An ML-theory lens on algorithm configuration

Outline

1. Statistical learning theory

2. Online learning

Running example

Maximum weight independent set (MWIS)

Problem instance:

- Graph $G=(V, E)$
- n vertices with weights $w_{1}, \ldots, w_{n} \geq 0$

Goal: find subset $S \subseteq[n]$

- Maximizing $\sum_{i \in S} w_{i}$
- No nodes $i, j \in S$ are connected: $(i, j) \notin E$

Running example: MWIS

Greedy heuristic:

Greedily add vertices v in decreasing order of $\frac{w_{v}}{(1+\operatorname{deg}(v))}$
Maintaining independence
Parameterized heuristic [Gupta, Roughgarden, ITCS'16]:
Greedily add nodes in decreasing order of $\frac{w_{v}}{(1+\operatorname{deg}(v))^{\prime}} \rho \geq 0$ [Inspired by knapsack heuristic by Lehmann et al., JACM'02]

Question: How to choose ρ ?

General model

\mathbb{R}^{d} : Set of all parameters
E.g., MWIS parameter $\rho \in \mathbb{R}$, CPLEX parameters, ...
X : Set of all inputs E.g., graphs, integer programs, ...

One element $x \in X$

Algorithmic performance

$u_{\boldsymbol{\rho}}(x)=$ utility of algorithm parameterized by $\boldsymbol{\rho} \in \mathbb{R}^{d}$ on input x E.g., runtime, solution quality, memory usage, ...

MWIS: If algorithm returns set $S, u_{\boldsymbol{\rho}}(x)=\sum_{i \in S} w_{i}$

Assume $u_{\boldsymbol{\rho}}(x) \in[-H, H]$

Automated configuration procedure

1. Fix parameterized algorithm
2. Receive set of "typical" inputs sampled from unknown \mathcal{D}

Problem instance 1
Problem instance 2

3. Return parameter setting $\widehat{\boldsymbol{\rho}}$ with good avg performance

Runtime, solution quality, etc.

Automated configuration procedure

Statistical question: Will $\hat{\boldsymbol{\rho}}$ have good future performance? More formally: Is the expected performance of $\widehat{\boldsymbol{\rho}}$ also good?

Generalization bounds

Key question: For any parameter setting $\boldsymbol{\rho}$, is average utility on training set close to expected utility?

Formally: Given samples $x_{1}, \ldots, x_{N} \sim \mathcal{D}$, for any $\boldsymbol{\rho}$,

Generalization bounds

Key question: For any parameter setting $\boldsymbol{\rho}$, is average utility on training set close to expected utility?

Formally: Given samples $x_{1}, \ldots, x_{N} \sim \mathcal{D}$, for any $\boldsymbol{\rho}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} u_{\rho}\left(x_{i}\right)-\mathbb{E}_{x \sim \mathcal{D}}\left[u_{\boldsymbol{\rho}}(x)\right]\right| \leq ?
$$

Empirical average utility

Generalization bounds

Key question: For any parameter setting $\boldsymbol{\rho}$, is average utility on training set close to expected utility?

Formally: Given samples $x_{1}, \ldots, x_{N} \sim \mathcal{D}$, for any $\boldsymbol{\rho}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} u_{\rho}\left(x_{i}\right)-\mathbb{E}_{x \sim \mathcal{D}}\left[u_{\rho}(x)\right]\right| \leq ?
$$

Expected utility

Generalization bounds

Key question: For any parameter setting $\boldsymbol{\rho}$, is average utility on training set close to expected utility?

Formally: Given samples $x_{1}, \ldots, x_{N} \sim \mathcal{D}$, for any $\boldsymbol{\rho}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} u_{\rho}\left(x_{i}\right)-\mathbb{E}_{x \sim \mathcal{D}}\left[u_{\rho}(x)\right]\right| \leq ?
$$

Good average empirical utility \Rightarrow Good expected utility

Convergence

Key question: For any parameter setting $\boldsymbol{\rho}$,

 is average utility on training set close to expected utility?

Convergence

Key question: For any parameter setting $\boldsymbol{\rho}$,

 is average utility on training set close to expected utility?

