 82
CPX_PARAM_LBHEUR 81
CPX_PARAM_LPMETHOD 136
CPX_PARAM_MCEFCUTS 82

CPX_PARAM_BRDIR 39
CPX_PARAM_BTTOL 40
CPX_PARAM_CALCQCPDUALS 41
CPX_PARAM_CLIQUES 42
CPX_PARAM_CLOCKTYPE 43
CPX_PARAM_CLONELOG 43
CPX_PARAM_COEREDIND 44
CPX_PARAM_COLREADLIM 45
CPX_PARAM_CONFLICTDISPLAY 46
CPX_PARAM_COVERS 47
CPX_PARAM_CPUMASK 48
CPX_PARAM_CRAIND 50
CPX_PARAM_CUTLO 51
CPX_PARAM_CUTPASS 52
CPX_PARAM_CUTSFACTOR 52
CPX_PARAM_CUTUP 53

CPX_PARAM_MEMORYEMPHASIS 83 CPX_PARAM_DATACHECK 54

CPX_PARAM_MIPCBREDLP 84
CPX_PARAM_MIPDISPLAY 85
CPX_PARAM_MIPEMPHASIS 87
CPX_PARAM_MIPINTERVAL 88
CPX_PARAM_MIPKAPPASTATS 89
CPX_PARAM_MIPORDIND 90
CPX_PARAM_MIPORDTYPE 91
CPX_PARAM_MIPSEARCH 92
CPX_PARAM_MIQCPSTRAT 93
CPX_PARAM_MIRCUTS 94
CPX_PARAM_MPSLONGNUM 94
CPX_PARAM_NETDISPLAY 95
CPX_PARAM_NETEPOPT 96
CPX_PARAM_NETEPRHS 96
CPX_PARAM_NETFIND 97
CPX_PARAM_NETITLIM 98
CPX_PARAM_NETPPRIIND 98

CPX_PARAM_DEPIND 55
CPX_PARAM_DETTILIM 56
CPX_PARAM_DISJCUTS 57
CPX_PARAM_DIVETYPE 58
CPX_PARAM_DPRIIND 59
CPX_PARAM_EACHCUTLIM 60
CPX_PARAM_EPAGAP 61
CPX_PARAM_EPGAP 61
CPX_PARAM_EPINT 62
CPX_PARAM_EPMRK 64
CPX_PARAM_EPOPT 65
CPX_PARAM_EPPER 65
CPX_PARAM_EPRELAX 66
CPX_PARAM_EPRHS 67
CPX_PARAM_FEASOPTMODE 68
CPX_PARAM_FILEENCODING 69

Algorithm contiguration

IP solvers (CPLEX, Gurobi) have a ton parameters
« CPLEX has 170-page manual describing 172 parameters
* Tuning by hand is notoriously slow, tedious, and error-prone

What's the best configuration for the application at hand?

Best configuration for routing problems |
ikely not suited for scheduling

How to integrate machine learning
into algorithm design”?

O Algorithm configuration
How to tune an algorithm’s parameters?

(O Algorithm selection
Given a variety of algorithms, which to use?

O Algorithm design

Can machine learning guide algorithm discovery?

Algorithm selection in theory

Worst-case analysis has been the main framework for decades
Has led to beautiful, practical algorithms

Worst-case instances rarely occur in practice

In practice:
Instances solved in past are similar to future instances...

oy &b oo &b

In practice, we have‘ ata
e application domain

In practice, we have data about

the application apmain o

'.7, -
Al
LN

Clustering problems a biology lab solves]

| \
N —=_

In practice, we have data about
the application domain

o s g e R SRy

. i S

o Schedullng problems an alrllne solves

8 .0 - § - ks 8 - A ' Xl ET) 3 "

-

Course topics

Range of techniques for integrating ML into algorithm design

1. Applied topics
i. Graph neural networks
ii. Integer programming and SAT
iii. Reinforcement learning
iv. Data structures

