An ML-theory lens on algorithm configuration

Outline

1. Statistical learning theory

2. Online learning

Running example

Maximum weight independent set (MWIS)

Problem instance:

- Graph G = (V, E)
- *n* vertices with weights $w_1, \ldots, w_n \ge 0$

Goal: find subset $S \subseteq [n]$

- Maximizing $\sum_{i \in S} w_i$
- No nodes $i, j \in S$ are connected: $(i, j) \notin E$

Running example: MWIS

Greedy heuristic:

Greedily add vertices v in decreasing order of $\frac{w_v}{(1+\deg(v))}$ Maintaining independence

Parameterized heuristic [Gupta, Roughgarden, ITCS'16]: Greedily add nodes in decreasing order of $\frac{w_v}{(1+\deg(v))^{\rho}}$, $\rho \ge 0$

[Inspired by knapsack heuristic by Lehmann et al., JACM'02]

Question: How to choose ρ ?

General model

\mathbb{R}^d : Set of all parameters

E.g., MWIS parameter $\rho \in \mathbb{R}$, CPLEX parameters, ...

\mathcal{X} : Set of all inputs

E.g., graphs, integer programs, ...

One element $x \in \mathcal{X}$

Algorithmic performance

 $u_{\rho}(x) =$ utility of algorithm parameterized by $\rho \in \mathbb{R}^{d}$ on input xE.g., runtime, solution quality, memory usage, ...

MWIS: If algorithm returns set S, $u_{\rho}(x) = \sum_{i \in S} w_i$

Assume $u_{\rho}(x) \in [-H, H]$

Automated configuration procedure

- 1. Fix parameterized algorithm
- 2. Receive set of "typical" inputs sampled from unknown ${\cal D}$

3. Return parameter setting $\widehat{\rho}$ with good avg performance

Runtime, solution quality, etc.

Automated configuration procedure

Statistical question: Will $\hat{\rho}$ have good future performance? More formally: Is the expected performance of $\hat{\rho}$ also good?

Key question: For any parameter setting ρ, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Empirical average utility

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Expected utility

Key question: For any parameter setting *ρ*, is average utility on training set close to expected utility?

Formally: Given samples $x_1, \ldots, x_N \sim \mathcal{D}$, for any ρ ,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq ?$$

Good **average empirical** utility **>** Good **expected** utility

Convergence

Key question: For any parameter setting ρ, is average utility on training set close to expected utility?

Convergence

Key question: For any parameter setting ρ, is average utility on training set close to expected utility?

Outline

- 1. Statistical learning theory
 - i. Generalization bounds
 - ii. Measures of "intrinsic complexity"
 - iii. Pseudo-dimension of MWIS heuristic
- 2. Online learning

Intrinsic complexity

"Intrinsic complexity" of function class \mathcal{G}

- Measures how well functions in \mathcal{G} fit complex patterns
- Specific ways to quantify "intrinsic complexity":
 - VC dimension
 - Pseudo-dimension

VC dimension

Complexity measure for binary-valued function classes \mathcal{F} (Classes of functions $f: \mathcal{Y} \to \{-1,1\}$)

Size of the largest set $S \subseteq \mathcal{Y}$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Example: \mathcal{F} = Intervals on the real line $f_{a,b}(x) = \begin{cases} 1 & \text{if } x \in (a,b) \\ 0 & \text{else} \end{cases}$

Size of the largest set $S \subseteq \mathcal{Y}$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} =$ Intervals on the real line $f_{a,b}(x) = \begin{cases} 1 & \text{if } x \in (a,b) \\ 0 & \text{else} \end{cases}$ VCdim $(\mathcal{F}) \ge 2$

Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, '71]:

- For $\epsilon, \delta \in (0,1)$, let $N = O\left(\frac{\operatorname{VCdim}(\mathcal{F})}{\epsilon^2}\log\frac{1}{\delta}\right)$
- ${\mathcal D}$ is an unknown distribution over ${\mathcal Y}$
- $f^*: \mathcal{Y} \rightarrow \{0,1\}$ is an unknown target function
- Let $\{(y_1, f^*(y_1)), \dots, (y_N, f^*(y_N))\}$ be the training set
- With probability at least 1δ over $y_1, \dots, y_N \sim \mathcal{D}, \forall f \in \mathcal{F},$ $\left| \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\{f(y_i) \neq f^*(y_i)\}} - \mathbb{P}_{y \sim \mathcal{D}}[f(y) \neq f^*(y)] \right| \leq \epsilon$

Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, '71]: (alternate formulation)

- For $\epsilon, \delta \in (0,1)$, let $N = O\left(\frac{\operatorname{VCdim}(\mathcal{F})}{\epsilon^2}\log\frac{1}{\delta}\right)$
- ${\mathcal D}$ is an unknown distribution over ${\mathcal Y}$
- With probability at least 1δ over $y_1, \dots, y_N \sim \mathcal{D}, \forall f \in \mathcal{F},$ $\left| \frac{1}{N} \sum_{i=1}^N f(y_i) - \mathbb{E}_{y \sim \mathcal{D}}[f(y)] \right| \le \epsilon$

Size of the largest set $\mathcal{S}\subseteq\mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = \text{Linear separators in } \mathbb{R}^2$ VCdim $(\mathcal{F}) \ge 3$

Size of the largest set $S \subseteq \mathcal{Y}$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = \text{Linear separators in } \mathbb{R}^2$ VCdim $(\mathcal{F}) \ge 3$

VCdim({Linear separators in \mathbb{R}^d }) = d + 1

Size of the largest set $S \subseteq \mathcal{Y}$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = Axis$ -aligned rectangles