Outline

1. Statistical learning theory
i. Generalization bounds
ii. Measures of "intrinsic complexity"
iii. Pseudo-dimension of MWIS heuristic
2. Online learning

Intrinsic complexity

"Intrinsic complexity" of function class \mathcal{G}

- Measures how well functions in \mathcal{G} fit complex patterns
- Specific ways to quantify "intrinsic complexity":
- VC dimension
- Pseudo-dimension

VC dimension

Complexity measure for binary-valued function classes \mathcal{F} (Classes of functions $f: Y \rightarrow\{-1,1\}$)
E.g., linear separators

VC dimension of \mathcal{F}

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F}=$ Intervals on the real line $f_{a, b}(x)= \begin{cases}1 & \text { if } x \in(a, b) \\ 0 & \text { else }\end{cases}$
$\operatorname{VCdim}(\mathcal{F}) \geq 2$

VC dimension of \mathcal{F}

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F}=$ Intervals on the real line $f_{a, b}(x)= \begin{cases}1 & \text { if } x \in(a, b) \\ 0 & \text { else }\end{cases}$
$\operatorname{VCdim}(\mathcal{F}) \geq 2$

$\operatorname{VCdim}(\mathcal{F}) \leq 2$

Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, '71]:

- For $\epsilon, \delta \in(0,1)$, let $N=O\left(\frac{\mathrm{VCdim}(\mathcal{F})}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- \mathcal{D} is an unknown distribution over \mathcal{Y}
- $f^{*}: \mathcal{Y} \rightarrow\{0,1\}$ is an unknown target function
- Let $\left\{\left(y_{1}, f^{*}\left(y_{1}\right)\right), \ldots,\left(y_{N}, f^{*}\left(y_{N}\right)\right)\right\}$ be the training set
- With probability at least $1-\delta$ over $y_{1}, \ldots, y_{N} \sim \mathcal{D}, \forall f \in \mathcal{F}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} 1_{\left\{f\left(y_{i}\right) \neq f^{*}\left(y_{i}\right)\right\}}-\mathbb{P}_{y \sim \mathcal{D}}\left[f(y) \neq f^{*}(y)\right]\right| \leq \epsilon
$$

Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, '71]: (alternate formulation)

- For $\epsilon, \delta \in(0,1)$, let $N=O\left(\frac{\text { VCdim }(\mathcal{F})}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- \mathcal{D} is an unknown distribution over \mathcal{Y}
- With probability at least $1-\delta$ over $y_{1}, \ldots, y_{N} \sim \mathcal{D}, \forall f \in \mathcal{F}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} f\left(y_{i}\right)-\mathbb{E}_{y \sim \mathcal{D}}[f(y)]\right| \leq \epsilon
$$

VC dimension of \mathcal{F}

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F}=$ Linear separators in \mathbb{R}^{2}
$\operatorname{VCdim}(\mathcal{F}) \geq 3$

VC dimension of \mathcal{F}

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F}=$ Linear separators in \mathbb{R}^{2}
$\operatorname{VCdim}(\mathcal{F}) \geq 3$

$\operatorname{VCdim}(\mathcal{F}) \leq 3$

$\operatorname{VCdim}\left(\left\{\right.\right.$ Linear separators in $\left.\left.\mathbb{R}^{d}\right\}\right)=d+1$

VC dimension of \mathcal{F}

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F}=$ Axis-aligned rectangles
$\operatorname{VCdim}(\mathcal{F}) \geq 4$

VC dimension of \mathcal{F}

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F}=$ Axis-aligned rectangles
$\operatorname{VCdim}(\mathcal{F}) \geq 4$

$\operatorname{VCdim}(\mathcal{F}) \leq 4$

VC dimension of \mathcal{F}

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Mathematically, for $\mathcal{S}=\left\{y_{1}, \ldots, y_{N}\right\}$,

$$
\left|\left\{\left(\begin{array}{c}
f\left(y_{1}\right) \\
\vdots \\
f\left(y_{N}\right)
\end{array}\right): f \in \mathcal{F}\right\}\right|=2^{N}
$$

