Exact Combinatorial Optimization with Graph Convolutional Neural Networks

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, Andrea Lodi

NeurIPS'19

Outline

1. Branch-and-bound refresher

- 2. Learning to imitate strong branching
- 3. Benchmarks
- 4. Experiments

$15x_1 + 12x_2 + 4x_3 + 2x_4$ maximize Branch-and-bound subject to $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$ Incumbent: $x^* = (0,1,1,1)$ $x_1 = 0$ $x_1 = 1$ $z^* = 18$ **Optimal solution** $x_2 = 0$

 $x_2 = 1$

 $x_2 = 1$

 $x_2 = 0$

Better branching order than x_1, x_2, x_3, x_4 ?

Better branching order than x_1, x_2, x_3, x_4 ? E.g., x_4, x_3, x_1, x_2

Chooses variables to branch on on-the-fly $x_4 = 0$ Rather than pre-defined order $x_3 = 1$ $x_3 = 0$ $x_1 = 1$ $x_1 = 0$ $x_2 = 0$

On Problem(j) with LP objective value z(j):

- Let $z_i^+(j)$ be the LP objective value after setting $x_i = 1$
- Let $z_i^-(j)$ be the LP objective value after setting $x_i = 0$

VSP example:

Branch on the variable x_i that maximizes $\max\{z(j) - z_i^+(j), 10^{-6}\} \cdot \max\{z(j) - z_i^-(j), 10^{-6}\}$

If score was $(z(j) - z_i^+(j))(z(j) - z_i^-(j))$ and $z(j) - z_i^+(j) = 0$: would lose information stored in $z(j) - z_i^-(j)$

Outline

1. Branch-and-bound refresher

2. Learning to imitate strong branching

- 3. Benchmarks
- 4. Experiments

Strong branching

Challenge: Computing $z_i^-(j)$, $z_i^+(j)$ requires solving a lot of LPs

- Computing all LP relaxations referred to as **strong-branching**
- Very time intensive

Pro: Strong branching leads to small search trees

Idea: Train an ML model to imitate strong-branching Khalil et al. [AAAI'16], Alvarez et al. [INFORMS JoC'17], Hansknecht et al. [arXiv'18] **This paper:** using a GNN

Problem formulation

Goal: learn a policy $\pi(a_t | s_t)$

Probability of branching on variable a_t when solver is in state s_t

Approach (imitation learning):

- Run strong branching on training set of instances
- Collect dataset of (state, variable) pairs $S = \{(s_i, a_i^*)\}_{i=1}^N$
- Learn policy minimizing cross-entropy loss

$$L(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \log \pi_{\boldsymbol{\theta}} \left(a_i^* \mid s_i \right)$$

State encoding

State *s_t* of B&B encoded as a **bipartite graph** with **node** and **edge features**

$$\begin{array}{ll} \max & 9x_1 + 5x_2 + 6x_3 + 4x_4 \\ \text{s.t.} & 6x_1 + 3x_2 + 5x_3 + 2x_4 \leq 10 & (c_1) \\ & x_3 + x_4 \leq 10 & (c_2) \\ & -x_1 + x_3 \leq 0 & (c_3) \\ & -x_2 + x_4 \leq 0 & (c_4) \\ & x_1, x_2, x_3, x_4 \in \{0, 1\} \end{array}$$

State encoding

State *s_t* of B&B encoded as a **bipartite graph** with **node** and **edge features**

• Edge feature: constraint coefficient

• Example node features:

- Constraints:
 - Cosine similarity with objective
 - Tight in LP solution?
- Variables:
 - Objective coefficient
 - Solution value equals upper/lower bound?