2. Theoretical topics
i. Statistical guarantees and online algorithm configuration
ii. Algorithms with predictions

Outline

. Introduction
. Course logistics

. Theoretical topics

1

2

3. Applied topics

A

5. Plan for the next 2 weeks

Course logistics

Website: vitercik.github.io/ml4algs

Oftice hours:
* Tuesday 11am-12pm in Huang 250
* Or by appointment, please feel free to reach out!

vitercik.github.io/ml4algs

Course setup

1. Lectures given by the instructor
 Key techniques for integrating ML into algorithm design
« E.g., graph neural networks, reinforcement learning, theoretical ML

2. Paper discussions
« Covering influential papers in the field

Paper discussions

* 10 paper discussion classes

 Each student will take on a presenter role for 5 discussions
« Archaeologist
« Researcher
* Industry R&D expert
* Private investigator

* NeurlPS reviewer
* (Based on a course design by Alec Jacobson and Colin Raffel)

* (Students may need to pair up depending on class size)

https://colinraffel.com/blog/role-playing-seminar.html

Paper discussions

* Presentations will be approximately 7 minutes + 5 min Q&A
* I'll distribute a Google spreadsheet next week to select roles

Presenter role: Archaeologist

* Determine where the paper sits in the context of previous and
subsequent work
* Find and report on:
1. One older paper cited by the current paper, and
2. One newer paper citing this current paper

Presenter role: Researcher

* Propose a follow-up project on the current paper
 Should only be possible due to the paper’s existence and success

Presenter role: Industry R&D expert

« Convince your industry bosses that it's worth your time and
money to implement this paper into the company's pipeline

* Choose an appropriate company and product or application

Presenter role: Private investigator

* Find out background information on one of the paper authors

* Where have they worked?
* What did they study?
« What previous projects might have led to working on this one?

Presenter role: NeurlPS reviewer

Answer the questions on the NeurlPS review form
Originality, quality, clarity, significance, etc.

Non-presenter assignment

By 1pm on the day of class, post to Ed discussion:

at least one question about the paper. E.g.
« Something you're confused about
« Something you'd like to hear discussed more

Course project

* All students will write a "mini-paper" as a final project
» Can be empirical, theoretical, or both

Project policies

* Encouraged to work in groups!
« Up to 3 people (except with special permission)
* Groups of 2 should put twice as much work into the final
project than for a sole-author project
 Similarly for groups of 3

 Paper length for a final project write-up is 3 + n where n is the
number of people in the group that worked on the project

* Not including references or the contributions paragraph

* Required to include a “contributions” paragraph in final paper
that concretely lists each author's contributions

Milestones

April 17-21: All groups meet with me to discuss project ideas

* Please come prepared with ideas/interests!
 Look out for an email about scheduling this meeting

May 5: Submit a progress report of 1-2 pages
 Describe your project and partial progress
May 11: Short presentation about a paper related to your
project
June 8: Present your final project during class
June 12: Submit your final report

Grading

Out of 100 points:

 Discussion: 60 points
» Each presentation is worth 10 points
« Each non-presenter assignment is worth 2 points
* Project: 40 points
* Progress report: / points
« Midterm presentation: 8 points.
* Novelty: 5 points
* Project should propose something new (new application, method, perspective)
* Writing: 10 points
 Final paper should be readable and complete and situate itself among related work

 Final presentation: 10 points
 Final presentation should be clear and provide a solid picture of what you did

Prerequisites

* Introductory algorithms class
* Machine learning class is helpful but not required

Outline

1. Introduction
2. Course logistics
3. Applied topics

i. Graph neural networks

ii. Integer programming and SAT
iii. Reinforcement learning

iv. Data structures

4. Theoretical topics
5. Plan for the next 2 weeks

Many types of data are graphs

% : . ?A/\)\(\X\:Aéc.y 2

‘RRM1°,
o o2 B
12° / *\ \ CDKN2A EGFR
‘TOP2A o Fe .
SN BRAF °
B AeIRss A .
3 e °
o MENI<coNNBl %/ °

"
“TERT « « .| SPARC °.
o o IGFZ\ /.