Pseudo-dimension

Complexity measure for real-valued function classes \mathcal{G} (Classes of functions $g: \mathcal{Y} \rightarrow[-H, H]$)
E.g., affine functions

Pseudo-dimension of \mathcal{G}

Size of the largest set $\left\{y_{1}, \ldots, y_{N}\right\} \subseteq \mathcal{Y}$ s.t.: for some targets $z_{1}, \ldots, z_{N} \in \mathbb{R}$, all 2^{N} above/below patterns achieved by functions in \mathcal{G}

Example: $\mathcal{G}=$ Affine functions in \mathbb{R} $\operatorname{Pdim}(\mathcal{G}) \geq 2$

Can also show that $\operatorname{Pdim}(\mathcal{G}) \leq 2$

Pseudo-dimension of \mathcal{G}

Size of the largest set $\left\{y_{1}, \ldots, y_{N}\right\} \subseteq \mathcal{Y}$ s.t.: for some targets $z_{1}, \ldots, z_{N} \in \mathbb{R}$, all 2^{N} above/below patterns achieved by functions in \mathcal{G}

Mathematically,

$$
\left.\left\lvert\,\left\{\left(\begin{array}{c}
\mathbf{1}_{\left\{g\left(y_{1}\right) \geq z_{1}\right\}} \\
\vdots \\
\mathbf{1}_{\left\{g\left(y_{N}\right) \geq z_{N}\right\}}
\end{array}\right): g \in \mathcal{G}\right\}\right.\right\}=2^{N}
$$

Another interpretation of pseudo-dim

For any $g \in \mathcal{G}$:
$B_{g}=$ indicator function of the region below the graph of g

$$
B_{g}(y, z)=\operatorname{sgn}(g(y)-z)
$$

Illustration of $B_{g}(y, z)$ with a fixed z and varying y :

Another interpretation of pseudo-dim

For any $g \in \mathcal{G}$:
$B_{g}=$ indicator function of the region below the graph of g

$$
B_{g}(y, z)=\operatorname{sgn}(g(y)-z)
$$

Fact: $\operatorname{Pdim}(\mathcal{G})=\operatorname{VCdim}\left(\left\{B_{g}: g \in \mathcal{G}\right\}\right)$

Sample complexity using pseudo-dim

Theorem [Pollard, '84]:

- For $\epsilon, \delta \in(0,1)$, let $N=O\left(\frac{\operatorname{Pdim}(\mathcal{G})}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- \mathcal{D} is an unknown distribution over \mathcal{Y}
- With probability at least $1-\delta$ over $y_{1}, \ldots, y_{N} \sim \mathcal{D}, \forall g \in \mathcal{G}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} g\left(y_{i}\right)-\mathbb{E}_{y \sim \mathcal{D}}[g(y)]\right| \leq \epsilon H
$$

Sample complexity using pseudo-dim

In the context of algorithm configuration:

- $U=\left\{u_{\rho}: \rho \in \mathbb{R}^{d}\right\}$ measure algorithm performance
- For $\epsilon, \delta \in(0,1)$, let $N=O\left(\frac{\operatorname{Pdim}(u)}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
- With probability at least $1-\delta$ over $x_{1}, \ldots, x_{N} \sim \mathcal{D}, \forall \boldsymbol{\rho} \in \mathbb{R}^{d}$,

$$
\left|\frac{1}{N} \sum_{i=1}^{N} u_{\rho}\left(x_{i}\right)-\mathbb{E}_{x \sim \mathcal{D}}\left[u_{\rho}(x)\right]\right| \leq \epsilon H
$$

Outline

1. Statistical learning theory
i. Generalization bounds
ii. Measures of "intrinsic complexity"
iii. Pseudo-dimension of MWIS heuristic
2. Online learning

Pseudo-dimension of MWIS heuristic

- N MWIS instances x_{1}, \ldots, x_{N}, each with n vertices
- N targets $z_{1}, \ldots, z_{N} \in \mathbb{R}$
- How many above-below patterns can we make?

$$
\left|\left\{\left(\begin{array}{c}
\mathbf{1}_{\left\{u_{\rho}\left(x_{1}\right) \geq z_{1}\right\}} \\
\vdots \\
\mathbf{1}_{\left\{u_{\rho}\left(x_{N}\right) \geq z_{N}\right\}}
\end{array}\right): \rho \in \mathbb{R}\right\}\right| \leq ?
$$