GNN structure

 C_4

 χ_4

GNN structure

1. Pass from variables \rightarrow constraints

$$\boldsymbol{c}_i \leftarrow f_C \left(\boldsymbol{c}_i, \sum_{j:(i,j)\in E} g_C(\boldsymbol{c}_i, \boldsymbol{v}_j, \boldsymbol{e}_{ij}) \right)$$

2. Pass from constraints \rightarrow variables $\boldsymbol{v}_j \leftarrow f_V\left(\boldsymbol{v}_j, \sum_{i:(i,j)\in E} g_V(\boldsymbol{c}_i, \boldsymbol{v}_j, \boldsymbol{e}_{ij})\right)$

GNN structure

3. Compute distribution over variables

Outline

- 1. Branch-and-bound refresher
- 2. Learning to imitate strong branching
- **3. Benchmarks**
- 4. Experiments

Reliability pseudo-cost branching (RPB)

Rough idea:

- Goal: estimate $z(j) z_i^+(j)$ w/o solving the LP with $x_i = 1$
- Estimate = avg change after setting $x_i = 1$ elsewhere in tree This is the "pseudo-cost"
- "Reliability": do strong branching if estimate is "unreliable" E.g., early in the tree

Default branching rule of SCIP (leading open-source solver): $\max\{\widetilde{\Delta}_{i}^{+}(j), 10^{-6}\} \cdot \max\{\widetilde{\Delta}_{i}^{-}(j), 10^{-6}\}$ Estimate of $z(j) - z_{i}^{+}(j)$ Estimate of $z(j) - z_{i}^{-}(j)$

SVM^{rank} approach [Khalil et al., AAAI'16]

- For variable x_i on Problem(j): $SB_i^j = \max\{z(j) - z_i^+(j), 10^{-6}\} \cdot \max\{z(j) - z_i^-(j), 10^{-6}\}$ • Define binary labels $y_i^j = \begin{cases} 1 & \text{if } SB_i^j \ge (1 - \alpha) \max SB_{i'}^j \\ 0 & \text{else} \end{cases}$
- Given features $\boldsymbol{\phi}_i^j \in \mathbb{R}^d$, train **linear model** $f: \mathbb{R}^d \to \mathbb{R}$ so that: If $y_i^j > y_{i'}^j$, then $f(\boldsymbol{\phi}_i^j) > f(\boldsymbol{\phi}_{i'}^j)$ • Use **SVM**^{rank} [Joachims, KDD'06]
- Branch on variable with largest $f(\boldsymbol{\phi}_i^j)$

lambdaMART approach [Hansknecht et al., arXiv'18]

- For variable x_i on Problem(j): $SB_i^j = \max\{z(j) - z_i^+(j), 10^{-6}\} \cdot \max\{z(j) - z_i^-(j), 10^{-6}\}$ • Define binary labels $y_i^j = \begin{cases} 1 & \text{if } SB_i^j \ge (1 - \alpha) \max SB_{i'}^j \\ 0 & \text{else} \end{cases}$
- Given features $\phi_i^j \in \mathbb{R}^d$, train **linear model** $f: \mathbb{R}^d \to \mathbb{R}$ so that: If $y_i^j > y_{i'}^j$, then $f(\phi_i^j) > f(\phi_{i'}^j)$ • Use **SVM**^{rank} [Joachims, KDD'06] **lambdaMART** [Burges, Learning'10]
- Branch on variable with largest $f(oldsymbol{\phi}_i^j)$

Regression tree approach [Alvarez et al., INFORMS JoC'17]

- For variable x_i on Problem(*j*): $SB_i^j = \max\{z(j) - z_i^+(j), 10^{-6}\} \cdot \max\{z(j) - z_i^-(j), 10^{-6}\}$
- Given features $\boldsymbol{\phi}_i^j \in \mathbb{R}^d$, train regression tree ensemble model $f(\boldsymbol{\phi}_i^j) \approx \mathrm{SB}_i^j$
- Branch on variable with largest $f(\boldsymbol{\phi}_i^j)$

Outline

- 1. Branch-and-bound refresher
- 2. Learning to imitate strong branching
- 3. Benchmarks
- 4. Experiments