ZNRF3 IGFIR 1
edit: SalientNetworks 8 .

Event Graphs Computer Networks

Disease Pathways

Chesapeake Bay Waterbird Food Web
==
e 8
Osprey
o Bald Cagle
Ny /
. 51 o 7 2
socony << 1 AT (
o S s w?\m ey e
= op
0 St s
Conumers: 77 e W'l”
v -\ 1 - 2)
prov— & s > =7
Sowpboon Hetwvorous. Geese and
o el
P it e ;
e 28 iaiten S e Vet 549 _ Vion

edit: Pinteres Image credit: visitlondon.cor

Food Webs Partide Networks

Underground Networks

Slide by Leskovec

GNN motivation

Special type of NN architecture for tasks involving graphs
How to utilize relational structure for better prediction?

Shortest path prediction

Example: predicting the shortest path in a graph

MST prediction

Example: predicting a minimum spanning tree

GNN: Message passing

/8
- W

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN: Message passing

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN: Message passing

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN: Message passing

ms w0 =

m

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN: Message passing

L 4

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN: Message passing

Node message

N B

Deep neural network

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN: Message passing

ms w0 =

m

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

GNN: Message passing

me mn o\ /who

me T

b

SuE.

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Bellman-Ford: Message passing

() ()

min {xu ,minx,;” + evu}

Why use GNNs for algorithm design?

* Classical algorithms are designed with abstraction in mind
« Enforce their inputs to conform to stringent preconditions

 Challenges:

* Natural inputs may be only partially observable

« Manually converting natural inputs into abstract inputs leads to
information loss

» Goal: end-to-end neural pipeline which is fully differentiable

Natural inputs —=—

o ——> Natural outputs

Papers we'll read

Velickovi¢, Petar, et al. "Neural execution of graph algorithms."
ICLR. 2020.

e GNNs don’t work off-the-shelf for combinatorial tasks
* How to align GNN architectures to these tasks

Cappart, Quentin, et al. "Combinatorial optimization and
reasoning with GNNs." arXiv.

 Broad overview of the field: current & future directions

Outline

1. Introduction
2. Course logistics
3. Applied topics

i. Graph neural networks

ii. Integer programming and SAT
iii. Reinforcement learning

iv. Data structures

4. Theoretical topics
5. Plan for the next 2 weeks

SAT

(%1 V x4) SAT: Is there an assignment of x4, ..., x;, € {0,1}
A(x; VX3 VZg) suchthatthisformula evaluates to True?

A(x1VxgVxq3)
A (x, VXxq1q)

A (7 VX3V xg)
A (X7 V xg V Xg)
A (x7 V xg V X10)
A (x7 V X10 V X12)

Integer program

Gnteger program (IP)\
max C€-Zz
st. Az <Db
z "
- J

Robust ML MAP estimation Clustering Routing Scheduling

(max

7
L z € {0,1}

(40, 60,10, 10, 3, 20, 60) - z
s.t. (40,50,30,10,10,40,30) - z < 100

N

J

Z6:0

(o, 1,0,1,0,7, 1)

135

Z6:1

z= (%,1,0,0,0,0,1)

140

Z1:0

Z1:1

(1.2,0,0,0,0,1)

136

Z2:0

Z2:1

(0.1,3,1,0,0,0)

(0.2,0,0,0,1,1)

(1,0,0,1,0,5,1)

(1, 1,0,0,0,0, g)

133.3

120

120

ZS:O \fl

(0,1,0,1,1,0,0)

(0,3,1,0,0,0,1)

133

118

Branch
and

bound
(B&B)