Theorem [Gupta, Roughgarden, ITCS'16]: at most $N n^{2}$

Pseudo-dimension of MWIS heuristic

Let's start with a single instance:

- Weights $w_{1}, \ldots, w_{n} \geq 0$
- $\operatorname{deg}(i)+1=k_{i}$

Algorithm parameterized by ρ would add node 1 before 2 if:

$$
\frac{w_{1}}{k_{1}^{\rho}} \geq \frac{w_{2}}{k_{2}^{\rho}} \quad \Leftrightarrow \quad \rho \geq \log _{\frac{k_{2}}{k_{1}}} \frac{w_{2}}{w_{1}}
$$

Pseudo-dimension of MWIS heuristic

- $\binom{n}{2}$ thresholds per instance
- Partition \mathbb{R} into regions where algorithm's output is fixed

Pseudo-dimension of MWIS heuristic

- $\binom{n}{2}$ thresholds per instance
- Partition \mathbb{R} into regions where algorithm's output is fixed $\Rightarrow u_{\rho}(x)$ is constant

Pseudo-dimension of MWIS heuristic

- For N instances x_{1}, \ldots, x_{N}, total of $N\binom{n}{2}$ thresholds
- Partition \mathbb{R} into $N\binom{n}{2}+1$ regions where $u_{\rho}\left(x_{i}\right)$ is constant $\forall i$

Pseudo-dimension of MWIS heuristic

- For N instances x_{1}, \ldots, x_{N}, total of $N\binom{n}{2}$ thresholds
- Partition \mathbb{R} into $N\binom{n}{2}+1$ regions where $u_{\rho}\left(x_{i}\right)$ is constant $\forall i$

$$
\Rightarrow\left|\left\{\left(\begin{array}{c}
\mathbf{1}_{\left\{u_{\rho}\left(x_{1}\right) \geq z_{1}\right\}} \\
\vdots \\
\mathbf{1}_{\left\{u_{\rho}\left(x_{N}\right) \geq z_{N}\right\}}
\end{array}\right): \rho \in \mathbb{R}\right\}\right| \leq N\binom{n}{2}+1
$$

- If ρ_{1}, ρ_{2} from same region, $u_{\rho_{1}}\left(x_{i}\right)=u_{\rho_{2}}\left(x_{i}\right) \forall i$,

$$
\Rightarrow\left(\begin{array}{c}
\mathbf{1}_{\left\{u_{\rho_{1}}\left(x_{1}\right) \geq z_{1}\right\}} \\
\vdots \\
\mathbf{1}_{\left\{u_{\rho_{1}}\left(x_{N}\right) \geq z_{N}\right\}}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{1}_{\left\{u_{\rho_{2}}\left(x_{1}\right) \geq z_{1}\right\}} \\
\vdots \\
\mathbf{1}_{\left\{u_{\rho_{2}}\left(x_{N}\right) \geq z_{N}\right\}}
\end{array}\right)
$$

Pseudo-dimension of MWIS heuristic

If all 2^{N} above/below patterns achievable,

$$
2^{N}=\left|\left\{\left(\begin{array}{c}
\mathbf{1}_{\left\{u_{\rho}\left(x_{1}\right) \geq z_{1}\right\}} \\
\vdots \\
\mathbf{1}_{\left\{u_{\rho}\left(x_{N}\right) \geq z_{N}\right\}}
\end{array}\right): \rho \in \mathbb{R}\right\}\right| \leq N\binom{n}{2}+1
$$

Implies that $N=O(\log n)$, so $\operatorname{Pdim}(\mathcal{U})=O(\log n)$

MWIS sample complexity

For $\epsilon, \delta \in(0,1)$, let $N=O\left(\frac{\log n}{\epsilon^{2}} \log \frac{1}{\delta}\right)$

