
Learning Combinatorial Optimization
Algorithms over Graphs

Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, Le Song

NeurIPS’17

Overview

Goal: use RL to learn new greedy strategies for graph problems
Feasible solution constructed by successively adding nodes to solution

Input: Graph 𝐺 = 𝑉, 𝐸 , weights 𝑤 𝑢, 𝑣 for 𝑢, 𝑣 ∈ 𝐸

RL state representation: Graph embedding

Algorithm training: Fitted Q-learning

Outline

1. Greedy algorithms
2. Graph representation
3. RL formulation
4. Q-learning
5. Experiments

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Degree
sum: 6

Degree
sum: 7

Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm

Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆 of nodes that maximizes
,
!,# ∈%

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

If 𝑤 𝑢, 𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝐸:

)
!,# ∈%

𝑤 𝑢, 𝑣 = 5

Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆 of nodes that maximizes
,
!,# ∈%

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight

Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆 of nodes that maximizes
,
!,# ∈%

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight

Scoring function that guides greedy algorithm

General greedy algorithm formulation

1. Partial solution is an ordered list 𝑆 = 𝑣&, 𝑣', … , 𝑣 (, 𝑣) ∈ 𝑉
2. Helper function ℎ 𝑆 maps 𝑆 to combinatorial structure, eg:
• Maxcut: ℎ 𝑆 returns cut 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆
• TSP: ℎ 𝑆 maintains a partial tour according to order of nodes in 𝑆
• Min vertex cover: ℎ 𝑆 does nothing

3. Quality of 𝑆 evaluated by function 𝑐 ℎ 𝑆 , 𝐺 , e.g.:
• Maxcut: 𝑐 ℎ 𝑆 , 𝐺 = ∑ +,, ∈-./(1)𝑤 𝑢, 𝑣
• TSP: 𝑐 ℎ 𝑆 , 𝐺 = −∑3.4

1 54𝑤 𝑆 𝑖 , 𝑆 𝑖 + 1 − 𝑤 𝑆 𝑆 , 𝑆 1
• Min vertex cover: 𝑐 ℎ 𝑆 , 𝐺 = − 𝑆

General greedy algorithm formulation

4. Add node that maximizes an evaluation function 𝑄 ℎ 𝑆 , 𝑣 :
𝑆 ← 𝑆, 𝑣∗ where 𝑣∗ = argmax

#∉(
𝑄 ℎ 𝑆 , 𝑣

5. Terminate based on termination criterion 𝑡 ℎ 𝑆

This paper: Use RL to learn evaluation function ;𝑄 ℎ 𝑆 , 𝑣; Θ

Model
parameters

Outline

1. Greedy algorithms
2. Graph representation
3. RL formulation
4. Q-learning
5. Experiments

Representation: graph embedding

• 𝑥# = ?1 if 𝑣 ∈ 𝑆
0 else.

• Compute embedding over 𝑇 iterations (𝝁#
(-) = 𝟎):

𝝁#
(/0&) ← relu 𝜽&𝑥# + 𝜽' ,

!∈1 #

𝝁!
/ + 𝜽2 ,

!∈1 #

relu 𝜽3𝑤 𝑣, 𝑢

Trainable parameters

structure2vec framework of Dai et al. [ICML’16]

Representation: graph embedding

• 𝑥# = ?1 if 𝑣 ∈ 𝑆
0 else.

• Compute embedding over 𝑇 iterations (𝝁#
(-) = 𝟎):

𝝁#
(/0&) ← relu 𝜽&𝑥# + 𝜽' ,

!∈1 #

𝝁!
/ + 𝜽2 ,

!∈1 #

relu 𝜽3𝑤 𝑣, 𝑢

(Usually 𝑇 = 4)

• ;𝑄 ℎ 𝑆 , 𝑣; Θ = 𝜽45relu 𝜽6 ∑!∈7 𝝁!
8 , 𝜽9𝝁!

8

structure2vec framework of Dai et al. [ICML’16]

Concatenation

Representation: graph embedding

• 𝑥# = ?1 if 𝑣 ∈ 𝑆
0 else.

• Compute embedding over 𝑇 iterations (𝝁#
(-) = 𝟎):

𝝁#
(/0&) ← relu 𝜽&𝑥# + 𝜽' ,

!∈1 #

𝝁!
/ + 𝜽2 ,

!∈1 #

relu 𝜽3𝑤 𝑣, 𝑢

(Usually 𝑇 = 4)

• ;𝑄 ℎ 𝑆 , 𝑣; Θ = 𝜽45relu 𝜽6 ∑!∈7 𝝁!
8 , 𝜽9𝝁!