Tree-building policies

Tree-building policies can have a huge effect on tree size

E.g., node selection, variable selection,

.
v X
- » i A
/ A P
P - = r . o~ - -
,,,,, ~ ~ SO W oW oW S -)\(> oomo A A om A o OR A e
- .. . e - - - -e -y

Example: variable selection policies

Score-based variable selection policies:
At leaf Q, branch on variable z; maximizing score(Q, i) € R

4 . . .)
Many options! Little known about which to use when
Gauthier, Ribiere, Math. Prog. ‘'77; Beale, Annals of Discrete Math. '79; Linderoth, Savelsbergh,

kINFORI\/IS JoC '99; Achterberg, Math. Prog. Computation '09; Gilpin, Sandholm, Disc. Opt. ‘11; ...

J

Example: variable selection policies

Score-based variable selection policies:
At leaf Q, branch on variable z; maximizing score(Q, i) € R

Given d scoring rules scoreq, ..., scorey, possible to
learn best convex combination p;score; + -+ + pgscorey?

History: For a specific score; and score,:

1 1 : e
* score; +-score, Gauthier and Ribiére '79
* score; Bénichou et al. 71 and Beale '71

. gscorel + gscorez Linderoth and Savelsbergh ‘99

1 5 ,
* —score; +—score; Achterberg ‘09

ML + algorithm design: Potential impact

Example: integer programming
* Used heavily throughout industry and science
« Many different ways to incorporate learning into solving
* Solving is very difficult, so ML can make a huge difference

Primary challenge

Algorithmic performance is a volatile function of parameters
Complex connection between parameters and performance

Performance

/ 7
\/'\/\\\ /
4 /\\/

A\ N /

/, Parameter p

Papers we'll read

« Hutter, Frank, et al. "ParamlILS: an automatic algorithm
configuration framework." JAIR 36 (2009): 267-306.

* Methods for searching through combinatorial parameter space

* Xu, Lin, et al. "SATzilla: portfolio-based algorithm selection for
SAT." JAIR 32 (2008): 565-606.
* How to compile a portfolio of algorithm configurations
* At runtime, use ML to select a configuration from portfolio

* Gasse, Maxime, et al. "Exact combinatorial optimization with
graph convolutional neural networks." NeurlPS. (2019).

« Use GNNs to design variable selection policies

Outline

1. Introduction
2. Course logistics
3. Applied topics

i. Graph neural networks

ii. Integer programming and SAT
iii. Reinforcement learning

iv. Data structures

4. Theoretical topics
5. Plan for the next 2 weeks

L earner interaction with environment

Learner

State s Reward r Action a

Environment

Markov decision process

S: set of states
A: set of actions

Transition probability distribution P(s’|s, a)
Probability of entering state s’ from state s after taking action a

Reward function R:S - R

Goal: Policy m: § = A that maximizes total (discounted) reward

RL for combinatorial optimization

[Dai et al., NeurlPS'17]

Minimum vertex cover:
Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

RL for combinatorial optimization

Goal: learn a scoring function to guide greedy algorithm

Problem " Greedy operation

Minimum vertex cover Insert node into cover

aaaaaaa
oooooo

Maximum cut Insert node into subset —W"/\/n%

Traveling salesman Insert node into sub-
problem tour

Lo

Dai et al., NeurlPS'17

RL for combinatorial optimization

Greedy algorithm | Reinforcement learning

Partial solution State

Scoring function Q-function
Select best node Greedy policy

aaaaaaa
oooooo

Repeat until all edges are covered:
1.Compute node scores
2.Select best node with respect to score
3.Add best node to partial solution

Lo

Dai et al., NeurlPS'17

Paper we'll read

Dai, Hanjun, Khalil, Elias, et al. "Learning combinatorial
optimization algorithms over graphs." NeurlPS’17.

* Develop RL algorithms for a variety of combinatorial problems

 Suggest RL could be used for algorithm discovery
“New and interesting” greedy strategies for MAXCUT and MVC
“which intuitively make sense but have not been analyzed before/”
thus could be a “good assistive tool for discovering new algorithms.”