With probability at least $1-\delta$ over $x_{1}, \ldots, x_{N} \sim \mathcal{D}, \forall \rho \in \mathbb{R}$,

$$
\left.\quad \underbrace{\left\lvert\, \frac{1}{N} \sum_{i=1}^{N} u_{\rho}\left(x_{i}\right)\right.}_{\text {Empirical average utility }}-\underbrace{\mathbb{E}_{x \sim \mathcal{D}}\left[u_{\rho}(x)\right] \mid \leq \epsilon H}_{\text {Expected utility }} \right\rvert\, \leq
$$

Outline

1. Statistical learning theory
2. Online learning

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Day 1: $\boldsymbol{\rho}_{1}$

Day 2: $\boldsymbol{\rho}_{2}$

Day 3: $\boldsymbol{\rho}_{3}$

Goal: Compete with best parameter setting in hindsight

- Impossible in the worst case
- Under what conditions is online configuration possible?

Setup

To start: finite \# of algorithms (can be generalized)

Timestep	Algorithm 1	Algorithm 2	Algorithm 3	\ldots	Algorithm \boldsymbol{k}	
1						

Setup

E.g., independent set weight

Timestep	Algorithm 1	Algorithm 2	Algorithm 3	...	Algorithm k

Setup

Timestep	Algorithm 1	Algorithm 2	Algorithm 3	\cdots	Algorithm k

Setup

Timestep	Algorithm 1	Algorithm 2	Algorithm 3	...	Algorithm k
	2.8	9.3	0.3	\ldots	1.4

Full information: Learner sees all solution qualities
Focus of this lecture (for simplicity)
Will discuss other models in a few slides

Setup

Setup

Setup

	Solution quality				
		Algorithm 1	Algorithm 2	Algorithm 3	\ldots
Timestep	Algorithm \boldsymbol{k}				
	2.8	9.3	0.3	\ldots	1.4

Setup

Timestep	Algorithm 1	Algorithm 2	Algorithm 3	...	Algorithm k
1	2.8	9.3	0.3	...	1.4
2	3.7	4.3	5.8	\ldots	1.0
!	!	!	!	\because	!
T					

Setup

Timestep	Algorithm 1	Algorithm 2	Algorithm 3	...	Algorithm k
1	2.8	9.3	0.3	...	1.4
2	3.7	4.3	5.8	\ldots	1.0
!	!	!	!	\because	!
T					

Setup

	Solution quality				
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	\ldots	Algorithm k
	2.8	9.3	0.3	\ldots	1.4

Setup

Regret

$$
\begin{aligned}
\text { Regret } & =\text { (solution quality of best alg in hindsight) }- \text { (learner's reward) } \\
& =(9.3+4.3+\cdots+5.0)-(2.8+4.3+\cdots+2.8)
\end{aligned}
$$

Goal: $\frac{1}{T} \cdot($ Regret $) \rightarrow 0$ as $T \rightarrow \infty$
On average, competing with best algorithm in hindsight
(Of course, model applies beyond algorithm selection as well)

Setup

Outline

1. Statistical learning theory
2. Online learning
i. Problem setup
ii. Hedge algorithm
iii. Online learning for MWIS
iv. Additional learning models

Hedge algorithm ${ }_{\text {FFreund, schapie, } \text {, cSs97] }}$

input:

Learning rate $\eta>0$
initialization: $\quad \boldsymbol{U}_{0}=(0, \ldots, 0)$ is the all-zeros vector of length k for $t=1, \ldots, T$: choose distribution $\boldsymbol{p}_{t} \in[0,1]^{k}$ such that $\frac{p_{t}(i) \propto \exp \left(\eta U_{t-1}(i)\right)}{\text { Initial|y, } p_{1}=\left(\frac{1}{k}, \ldots, \frac{1}{k}\right)}$
choose algorithm $\underline{i_{t}} \sim \boldsymbol{p}_{t}$, receive reward $u_{t}\left(i_{t}\right)$
Expected reward is $\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle$
observe reward vector \boldsymbol{u}_{t} update $\boldsymbol{U}_{t}=\boldsymbol{U}_{t-1}+\boldsymbol{u}_{t}$

Hedge algorithm ${ }_{\text {FFreund, schapie, } . \text { css } 97]}$

input:

