Learning Combinatorial Optimization Algorithms over Graphs

Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, Le Song

NeurIPS'17

Overview

Goal: use RL to learn new greedy strategies for graph problems Feasible solution constructed by successively adding nodes to solution

Input: Graph G = (V, E), weights w(u, v) for $(u, v) \in E$

RL state representation: Graph embedding

Algorithm training: Fitted Q-learning

Outline

1. Greedy algorithms

- 2. Graph representation
- 3. RL formulation
- 4. Q-learning
- 5. Experiments

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:

Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

 $\sum_{(u,v)\in C} w(u,v)$ where $C = \{(u,v) \in E : u \in S, v \notin S\}$

If w(u, v) = 1 for all $(u, v) \in E$:

$$\sum_{(u,v)\in C} w(u,v) = 5$$

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes $\sum w(u, v)$

where
$$C = \{(u, v) \in E : u \in S, v \notin S\}$$

Greedy: move node from one side of cut to the other Move node that results in the largest improvement in cut weight

Maximum cut

Find partition $(S, V \setminus S)$ of nodes that maximizes

where
$$C = \{(u, v) \in E : u \in S, v \notin S\}$$

Greedy: move node from one side of cut to the other Move node that results in the largest improvement in cut weight

Scoring function that guides greedy algorithm

General greedy algorithm formulation

- 1. **Partial solution** is an ordered list $S = (v_1, v_2, ..., v_{|S|}), v_i \in V$
- 2. Helper function h(S) maps S to combinatorial structure, eg:
 - **Maxcut:** h(S) returns cut $C = \{(u, v) \in E : u \in S, v \notin S\}$
 - **TSP:** h(S) maintains a partial tour according to order of nodes in S
 - Min vertex cover: h(S) does nothing
- 3. Quality of S evaluated by function c(h(S), G), e.g.:
 - **Maxcut:** $c(h(S), G) = \sum_{(u,v) \in C = h(S)} w(u, v)$
 - **TSP:** $c(h(S), G) = -\sum_{i=1}^{|S|-1} w(S[i], S[i+1]) w(S[|S|], S(1))$
 - Min vertex cover: c(h(S), G) = -|S|

General greedy algorithm formulation

4. Add node that maximizes an evaluation function Q(h(S), v):
S ← (S, v*) where v* = argmax Q(h(S), v) v∉s
5. Terminate based on termination criterion t(h(S))

This paper: Use RL to learn evaluation function $\hat{Q}(h(S), v; \Theta)$

Model parameters

Outline

- 1. Greedy algorithms
- 2. Graph representation
- 3. RL formulation
- 4. Q-learning
- 5. Experiments

Representation: graph embedding

•
$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{else} \end{cases}$$

• Compute embedding over T iterations ($\mu_v^{(0)} = \mathbf{0}$):

$$\boldsymbol{\mu}_{v}^{(t+1)} \leftarrow \operatorname{relu}\left(\underbrace{\boldsymbol{\theta}_{1} x_{v} + \boldsymbol{\theta}_{2}}_{\boldsymbol{u} \in N(v)} \sum_{u \in N(v)} \underbrace{\boldsymbol{\mu}_{u}^{(t)} + \boldsymbol{\theta}_{3}}_{u \in N(v)} \sum_{u \in N(v)} \operatorname{relu}\left(\underline{\boldsymbol{\theta}_{4} w(v, u)}\right)\right)$$

Trainable parameters

Representation: graph embedding

•
$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{else} \end{cases}$$

• Compute embedding over *T* iterations $(\boldsymbol{\mu}_{v}^{(0)} = \mathbf{0})$: $\boldsymbol{\mu}_{v}^{(t+1)} \leftarrow \operatorname{relu}\left(\boldsymbol{\theta}_{1}x_{v} + \boldsymbol{\theta}_{2}\sum_{u \in N(v)}\boldsymbol{\mu}_{u}^{(t)} + \boldsymbol{\theta}_{3}\sum_{u \in N(v)}\operatorname{relu}(\boldsymbol{\theta}_{4}w(v,u))\right)$ (Usually *T* = 4) • $\hat{Q}(h(S), v; \Theta) = \boldsymbol{\theta}_{5}^{\mathsf{T}}\operatorname{relu}\left(\left[\boldsymbol{\theta}_{6}\sum_{u \in V}\boldsymbol{\mu}_{u}^{(T)}, \boldsymbol{\theta}_{7}\boldsymbol{\mu}_{u}^{(T)}\right]\right)$