Outline

1. Introduction
2. Course logistics
3. Applied topics

i. Graph neural networks

ii. Integer programming and SAT
iii. Reinforcement learning

iv. Data structures

4. Theoretical topics
5. Plan for the next 2 weeks

Classical databases

In classical data structures,
databases are general purpose. 1-size-fits all.

Example: B-trees
* Self-balancing tree data structure
* Maintains sorted data
« Searches, insertions, and deletions in logarithmic time

B-trees

110 215 415 700

27 40 84 100 790 800 940 1100

4 3 12 25 27 30 32 35 940 955 974 990

Sorted array

N
~ N
O N0 00 VOO0
RN N _ NDNDNDN
OO N W IS SN alKe G0 0o _, _ N W U1 0 U1 U1 0~ 00 EEEJ% 8388

%/_/

Page Slide by Alex Beutel

It data is all integers from 0 to 1 million?

100 200 300 400

20 40 60 80 420 440 460 480

4 3 12 16 24 28 32 36 464 | 468 472 476

Sorted array

A
e N\
ADADMDD PP PH
O=-MNw DMNoonw 0o~ SIS Do =A NN NN NN
o= NWAUUI O ~NO®-O ol Dol [onl <l ool o

Slide by Alex Beutel

It data is all integers from 0 to 1 million?

No need for B-tree
* O(1) look-up
* O(1) memory

Sorted array

—_— _—d LA _—d L

CLY
€LY
1A%
SLY
9LY
LLY
8LV
6LV)

Slide by Alex Beutel

B-trees

A B-tree maps a key to a page

Then searches within the page

Page

Slide by Alex Beutel

B-trees

key A B-tree: key — pos

Then searches from
[pos, pos + page_size]

POs pos + page_size

Slide by Alex Beutel

B-trees are models

key Model: f(key) — pos

|

Then searches from
[pos - err, pos + err]

pPos - err POSs + err

Slide by Alex Beutel

B-trees are models

key Model: f(key) — pos
v /N \ Then searches from
01010101010 [pos - err, pos + err]
N\ WA
RSN/ Replace B
’0(:}:‘:’(‘:{@“ eplace B-tree
\ "/h *9}“"\‘\ |/ with neural network?

I I

pos - err pos + err

Paper we'll read

Kraska, Tim, et al. "The case for learned index structures."

SIGMOD. 2018.

* Naive approach fails

* Investigate how to successfully integrate ML into databases:

e B-trees
« Hash maps
e Bloom filters

Outline

1. Introduction
2. Course logistics
3. Applied topics

4. Theoretical topics
i. Statistical guarantees and online algorithm configuration

ii. Algorithms with predictions
5. Plan for the next 2 weeks

Algorithm contiguration

Example: IP solvers (CPLEX, Gurobi) have a ton parameters
What's the best configuration for the application at hand?

Best configuration for routing problems |
likely not suited for scheduling

Modeling the application domain

Problem instances drawn from application-specific dist. D

E.g., distribution over routing problems

Widely assumed in applied research, e.qg.:

Horvitz, Ruan, Gomez, Kautz, Selman, Chickering UAI'O1
Xu, Hutter, Hoos, Leyton-Brown JAIR'08
He, Daumé, Eisner NeurlPS'14
And theoretical research on algorithm configuration, e.g.:
Gupta, Roughgarden ITCS'16

Balcan Book Chapter'20

Automated configuration procedure

1. Fix parameterized algorithm
2. Receive set of “typical” inputs sampled from unknown D

Problem instance 1 Problem instance 2
5 vee

3. Return parameter setting p with good avg performance

Runtime, solution quality, etc.

Automated configuration procedure

Seen Unseen
, % 2

Problem instance 1 Problem instance 2 New problem instance
4 & 2

_ AN J

Statistical question: Will p have good future performance?
More formally: Is the expected performance of p also good?