Learning rate $\eta>0$
initialization: $\quad \boldsymbol{U}_{0}=(0, \ldots, 0)$ is the all-zeros vector of length k for $t=1, \ldots, T$:
choose distribution $\boldsymbol{p}_{t} \in[0,1]^{k}$ such that $p_{t}(i) \propto \exp \left(\eta U_{t-1}(i)\right)$
Exponentially upweight high-reward algorithms
choose algorithm $\underline{i_{t}} \sim \boldsymbol{p}_{t}$, receive reward $u_{t}\left(i_{t}\right)$
Expected reward is $\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle$
observe reward vector \boldsymbol{u}_{t} update $\boldsymbol{U}_{t}=\boldsymbol{U}_{t-1}+\boldsymbol{u}_{t}$

Regret

Regret $=($ sol quality of best alg in hindsight) - (learner's reward)

$$
\begin{aligned}
& =\max _{i \in[k]} \sum_{t=1}^{T} u_{t}(i)-\sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle \\
i^{*} & =\underset{i \in[k]}{\operatorname{argmax}} \sum_{t=1}^{T} u_{t}(i)
\end{aligned}
$$

Theorem: The regret of the Hedge algorithm is $\leq 2 \sqrt{T \ln k}$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{aligned}
W_{t} & =\sum_{i=1}^{k} \exp \left(\eta U_{t}(i)\right) \\
\frac{W_{t}}{W_{t-1}} & =\frac{\sum_{i=1}^{k} \exp \left(\eta U_{t}(i)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)}
\end{aligned}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{aligned}
W_{t} & =\sum_{i=1}^{k} \exp \left(\eta U_{t}(i)\right) \\
\frac{W_{t}}{W_{t-1}} & =\frac{\sum_{i=1}^{k} \exp \left(\eta U_{t}(i)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)} \\
& =\frac{\sum_{i=1}^{k} \exp \left(\eta\left(U_{t-1}(i)+u_{t}(i)\right)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)}
\end{aligned}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\frac{W_{t}}{W_{t-1}}=\frac{\sum_{i=1}^{k} \exp \left(\eta\left(U_{t-1}(i)+u_{t}(i)\right)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{aligned}
\frac{W_{t}}{W_{t-1}} & =\frac{\sum_{i=1}^{k} \exp \left(\eta\left(U_{t-1}(i)+u_{t}(i)\right)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)} \\
& =\frac{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right) \exp \left(\eta u_{t}(i)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)}
\end{aligned}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{aligned}
\frac{W_{t}}{W_{t-1}} & =\frac{\sum_{i=1}^{k} \exp \left(\eta\left(U_{t-1}(i)+u_{t}(i)\right)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)} \\
& =\frac{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right) \exp \left(\eta u_{t}(i)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)}
\end{aligned}
$$

Remember: $p_{t}(i) \propto \exp \left(\eta U_{t-1}(i)\right)$, so $p_{t}(i)=\frac{\exp \left(\eta U_{t-1}(i)\right)}{\sum_{i=1}^{k} \exp \left(\eta U_{t-1}(i)\right)}$

$$
\frac{W_{t}}{W_{t-1}}=\sum_{i=1}^{k} p_{t}(i) \exp \left(\eta u_{t}(i)\right)
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\frac{W_{t}}{W_{t-1}}=\sum_{i=1}^{k} p_{t}(i) \exp \left(\eta u_{t}(i)\right)
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\frac{W_{t}}{W_{t-1}}=\sum_{i=1}^{k} p_{t}(i) \exp \left(\eta u_{t}(i)\right)
$$

Useful inequality: For $u \in[0,1]$ and $\eta>0, e^{\eta u} \leq 1+\left(e^{\eta}-1\right) u$

$$
\frac{W_{t}}{W_{t-1}} \leq \sum_{i=1}^{k} p_{t}(i)\left(1+\left(e^{\eta}-1\right) u_{t}(i)\right)
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\frac{W_{t}}{W_{t-1}}=\sum_{i=1}^{k} p_{t}(i) \exp \left(\eta u_{t}(i)\right)
$$