Imitation learning accuracy

		Set Covering			Maximum Independent Set			
	model	acc@1	acc@5	acc@10	acc@1	acc@5	acc@10	
-	TREES	51.8±0.3	80.5±0.1	91.4±0.2	30.9 ± 0.4	47.4±0.3	54.6±0.3	
S	VMRANK	57.6 ± 0.2	$84.7 {\pm} 0.1$	94.0 ± 0.1	48.0 ± 0.6	$69.3{\pm}0.2$	$78.1{\pm}0.2$	
	LMART	$57.4{\pm}0.2$	$84.5 {\pm} 0.1$	93.8±0.1	48.9 ± 0.3	$68.9{\pm}0.4$	$77.0{\pm}0.5$	
	GCNN	65.5 ±0.1	92.4 ±0.1	98.2 ±0.0	56.5 ±0.2	80.8 ±0.3	89.0 ±0.1	

- acc@1: highest-ranked variable same as strong branching?
- acc@5: 1 of the 5 highest ranked variables same as SB?
- acc@10: 1 of the 10 highest ranked variables same as SB?

Set covering instances

Always train on "easy" instances

Set covering instances

Set covering instances

- GNN is **faster than SCIP** default VSP (RPB)
- Performance generalizes to larger instances
- Similar results for auction design & facility location problems

	Easy			Hard			
Model	Time	Wins	Nodes	Time	Wins	Nodes	
FSB	$17.30 \pm 6.1\%$	0/100	$17 \pm 13.7\%$	$3600.00 \pm 0.0\%$	0/	0 n/a \pm n/a $\%$	
RPB	$8.98 \pm 4.8\%$	0/100	54 ±20.8%	$1\overline{677.02 \pm 3.0\%}$	4/6	$547299 \pm 4.9\%$	
TREES	$9.28\pm4.9\%$	0/100	$187 \pm 9.4\%$	$2869.21 \pm 3.2\%$	0/ 3	$5\ 59\ 013\ \pm\ 9.3\%$	
SVMRANK	$8.10 \pm 3.8\%$	1/100	$165 \pm 8.2\%$	$2389.92 \pm 2.3\%$	0/4	$7\ 42\ 120\pm\ 5.4\%$	
LMART	$7.19 \pm 4.2\%$	14/100	$167 \pm 9.0\%$	$2165.96 \pm 2.0\%$	0/ 54	$4\ 45\ 319\ \pm\ 3.4\%$	
GCNN	6.59 ± 3.1%	85 / 100	$134 \pm 7.6\%$	1489.91 \pm 3.3%	66 / 7	$0\ 29\ 981 \pm \ 4.9\%$	

Max independent set instances

RPB is catching up to GNN on MIS instances

	Easy			Hard			
Model	Aodel Time Wins		Nodes Time		Wins	Nodes	
FSB	$23.58 \pm 29.9\%$	9/100	7 ±35.9%	$3600.00 \pm 0.0\%$	0/ 0	n/a \pm n/a %	
RPB	8.77 ±11.8%	7/100	20 ±36.1%	$20\overline{45.61 \pm 18.3\%}$	22/ 42	2675 ±24.0%	
TREES	$10.75 \pm 22.1\%$	1/100	$76 \pm 44.2\%$	$3565.12 \pm \ 1.2\%$	0/ 3	$38296\pm~4.1\%$	
SVMRANK	$8.83 \pm 14.9\%$	2/100	$46 \pm 32.2\%$	$2902.94 \pm \ 9.6\%$	1/ 18	$6256 \pm 15.1\%$	
LMART	$7.31 \pm 12.7\%$	30/100	$52 \pm 38.1\%$	$3044.94 \pm 7.0\%$	0/ 12	$8893 \pm 3.5\%$	
GCNN	6.43 ±11.6%	51 / 100	$43\pm\!40.2\%$	2024.37 ±30.6%	25 / 29	$2997 \pm 26.3\%$	

Proposed a variable selection policy based on GNNs

Outperforms default policy of **SCIP**

Generalizes to larger MIPs than trained on