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Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

Incumbent: 𝒙∗ = (0,0,0,0)
𝑧∗ = 0

1

Problem(1):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ [0,1]

𝒙 1 = &
'
, 1,0,0

𝑧(1) = 21.38

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then
Mark the direct descendants of node 𝑗 as active
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Problem(2):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 0
𝑥", 𝑥#, 𝑥$ ∈ [0,1]

𝒙 2 = 0,1,1,1
𝑧(2) = 18Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then

Replace the incumbent by 𝒙(𝑗) and prune node 𝑗
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Can’t find better feasible 
solution in this subtree

Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then
Replace the incumbent by 𝒙(𝑗) and prune node 𝑗
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better feasible solution 

in this subtree

Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then
Mark the direct descendants of node 𝑗 as active
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Case 3: If LP is infeasible or 𝑧∗ ≥ 𝑧(𝑗) then prune node 𝑗
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Case 3: If LP is infeasible or 𝑧∗ ≥ 𝑧(𝑗) then prune node 𝑗
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𝑧(5) = infeasible
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Optimal solution



Variable selection policy (VSP)
𝑥! = 0

𝑥" = 0 𝑥" = 1

Better branching order than 𝑥!, 𝑥", 𝑥#, 𝑥$?

𝑥# = 0

𝑥$ = 0

𝑥# = 1



Variable selection policy (VSP)
𝑥$ = 0

𝑥# = 0 𝑥# = 1

Better branching order than 𝑥!, 𝑥", 𝑥#, 𝑥$? E.g., 𝑥$, 𝑥#, 𝑥!, 𝑥"

𝑥! = 0

𝑥" = 0

𝑥! = 1



Variable selection policy (VSP)

Chooses variables to branch on on-the-fly
Rather than pre-defined order

𝑥$ = 0

𝑥# = 0 𝑥# = 1

𝑥! = 0

𝑥" = 0

𝑥! = 1



Variable selection policy (VSP)
On Problem(𝑗) with LP objective value 𝑧(𝑗):
• Let 𝑧%&(𝑗) be the LP objective value after setting 𝑥% = 1
• Let 𝑧%'(𝑗) be the LP objective value after setting 𝑥% = 0

VSP example:
Branch on the variable 𝑥% that maximizes

max 𝑧 𝑗 − 𝑧%& 𝑗 , 10'( ⋅ max 𝑧 𝑗 − 𝑧%' 𝑗 , 10'(

If score was 𝑧 𝑗 − 𝑧%& 𝑗 𝑧 𝑗 − 𝑧%' 𝑗 and 𝑧 𝑗 − 𝑧%& 𝑗 = 0:
would lose information stored in 𝑧 𝑗 − 𝑧%' 𝑗
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Strong branching

Challenge: Computing 𝑧%' 𝑗 , 𝑧%&(𝑗) requires solving a lot of LPs
• Computing all LP relaxations referred to as strong-branching
• Very time intensive

Pro: Strong branching leads to small search trees

Idea: Train an ML model to imitate strong-branching
Khalil et al. [AAAI’16], Alvarez et al. [INFORMS JoC’17], Hansknecht et al. [arXiv’18]
This paper: using a GNN



Problem formulation
Goal: learn a policy 𝜋 𝑎) 𝑠)

Approach (imitation learning):
• Run strong branching on training set of instances
• Collect dataset of (state, variable) pairs 𝑆 = 𝑠% , 𝑎%∗ %+!

,

• Learn policy minimizing cross-entropy loss

𝐿 𝜽 = −
1
𝑁
6
%+!

,

log 𝜋𝜽 (𝑎%∗ ∣ 𝑠%)

Probability of branching on variable 𝑎( when solver is in state 𝑠(



State encoding
State 𝑠) of B&B encoded as a bipartite graph

with node and edge features

max 9𝑥! + 5𝑥" + 6𝑥# + 4𝑥$
s.t. 6𝑥! + 3𝑥" + 5𝑥# + 2𝑥$ ≤ 10 𝑐!

𝑥# + 𝑥$ ≤ 10 𝑐"
−𝑥! + 𝑥# ≤ 0 𝑐#
−𝑥" + 𝑥$ ≤ 0 𝑐$
𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ 0,1

𝑐!

Constraints Variables

𝑐"

𝑐#

𝑐$

𝑥!

𝑥"

𝑥#

𝑥$



State encoding
State 𝑠) of B&B encoded as a bipartite graph

with node and edge features

• Edge feature: constraint coefficient
• Example node features:
• Constraints:

• Cosine similarity with objective
• Tight in LP solution? 

• Variables:
• Objective coefficient
• Solution value equals upper/lower bound?

𝑐!

Constraints Variables

𝑐"

𝑐#

𝑐$

𝑥!

𝑥"

𝑥#

𝑥$



GNN structure

1. Pass from variables → constraints
𝒄% ← 𝑓. 𝒄% , 6

/: %,/ ∈3

𝑔. 𝒄% , 𝒗/ , 𝒆%/

𝑐!