Useful inequality: For $u \in[0,1]$ and $\eta>0, e^{\eta u} \leq 1+\left(e^{\eta}-1\right) u$

$$
\begin{aligned}
\frac{W_{t}}{W_{t-1}} & \leq \sum_{i=1}^{k} p_{t}(i)\left(1+\left(e^{\eta}-1\right) u_{t}(i)\right) \\
& =1+\left(e^{\eta}-1\right)\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle
\end{aligned}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\frac{W_{t}}{W_{t-1}} \leq 1+\left(e^{\eta}-1\right)\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle
$$

Useful inequality: $1+z \leq e^{z}, \forall z \in \mathbb{R}$

$$
\frac{W_{t}}{W_{t-1}} \leq \exp \left(\left(e^{\eta}-1\right)\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle\right)
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\frac{W_{t}}{W_{t-1}} \leq 1+\left(e^{\eta}-1\right)\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle
$$

Useful inequality: $1+z \leq e^{z}, \forall z \in \mathbb{R}$

$$
\begin{gathered}
\frac{W_{t}}{W_{t-1}} \leq \exp \left(\left(e^{\eta}-1\right)\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle\right) \\
\frac{W_{T}}{W_{0}}=\frac{W_{1}}{W_{0}} \cdot \frac{W_{2}}{W_{1}} \cdots \frac{W_{T}}{W_{T-1}} \leq \exp \left(\left(e^{\eta}-1\right) \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle\right)
\end{gathered}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{aligned}
& \frac{W_{T}}{W_{0}} \leq \exp \left(\left(e^{\eta}-1\right) \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle\right) \\
& W_{T}=\sum_{i=1}^{k} \exp \left(\eta U_{T}(i)\right) \geq \exp \left(\eta U_{T}\left(i^{*}\right)\right) \\
& W_{0}=\sum_{i=1}^{k} \exp \left(\eta U_{0}(i)\right)=\sum_{i=1}^{k} \exp (\eta \cdot 0)=k
\end{aligned}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{aligned}
& \frac{\exp \left(\eta U_{T}\left(i^{*}\right)\right)}{k} \leq \frac{W_{T}}{W_{0}} \leq \exp \left(\left(e^{\eta}-1\right) \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle\right) \\
& W_{T}=\sum_{i=1}^{k} \exp \left(\eta U_{T}(i)\right) \geq \exp \left(\eta U_{T}\left(i^{*}\right)\right) \\
& W_{0}=\sum_{i=1}^{k} \exp \left(\eta U_{0}(i)\right)=\sum_{i=1}^{k} \exp (\eta \cdot 0)=k
\end{aligned}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{gathered}
\frac{\exp \left(\eta U_{T}\left(i^{*}\right)\right)}{k} \leq \frac{W_{T}}{W_{0}} \leq \exp \left(\left(e^{\eta}-1\right) \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle\right) \\
U_{T}\left(i^{*}\right\rangle \leq \frac{e^{\eta}-1}{\eta} \cdot \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle+\frac{\ln k}{\eta}
\end{gathered}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{aligned}
\frac{\exp \left(\eta U_{T}\left(i^{*}\right)\right)}{k} & \leq \frac{W_{T}}{W_{0}} \leq \exp \left(\left(e^{\eta}-1\right) \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle\right) \\
U_{T}\left(i^{*}\right) & \leq \frac{e^{\eta}-1}{\eta} \cdot \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle+\frac{\ln k}{\eta} \\
\sum_{t=1}^{T} u_{t}\left(i^{*}\right) & \leq \frac{e^{\eta}-1}{\eta} \cdot \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle+\frac{\ln k}{\eta}
\end{aligned}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\sum_{t=1}^{T} u_{t}\left(i^{\eta}\right) \leq \frac{e^{\eta}-1}{\eta} \cdot \sum_{t=1}^{T}\left\langle p_{t}, u_{t}\right\rangle+\frac{\ln k}{\eta}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{gathered}
\sum_{t=1}^{T} u_{t}\left(i^{*}\right) \leq \frac{e^{\eta}-1}{\eta} \cdot \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle+\frac{\ln k}{\eta} \\
\text { regret }=\sum_{t=1}^{T} u_{t}\left(i^{*}\right)-\sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, u_{t}\right\rangle \leq \frac{e^{\eta}-1-\eta}{\eta} \cdot \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, u_{t}\right\rangle+\frac{\ln k}{\eta}
\end{gathered}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\begin{aligned}
\sum_{t=1}^{T} u_{t}\left(i^{*}\right) & \leq \frac{e^{\eta}-1}{\eta} \cdot \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle+\frac{\ln k}{\eta} \\
\text { regret }=\sum_{t=1}^{T} u_{t}\left(i^{*}\right)-\sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle & \leq \frac{e^{\eta}-1-\eta}{\eta} \cdot \sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, u_{t}\right\rangle+\frac{\ln k}{\eta} \\
& \leq \frac{e^{\eta}-1-\eta}{\eta} \cdot T+\frac{\ln k}{\eta}
\end{aligned}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\text { regret }=\sum_{t=1}^{T} u_{t}\left(i^{*}\right)-\sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle \leq \frac{e^{\eta}-1-\eta}{\eta} \cdot T+\frac{\ln k}{\eta}
$$

