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Overview

Goal: use RL to learn new greedy strategies for graph problems
Feasible solution constructed by successively adding nodes to solution

Input: Graph ¢ = (V,E), weights w(u, v) for (u,v) € E
RL state representation: Graph embedding

Algorithm training: Fitted Q-learning
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Minimum vertex cover

Find smallest vertex subset such that each edge is covered
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Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum
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sum: / sum: 6
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Minimum vertex cover

Find smallest vertex subset such that each edge is covered

2-approximation:
Greedily add vertices of edge with maximum degree sum

Scoring function that guides greedy algorithm
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Maximum cut

Find partition (S,V \ S) of nodes that maximizes

z w(u, v)

(u,v)ec
where C = {(u,v) e E:u € S, v &S}

If w(u,v) = 1forall (u,v) € E:

Z w(u,v) =5

(u,v)ec

.



Maximum cut

Find partition (S,V \ S) of nodes that maximizes

Z w(u, v)

(u,v)ec
where C = {(u,v) e E:u € S, v &S}

Greedy: move node from one side of cut to the other
Move node that results in the largest improvement in cut weight
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General greedy algorithm formulation

1. Partial solution is an ordered list S = (vy,v,, ..., vig), v; €V

2. Helper function h(S) maps S to combinatorial structure, eg:
 Maxcut: h(S) returnscut C = {(u,v) EE:u € S,v ¢ S}
* TSP: h(S) maintains a partial tour according to order of nodesin §
« Min vertex cover: h(S) does nothing

3. Quality of S evaluated by function c(h(S), G), e.g.:
 Maxcut: c(h(S),G) = Z(u,v)EC:h(S)W(u’ V)
« TSP: c(h(S),6) = — X5 w(s[i), S[i + 1]) — w(S[ISI], S(1))
* Min vertex cover: c(h(S),G) = —|S|



General greedy algorithm formulation

4. Add node that maximizes an evaluation function Q(h(S), v):

S « (5,v") where v* = argmax Q (h(S), v)
VES

5. Terminate based on termination criterion t(h(S))

This paper: Use RL to learn evaluation function Q(h(S), v; ®)

Model
parameters
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Representation: graph embedding

.y — 1 ifves
v 0 else

« Compute embedding over T iterations (u,(,o) = 0):

”1(]1:+1) « relu (lev + 0, z ﬂ,(f) + 05 z relu(94w(v, u)))

UEN (v) UeN (v)

[ Trainable parameters ]

structure2vec framework of Dai et al. [ICML'16]



Representation: graph embedding

.y — 1 ifves
v 0 else

« Compute embedding over T iterations (u,(,O) = 0):

ﬂffﬂ) « relu (lev + 0, z u,(f) + 05 z relu(04w(v, u)))

UEN (v) UeN (v)
(Usually T = 4)
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Concatenation

[ICML16]



Representation: graph embedding

.y — 1 ifves
v 0 else

« Compute embedding over T iterations (u,(,o) = 0):

ﬂffﬂ) « relu (lev + 0, z ﬂ,(f) + 05 z relu(04w(v, u)))

UEN (v) UEN (v)
(Usually T = 4)
* Q(h(S), v; ) = T relu ([0 Tyey 1, 0711, |)

Surrogate for Surrogate
h(S) forv

structure2vec framework of Dai et al. [ICML'16]
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Reinforcement learning formulation

State: Yyey ;)

Action: Choose vertex v € V' \ S to add to solution

Transition (deterministic): For chosenv eV \ §,setx, =1



Reinforcement learning formulation

Reward: (S, v) is objective change when move to S’ = (§, v)
r(S,v) = c(h(§'),G) — c(h(S),G)
c(h(®),G) =0, so currluflative reward of terminal state S is
S
> 1w = ¢(h(5),6)

=1

( ~
. o 1 ifv =argmaxQ(h(S),v’;0)
Policy (deterministic): m(v|S) = < v'gs

k0 else
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Q-learning

Recall standard (1-step) Q-learning:
. 2
min (y - Q(h(S,), v ©))
where y = 7(S;, v¢) + y max Q(h(S;11),v';0)
v

Challenge:
* Final objective value only revealed after many steps

* 1-step update may be too myopic
Instead, use n-step Q-learning [Watkins, '89]



n-step Q-learning

| ~ 2
min (v = 0h(s), v 0))
where y = X155 v 1 (Ses1, Vess) +¥" mdx Q(h(Se4n),v'; 0)



Q-learning tor the greedy algorithm

initialize set M = @

for episodee =1, ..., L:
sample graph G from underlying distribution D
initialize state to empty §; = ()



Q-learning tor the greedy algorithm

for episodee =1, ..., L:

forstept=1,..,T:
‘random node v ¢ S  with probability €
Ve = yargmax Q(h(S,),v;®) otherwise
L V&St
add v, to partial solution S;,; = (5;, v;)
ift > n:
add tuple (S¢—n, Ve—n, Xi=q R(Se—i, ve—i) , Se) to M
f;"f,i;ie"ce sample batch B ~ M

update 0 using SGD over B
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Approximation ratio

Results measured in terms of approximation ratio

Algorithm’s solution
OPT




Min vertex cover
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Max cut
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TSP

Uniform random points on 2-D grid

Paper’s approach

* Initial subtour: 2 cities that are
farthest apart
» Repeat the following:

» Choose city that's farthest
from any city in the
subtour

* Insertin position where it
causes the smallest

distance increase
[Rosenkrantz et al., SIAM JoC'77]
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Runtime comparisons

CPLEX-1st: 1stfeasible
solution found by CPLEX
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Min vertex cover visualization
Nodes seem to be selected to balance between:

* Degree
« Connectivity of the remaining graph



Overview

Learn greedy heuristics for hard combinatorial problem
Approach based on graph representation + RL

Suggest approach could be used for algorithm discovery
“New and interesting” greedy strategies
“which intuitively make sense but have not been analyzed before/”
thus could be a “good assistive tool for discovering new algorithms.”