Concatenation

Representation: graph embedding

•
$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{else} \end{cases}$$

• Compute embedding over *T* iterations $(\boldsymbol{\mu}_{v}^{(0)} = \mathbf{0})$: $\boldsymbol{\mu}_{v}^{(t+1)} \leftarrow \operatorname{relu}\left(\boldsymbol{\theta}_{1}x_{v} + \boldsymbol{\theta}_{2}\sum_{u \in N(v)} \boldsymbol{\mu}_{u}^{(t)} + \boldsymbol{\theta}_{3}\sum_{u \in N(v)} \operatorname{relu}(\boldsymbol{\theta}_{4}w(v,u))\right)$ (Usually *T* = 4) • $\hat{Q}(h(S), v; \Theta) = \boldsymbol{\theta}_{5}^{\mathsf{T}}\operatorname{relu}\left(\begin{bmatrix}\boldsymbol{\theta}_{6}\sum_{u \in V} \boldsymbol{\mu}_{u}^{(T)}, \boldsymbol{\theta}_{7}\boldsymbol{\mu}_{u}^{(T)}\end{bmatrix}\right)$ <u>Surrogate for h(S)</u> Surrogate for *Surrogate for v*

Outline

- 1. Greedy algorithms
- 2. Graph representation
- **3. RL formulation**
- 4. Q-learning
- 5. Experiments

Reinforcement learning formulation

State: $\sum_{u \in V} \mu_u^{(T)}$

Action: Choose vertex $v \in V \setminus S$ to add to solution

Transition (deterministic): For chosen $v \in V \setminus S$, set $x_v = 1$

Reinforcement learning formulation

Reward:
$$r(S, v)$$
 is objective change when move to $S' = (S, v)$
 $r(S, v) = c(h(S'), G) - c(h(S), G)$
 $c(h(\emptyset), G) = 0$, so cumulative reward of **terminal state** \hat{S} is

$$\sum_{i=1}^{|\hat{S}|} r(S_i, v_i) = c(h(\hat{S}), G)$$

Policy (deterministic):
$$\pi(v|S) = \begin{cases} 1 & \text{if } v = \underset{v' \notin S}{\operatorname{argmax}} \hat{Q}(h(S), v'; \Theta) \\ 0 & \text{else} \end{cases}$$

Outline

- 1. Greedy algorithms
- 2. Graph representation
- 3. RL formulation

4. Q-learning

5. Experiments

Q-learning

Recall standard (1-step) Q-learning:

$$\min_{\Theta} \left(y - \hat{Q}(h(S_t), v_t; \Theta) \right)^2$$
where $y = r(S_t, v_t) + \gamma \max_{v'} \hat{Q}(h(S_{t+1}), v'; \Theta)$

Challenge:

- Final objective value only revealed after many steps
- 1-step update may be too myopic

Instead, use *n*-step Q-learning [Watkins, '89]

n-step Q-learning $\min_{\Theta} \left(y - \hat{Q}(h(S_t), v_t; \Theta) \right)^2$ where $y = \sum_{i=0}^{n-1} \gamma^i r(S_{t+1}, v_{t+i}) + \gamma^n \max_{v'} \hat{Q}(h(S_{t+n}), v'; \Theta)$

Q-learning for the greedy algorithm

initialize set $M = \emptyset$ for episode e = 1, ..., L: **sample graph** *G* from underlying distribution *D* initialize state to empty $S_1 = ()$

Q-learning for the greedy algorithm

for episode
$$e = 1, ..., L$$
:
for step $t = 1, ..., T$:
 $v_t = \begin{cases} \text{random node } v \notin S_t & \text{with probability } \epsilon \\ \arg\max \hat{Q}(h(S_t), v; \Theta) & \text{otherwise} \\ \text{add } v_t \text{ to partial solution } S_{t+1} = (S_t, v_t) \\ \text{if } t \ge n \text{:} \end{cases}$
add tuple $(S_{t-n}, v_{t-n}, \sum_{i=1}^n R(S_{t-i}, v_{t-i}), S_t)$ to M
sample batch $B \sim M$
update Θ using SGD over B

Outline

- 1. Greedy algorithms
- 2. Graph representation
- 3. RL formulation
- 4. Q-learning
- **5. Experiments**

Approximation ratio

Results measured in terms of approximation ratio

Algorithm's solution

OPT

Min vertex cover

Max cut

TSP

Uniform random points on 2-D grid

Paper's approach

- Initial subtour: 2 cities that are farthest apart
- Repeat the following:
 - Choose city that's *farthest* from any city in the subtour
 - Insert in position where it causes the smallest distance increase

Runtime comparisons

Min vertex cover visualization

Nodes seem to be selected to balance between:

- Degree
- Connectivity of the remaining graph

Overview

Learn greedy heuristics for hard combinatorial problem

Approach based on graph representation + RL

Suggest approach could be used for **algorithm discovery** "New and interesting" greedy strategies "which **intuitively make sense** but have **not been analyzed** before," thus could be a "good **assistive tool** for discovering new algorithms."