Proof that Hedge's regret is $O(\sqrt{T \ln k})$

$$
\text { regret }=\sum_{t=1}^{T} u_{t}\left(i^{*}\right)-\sum_{t=1}^{T}\left\langle\boldsymbol{p}_{t}, \boldsymbol{u}_{t}\right\rangle \leq \frac{e^{\eta}-1-\eta}{\eta} \cdot T+\frac{\ln k}{\eta}
$$

Useful inequality: For $\eta \in[0,1], e^{\eta}-1-\eta \leq(e-2) \eta^{2}$

$$
\text { regret } \leq(e-2) \eta T+\frac{\ln k}{\eta}
$$

Setting $\eta=\sqrt{\frac{\ln k}{T}}$, we have that regret $\leq 2 \sqrt{T \ln k}$

Outline

1. Statistical learning theory
2. Online learning
i. Problem setup
ii. Hedge algorithm
iii. Online learning for MWIS
iv. Additional learning models

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret
Round 1:

Utility on instance x_{1} as a function of ρ

Utility on instance x_{1}^{\prime} as a function of ρ

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has llinear regret
Round 1 :

Adversary chooses x_{1} or x_{1}^{\prime} with equal probability

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret
Round 1: Round 2:

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1: Round 2:

Repeatedly halves optimal region

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret
Round 1: Round 2:

Repeatedly halves optimal region

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1: Round 2:

Repeatedly halves optimal region

Learner's expected reward: $\frac{T}{2}$ Reward of best ρ in hindsight: T Expected regret $=\frac{T}{2}$

Smoothed adversary

Sub-linear regret is possible if adversary has a "shaky hand":

- $w_{1}, \ldots, w_{n}, k_{1}, \ldots, k_{n}$ are stochastic
- Joint density of $\left(w_{i}, w_{j}, k_{i}, k_{j}\right)$ is bounded

In this case, discretize and run Hedge

Smoothed adversary

Sub-linear regret is possible if adversary has a "shaky hand":

- $w_{1}, \ldots, w_{n}, k_{1}, \ldots, k_{n}$ are stochastic
- Joint density of $\left(w_{i}, w_{j}, k_{i}, k_{j}\right)$ is bounded

Later generalized by Cohen-Addad, Kanade [AISTATS, '17]; Balcan, Dick, Vitercik [FOCS'18]; Balcan et al. [UAl'20]; ...

Outline

1. Statistical learning theory
2. Online learning
i. Problem setup
ii. Hedge algorithm
iii. Online learning for MWIS
iv. Additional learning models

Other models

- Full information: Learner sees all runtimes
- Focus of this lecture
- Bandit: Learner only sees runtime of chosen algorithm
- E.g., Balcan, Dick, Vitercik, FOCS'18
- Semi-bandit: Mixture of the two
- E.g., Balcan, Dick, Pegden, UAI'20
- Continuous parameters (piecewise-Lipschitz performance)
- E.g., Gupta, Roughgarden, ITCS'16; Cohen-Addad, Kanade, AISTATS, '17; Balcan, Dick, Vitercik, FOCS'18; ...