Automated configuration procedure

Model is known as the “batch-learning setting”
Optimize over a batch of input problem instances

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Day 1: p; Day 2: p, Day 3: ps

Goal: Compete with best parameter setting in hindsight
* Impossible in the worst case
« Under what conditions is online configuration possible?

Paper we'll read

Gupta, Rishi, and Tim Roughgarden. "A PAC approach to
application-specific algorithm selection." ITCS'16.

Statistical guarantees for algorithm configuration
« Greedy algorithms
* Tuning the step-size of gradient decent
* Etc.

Online configuration for max-weight independent set

Outline

1. Introduction
2. Course logistics
3. Applied topics

4. Theoretical topics
i. Statistical guarantees and online algorithm configuration
ii. Algorithms with predictions

5. Plan for the next 2 weeks

Algorithms with predictions

Assume you have some predictions about your problem, e.g.:

Probability any given elementis in a huge database
@ Kraska et al., SIGMOD’'18; Mitzenmacher, NeurlPS'18
In caching, the next time you'll see an element

Lykouris, Vassilvitskii, ICML'18

Main question:
How to use predictions to improve algorithmic performance?

Example: Ski rental problem

« Problem: Skier will ski for unknown number of days

 Can either rent each day for $1/day or buy for $b
 E.g., if skifor 5 days and then buy, total priceis5 + b

* |f ski x days, opt clairvoyant strategy pays OPT = min{x, b}
« Breakeven strategy: Rent for b — 1 days, then buy

ALG X1liep+(b—1+b)1(,s o
CR = = Haxeny* EE=T) < 2 (best deterministic)

OPT min{x,b}
Competitive ratio

Example: Ski rental problem

Prediction y of number of skiing days, errorn = |x — y|

Algorithm (with parameter 4 € (0,1)):
It y = b, buy on start of day [Ab]; else buy on start of day m

Don’t jump the gun... ...but don't wait too long

Theorem: Algorithm has CR < min {%A, 1+4+ (1_,{;0”}

e If predictoris perfect (n = 0), CRissmall (€ 1+ 1)
* No matter how big 7 is, setting A = 1 recovers baseline CR = 2

Design principals

Consistency:
Predictions are perfect = recover offline optimal

Robustness:
Predictions are terrible = no worse than worst-case

Lykouris, Vassilvitskii, ICML18

Many different applications

Online advertising Scheduling
Mahdian, Nazerzadeh, Saberi, EC'07; Mitzenmacher, ITCS'20; Moseley,
Devanur, Hayes, EC'09; Medina, Vassilvitskii, Lattanzi, Lavastida, SODA'20: ...
Vassilvitskii, NeurlPS'17; ...
Matching
Caching Antoniadis, Gouleakis, Kleer, Kolev,
Lykouris, Vassilvitskii, ICML18; Rohatgji, NeurlPS'20; ...
SODA'19;: Wei, APPROX-RANDOM'20:;
Queuing
Frequency estimation Mitzenmacher, ACDA'21; ...

Hsu, Indyk, Katabi, Vakilian, ICLR"19; ...]
Covering problems

Learning low-rank approximations Bamas, Maggiori, Svensson, NeurlPS'20; ...
Indyk, Vakilian, Yuan, NeurlPS'19; ...

algorithms-with-predictions.github.io

Outline

Introduction
Course logistics

1.

2.

3. Applied topics
4. Theoretical topics
5.

Plan for the next 2 weeks

Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course
 Supervised learning model
* Regression
* Classification
* Neural networks (multi-layer perceptrons)

Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course
* Linear programming
* Integer programming solvers
« SAT solving

Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course

Thursday 4/13: GNN crash-course

Plan for the next 2 weeks

Thursday 4/6: Machine learning crash-course

Tuesday 4/11: Integer programming crash-course
Thursday 4/13: GNN crash-course

Starting Tuesday 4/18: GNN paper discussions