Constraints Variables

𝑐"

𝑐#

𝑐$

𝑥!

𝑥"

𝑥#

𝑥$

Constraint 
features

2-layer MLP with relu
activations

Variable 
features

Edge 
features



GNN structure

1. Pass from variables → constraints
𝒄% ← 𝑓. 𝒄% , 6

/: %,/ ∈3

𝑔. 𝒄% , 𝒗/ , 𝒆%/

2. Pass from constraints → variables
𝒗/ ← 𝑓4 𝒗/ , 6

%: %,/ ∈3

𝑔4 𝒄% , 𝒗/ , 𝒆%/
𝑐!

Constraints Variables

𝑐"

𝑐#

𝑐$

𝑥!

𝑥"

𝑥#

𝑥$



GNN structure

3. Compute distribution over variables

𝑐!

Constraints Variables

𝑐"

𝑐#

𝑐$

𝑥!

𝑥"

𝑥#

𝑥$

2-layer MLP 
+ softmax

𝜋 𝑥! 𝑠(

𝜋 𝑥$ 𝑠(

𝜋 𝑥" 𝑠(

𝜋 𝑥# 𝑠(
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Reliability pseudo-cost branching (RPB)

Rough idea:
• Goal: estimate 𝑧 𝑗 − 𝑧%& 𝑗 w/o solving the LP with 𝑥% = 1
• Estimate = avg change after setting 𝑥% = 1 elsewhere in tree

This is the “pseudo-cost”
• “Reliability”: do strong branching if estimate is “unreliable”

E.g., early in the tree

Default branching rule of SCIP (leading open-source solver):
max KΔ%& 𝑗 , 10'( ⋅ max KΔ%' 𝑗 , 10'(

Estimate of 𝑧 𝑗 − 𝑧)* 𝑗 Estimate of 𝑧 𝑗 − 𝑧)+ 𝑗

Achterberg and Berthold, CPAIOR’09



SVMrank approach [Khalil et al., AAAI’16]

• For variable 𝑥% on Problem(𝑗):
SB%

/ = max 𝑧 𝑗 − 𝑧%& 𝑗 , 10'( ⋅ max 𝑧 𝑗 − 𝑧%' 𝑗 , 10'(

• Define binary labels 𝑦%
/ = P1 if SB%

/ ≥ (1 − 𝛼)max SB%!
/

0 else
• Given features 𝝓%

/ ∈ ℝ5, train linear model 𝑓:ℝ5 → ℝ so that:
If 𝑦%

/ > 𝑦%!
/ , then 𝑓 𝝓%

/ > 𝑓 𝝓%!
/

• Use SVMrank [Joachims, KDD’06]

• Branch on variable with largest 𝑓 𝝓%
/



lambdaMART approach [Hansknecht et al., arXiv’18]

• For variable 𝑥% on Problem(𝑗):
SB%

/ = max 𝑧 𝑗 − 𝑧%& 𝑗 , 10'( ⋅ max 𝑧 𝑗 − 𝑧%' 𝑗 , 10'(

• Define binary labels 𝑦%
/ = P1 if SB%

/ ≥ (1 − 𝛼)max SB%!
/

0 else
• Given features 𝝓%

/ ∈ ℝ5, train linear model 𝑓:ℝ5 → ℝ so that:
If 𝑦%

/ > 𝑦%!
/ , then 𝑓 𝝓%

/ > 𝑓 𝝓%!
/

• Use SVMrank [Joachims, KDD’06] lambdaMART [Burges, Learning’10]

• Branch on variable with largest 𝑓 𝝓%
/



Regression tree approach [Alvarez et al., INFORMS JoC’17]

• For variable 𝑥% on Problem(𝑗):
SB%

/ = max 𝑧 𝑗 − 𝑧%& 𝑗 , 10'( ⋅ max 𝑧 𝑗 − 𝑧%' 𝑗 , 10'(

• Given features 𝝓%
/ ∈ ℝ5, train regression tree ensemble model

𝑓 𝝓%
/ ≈ SB%

/

• Branch on variable with largest 𝑓 𝝓%
/
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Imitation learning accuracy

• acc@1: highest-ranked variable same as strong branching?
• acc@5: 1 of the 5 highest ranked variables same as SB?
• acc@10: 1 of the 10 highest ranked variables same as SB?



Set covering instances

Always train on “easy” instances

1000 columns, 500 rows 1000 columns, 2000 rows



Set covering instances

Runtime in seconds with a timeout of 1 hour

Number instances with fastest runtime / number solved

Size of B&B tree



Set covering instances

• GNN is faster than SCIP default VSP (RPB)
• Performance generalizes to larger instances
• Similar results for auction design & facility location problems



Max independent set instances

RPB is catching up to GNN on MIS instances



Overview

Proposed a variable selection policy based on GNNs

Outperforms default policy of SCIP

Generalizes to larger MIPs than trained on


