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Overview

Goal: use RL to learn new greedy strategies for graph problems
Feasible solution constructed by successively adding nodes to solution

Input: Graph 𝐺 = 𝑉, 𝐸 , weights 𝑤 𝑢, 𝑣 for 𝑢, 𝑣 ∈ 𝐸

RL state representation: Graph embedding

Algorithm training: Fitted Q-learning
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Minimum vertex cover

Find smallest vertex subset such that each edge is covered
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2-approximation:
Greedily add vertices of edge with maximum degree sum
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Maximum cut

Find partition 𝑆, 𝑉 ∖ 𝑆 of nodes that maximizes
,
!,# ∈%

𝑤 𝑢, 𝑣

where 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆

If 𝑤 𝑢, 𝑣 = 1 for all 𝑢, 𝑣 ∈ 𝐸:

)
!,# ∈%

𝑤 𝑢, 𝑣 = 5
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Greedy: move node from one side of cut to the other 
Move node that results in the largest improvement in cut weight
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General greedy algorithm formulation

1. Partial solution is an ordered list 𝑆 = 𝑣&, 𝑣', … , 𝑣 ( , 𝑣) ∈ 𝑉
2. Helper function ℎ 𝑆 maps 𝑆 to combinatorial structure, eg:
• Maxcut: ℎ 𝑆 returns cut 𝐶 = 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆
• TSP: ℎ 𝑆 maintains a partial tour according to order of nodes in 𝑆
• Min vertex cover: ℎ 𝑆 does nothing

3. Quality of 𝑆 evaluated by function 𝑐 ℎ 𝑆 , 𝐺 , e.g.: 
• Maxcut: 𝑐 ℎ 𝑆 , 𝐺 = ∑ +,, ∈-./(1)𝑤 𝑢, 𝑣
• TSP: 𝑐 ℎ 𝑆 , 𝐺 = −∑3.4

1 54𝑤 𝑆 𝑖 , 𝑆 𝑖 + 1 − 𝑤 𝑆 𝑆 , 𝑆 1
• Min vertex cover: 𝑐 ℎ 𝑆 , 𝐺 = − 𝑆



General greedy algorithm formulation

4. Add node that maximizes an evaluation function 𝑄 ℎ 𝑆 , 𝑣 :
𝑆 ← 𝑆, 𝑣∗ where 𝑣∗ = argmax

#∉(
𝑄 ℎ 𝑆 , 𝑣

5. Terminate based on termination criterion 𝑡 ℎ 𝑆

This paper: Use RL to learn evaluation function ;𝑄 ℎ 𝑆 , 𝑣; Θ

Model 
parameters
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Representation: graph embedding

• 𝑥# = ?1 if 𝑣 ∈ 𝑆
0 else.

• Compute embedding over 𝑇 iterations (𝝁#
(-) = 𝟎):

𝝁#
(/0&) ← relu 𝜽&𝑥# + 𝜽' ,

!∈1 #

𝝁!
/ + 𝜽2 ,

!∈1 #

relu 𝜽3𝑤 𝑣, 𝑢

Trainable parameters

structure2vec framework of Dai et al. [ICML’16]
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Concatenation



Representation: graph embedding

• 𝑥# = ?1 if 𝑣 ∈ 𝑆
0 else.

• Compute embedding over 𝑇 iterations (𝝁#
(-) = 𝟎):

𝝁#
(/0&) ← relu 𝜽&𝑥# + 𝜽' ,

!∈1 #

𝝁!
/ + 𝜽2 ,

!∈1 #

relu 𝜽3𝑤 𝑣, 𝑢

(Usually 𝑇 = 4)

• ;𝑄 ℎ 𝑆 , 𝑣; Θ = 𝜽45relu 𝜽6 ∑!∈7 𝝁!
8 , 𝜽9𝝁!