8

structure2vec framework of Dai et al. [ICML’16]

Surrogate for
ℎ(𝑆)

Surrogate
for 𝑣

Outline

1. Greedy algorithms
2. Graph representation
3. RL formulation
4. Q-learning
5. Experiments

Reinforcement learning formulation

State: ∑!∈7 𝝁!
8

Action: Choose vertex 𝑣 ∈ 𝑉 ∖ 𝑆 to add to solution

Transition (deterministic): For chosen 𝑣 ∈ 𝑉 ∖ 𝑆, set 𝑥# = 1

Reinforcement learning formulation

Reward: 𝑟 𝑆, 𝑣 is objective change when move to 𝑆: = (𝑆, 𝑣)
𝑟 𝑆, 𝑣 = 𝑐 ℎ 𝑆: , 𝐺 − 𝑐 ℎ 𝑆 , 𝐺

𝑐 ℎ ∅ , 𝐺 = 0, so cumulative reward of terminal state 9𝑆 is

:
3.4

81

𝑟 𝑆3, 𝑣3 = 𝑐 ℎ 9𝑆 , 𝐺

Policy (deterministic): 𝜋(𝑣|𝑆) = U
1 if 𝑣 = argmax

#!∉(
;𝑄 ℎ 𝑆 , 𝑣:; Θ

0 else

Outline

1. Greedy algorithms
2. Graph representation
3. RL formulation
4. Q-learning
5. Experiments

Q-learning

Recall standard (1-step) Q-learning:
min
;

𝑦 − ;𝑄 ℎ 𝑆/ , 𝑣/; Θ
'

where 𝑦 = 𝑟 𝑆/ , 𝑣/ + 𝛾max
#!

;𝑄 ℎ 𝑆/0& , 𝑣:; Θ

Challenge:
• Final objective value only revealed after many steps
• 1-step update may be too myopic

Instead, use 𝒏-step Q-learning [Watkins, ‘89]

𝑛-step Q-learning

min
;

𝑦 − ;𝑄 ℎ 𝑆/ , 𝑣/; Θ
'

where 𝑦 = ∑)<-=>& 𝛾)𝑟 𝑆/0&, 𝑣/0) + 𝛾=max
#!

;𝑄 ℎ 𝑆/0= , 𝑣:; Θ

Q-learning for the greedy algorithm

initialize set 𝑀 = ∅
for episode 𝑒 = 1,… , 𝐿:

sample graph 𝐺 from underlying distribution 𝐷
initialize state to empty 𝑆& = ()

for episode 𝑒 = 1,… , 𝐿:

Q-learning for the greedy algorithm

for episode 𝑒 = 1,… , 𝐿:
for step 𝑡 = 1,… , 𝑇:

𝑣/ = U
random node 𝑣 ∉ 𝑆/ with probability 𝜖
argmax
#∉("

;𝑄 ℎ 𝑆/ , 𝑣; Θ otherwise.

add 𝑣/ to partial solution 𝑆/0& = 𝑆/ , 𝑣/
if 𝑡 ≥ 𝑛:

add tuple 𝑆/>= , 𝑣/>= , ∑)<&= 𝑅 𝑆/>) , 𝑣/>) , 𝑆/ to 𝑀
sample batch 𝐵 ∼ 𝑀
update 𝚯 using SGD over 𝐵

for episode 𝑒 = 1,… , 𝐿:

experience
replay

Outline

1. Greedy algorithms
2. Graph representation
3. RL formulation
4. Q-learning
5. Experiments

Approximation ratio

Results measured in terms of approximation ratio

Algorithm:s solution
OPT

Min vertex cover

Paper’s approach

2-approximation
algorithm

Greedy algorithm
from first few slides

Barabasi-Albert
random graphs

Another DL approach
[Bello et al., arXiv’16]

Max cut

Paper’s approach

Another DL approach
[Bello et al., arXiv’16]

Goemans-Williamson
algorithm

Greedy algorithm
from first few slides

Barabasi-Albert
random graphs

TSP

Paper’s approach

Uniform random points on 2-D grid

• Initial subtour: 2 cities that are
farthest apart

• Repeat the following:
• Choose city that’s farthest

from any city in the
subtour

• Insert in position where it
causes the smallest
distance increase

[Rosenkrantz et al., SIAM JoC’77]

Runtime comparisons

CPLEX-1st: 1st feasible
solution found by CPLEX

Min vertex cover visualization

Nodes seem to be selected to balance between:
• Degree
• Connectivity of the remaining graph

Overview

Learn greedy heuristics for hard combinatorial problem

Approach based on graph representation + RL

Suggest approach could be used for algorithm discovery
“New and interesting” greedy strategies
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”