8

structure2vec framework of Dai et al. [ICML’16]

Surrogate for 
ℎ(𝑆)

Surrogate 
for 𝑣
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Reinforcement learning formulation

State: ∑!∈7 𝝁!
8

Action: Choose vertex 𝑣 ∈ 𝑉 ∖ 𝑆 to add to solution

Transition (deterministic): For chosen 𝑣 ∈ 𝑉 ∖ 𝑆, set 𝑥# = 1



Reinforcement learning formulation

Reward: 𝑟 𝑆, 𝑣 is objective change when move to 𝑆: = (𝑆, 𝑣)
𝑟 𝑆, 𝑣 = 𝑐 ℎ 𝑆: , 𝐺 − 𝑐 ℎ 𝑆 , 𝐺

𝑐 ℎ ∅ , 𝐺 = 0, so cumulative reward of terminal state 9𝑆 is

:
3.4

81

𝑟 𝑆3, 𝑣3 = 𝑐 ℎ 9𝑆 , 𝐺

Policy (deterministic): 𝜋(𝑣|𝑆) = U
1 if 𝑣 = argmax

#!∉(
;𝑄 ℎ 𝑆 , 𝑣:; Θ

0 else
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Q-learning

Recall standard (1-step) Q-learning:
min
;

𝑦 − ;𝑄 ℎ 𝑆/ , 𝑣/; Θ
'

where 𝑦 = 𝑟 𝑆/ , 𝑣/ + 𝛾max
#!

;𝑄 ℎ 𝑆/0& , 𝑣:; Θ

Challenge:
• Final objective value only revealed after many steps
• 1-step update may be too myopic

Instead, use 𝒏-step Q-learning [Watkins, ‘89]



𝑛-step Q-learning 

min
;

𝑦 − ;𝑄 ℎ 𝑆/ , 𝑣/; Θ
'

where 𝑦 = ∑)<-=>& 𝛾)𝑟 𝑆/0&, 𝑣/0) + 𝛾=max
#!

;𝑄 ℎ 𝑆/0= , 𝑣:; Θ



Q-learning for the greedy algorithm

initialize set 𝑀 = ∅
for episode 𝑒 = 1,… , 𝐿:

sample graph 𝐺 from underlying distribution 𝐷
initialize state to empty 𝑆& = ()

for episode 𝑒 = 1,… , 𝐿:



Q-learning for the greedy algorithm

for episode 𝑒 = 1,… , 𝐿:
for step 𝑡 = 1,… , 𝑇:

𝑣/ = U
random node 𝑣 ∉ 𝑆/ with probability 𝜖
argmax
#∉("

;𝑄 ℎ 𝑆/ , 𝑣; Θ otherwise.

add 𝑣/ to partial solution 𝑆/0& = 𝑆/ , 𝑣/
if 𝑡 ≥ 𝑛:

add tuple 𝑆/>= , 𝑣/>= , ∑)<&= 𝑅 𝑆/>) , 𝑣/>) , 𝑆/ to 𝑀
sample batch 𝐵 ∼ 𝑀
update 𝚯 using SGD over 𝐵

for episode 𝑒 = 1,… , 𝐿:

experience 
replay
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Approximation ratio

Results measured in terms of approximation ratio

Algorithm:s solution
OPT



Min vertex cover

Paper’s approach

2-approximation 
algorithm

Greedy algorithm 
from first few slides

Barabasi-Albert 
random graphs

Another DL approach 
[Bello et al., arXiv’16]



Max cut

Paper’s approach

Another DL approach 
[Bello et al., arXiv’16]

Goemans-Williamson 
algorithm

Greedy algorithm 
from first few slides

Barabasi-Albert 
random graphs



TSP

Paper’s approach

Uniform random points on 2-D grid

• Initial subtour: 2 cities that are 
farthest apart

• Repeat the following: 
• Choose city that’s farthest

from any city in the 
subtour

• Insert in position where it 
causes the smallest 
distance increase

[Rosenkrantz et al., SIAM JoC’77]



Runtime comparisons

CPLEX-1st: 1st feasible 
solution found by CPLEX



Min vertex cover visualization

Nodes seem to be selected to balance between:
• Degree
• Connectivity of the remaining graph



Overview

Learn greedy heuristics for hard combinatorial problem

Approach based on graph representation + RL

Suggest approach could be used for algorithm discovery 
“New and interesting” greedy strategies
“which intuitively make sense but have not been analyzed before,”
thus could be a “good assistive tool for discovering new algorithms.”