 $VCdim(\mathcal{F}) \geq 4$

VC dimension of \mathcal{F}

Size of the largest set $\mathcal{S} \subseteq \mathcal{Y}$ that can be labeled in all $2^{|\mathcal{S}|}$ ways by functions in \mathcal{F}

Example: $\mathcal{F} = Axis$ -aligned rectangles

 $VCdim(\mathcal{F}) \ge 4$

 $\mathsf{VCdim}(\mathcal{F}) \leq 4$

Size of the largest set $S \subseteq \mathcal{Y}$ that can be labeled in all $2^{|S|}$ ways by functions in \mathcal{F}

Mathematically, for
$$S = \{y_1, \dots, y_N\}$$
,
$$\left| \left\{ \begin{pmatrix} f(y_1) \\ \vdots \\ f(y_N) \end{pmatrix} : f \in \mathcal{F} \right\} \right| = 2^N$$

Pseudo-dimension

Complexity measure for real-valued function classes G(Classes of functions $g: \mathcal{Y} \rightarrow [-H, H]$)

E.g., affine functions

Pseudo-dimension of \mathcal{G}

Size of the largest set $\{y_1, \dots, y_N\} \subseteq \mathcal{Y}$ s.t.: for some *targets* $z_1, \dots, z_N \in \mathbb{R}$, all 2^N above/below patterns achieved by functions in \mathcal{G}

Can also show that $Pdim(\mathcal{G}) \leq 2$

Pseudo-dimension of \mathcal{G}

Size of the largest set $\{y_1, \dots, y_N\} \subseteq \mathcal{Y}$ s.t.: for some *targets* $z_1, \dots, z_N \in \mathbb{R}$, all 2^N above/below patterns achieved by functions in \mathcal{G}

Mathematically,

$$\left| \left\{ \begin{pmatrix} \mathbf{1}_{\{g(y_1) \ge z_1\}} \\ \vdots \\ \mathbf{1}_{\{g(y_N) \ge z_N\}} \end{pmatrix} : g \in \mathcal{G} \right\} \right| = 2^N$$

Another interpretation of pseudo-dim

For any
$$g \in G$$
:
 B_g = indicator function of the region below the graph of g
 $B_g(y,z) = \operatorname{sgn}(g(y) - z)$

Another interpretation of pseudo-dim

For any
$$g \in G$$
:
 B_g = indicator function of the region below the graph of g
 $B_g(y,z) = \operatorname{sgn}(g(y) - z)$

Fact: $Pdim(\mathcal{G}) = VCdim(\{B_g : g \in \mathcal{G}\})$

Sample complexity using pseudo-dim

Theorem [Pollard, '84]:

- For $\epsilon, \delta \in (0,1)$, let $N = O\left(\frac{\operatorname{Pdim}(\mathcal{G})}{\epsilon^2}\log\frac{1}{\delta}\right)$
- ${\mathcal D}$ is an unknown distribution over ${\mathcal Y}$
- With probability at least 1δ over $y_1, \dots, y_N \sim \mathcal{D}, \forall g \in \mathcal{G},$ $\left| \frac{1}{N} \sum_{i=1}^N g(y_i) - \mathbb{E}_{y \sim \mathcal{D}}[g(y)] \right| \le \epsilon H$

Sample complexity using pseudo-dim

In the context of **algorithm configuration**:

- $\mathcal{U} = \{u_{\rho} : \rho \in \mathbb{R}^d\}$ measure algorithm **performance**
- For $\epsilon, \delta \in (0,1)$, let $N = O\left(\frac{\operatorname{Pdim}(\mathcal{U})}{\epsilon^2}\log\frac{1}{\delta}\right)$
- With probability at least 1δ over $x_1, \dots, x_N \sim \mathcal{D}, \forall \boldsymbol{\rho} \in \mathbb{R}^d$,

$$\left|\frac{1}{N}\sum_{i=1}^{N}u_{\rho}(x_{i})-\mathbb{E}_{x\sim\mathcal{D}}\left[u_{\rho}(x)\right]\right|\leq\epsilon H$$

Empirical average utility

Expected utility

Outline

- 1. Statistical learning theory
 - i. Generalization bounds
 - ii. Measures of "intrinsic complexity"
 - iii. Pseudo-dimension of MWIS heuristic
- 2. Online learning

Pseudo-dimension of MWIS heuristic

- *N* MWIS instances x_1, \ldots, x_N , each with *n* vertices
- *N* targets $z_1, \ldots, z_N \in \mathbb{R}$
- How many above-below patterns can we make?

$$\left| \left\{ \begin{pmatrix} \mathbf{1}_{\{u_{\rho}(x_{1}) \ge z_{1}\}} \\ \vdots \\ \mathbf{1}_{\{u_{\rho}(x_{N}) \ge z_{N}\}} \end{pmatrix} : \rho \in \mathbb{R} \right\} \right| \leq \mathbf{?}$$

Theorem [Gupta, Roughgarden, ITCS'16]: at most Nn^2

Pseudo-dimension of MWIS heuristic

Let's start with a single instance:

- Weights $w_1, \ldots, w_n \ge 0$
- $\deg(i) + 1 = k_i$

Algorithm parameterized by ρ would add **node 1** before **2** if: $\frac{w_1}{k_1^{\rho}} \ge \frac{w_2}{k_2^{\rho}} \iff \rho \ge \log_{\frac{k_2}{k_1}} \frac{w_2}{w_1}$

- $\binom{n}{2}$ thresholds per instance
- \bullet Partition ${\mathbb R}$ into regions where algorithm's output is fixed

- $\binom{n}{2}$ thresholds per instance
- ullet Partition ${\mathbb R}$ into regions where algorithm's output is fixed
 - $\Rightarrow u_{\rho}(x)$ is constant

- For N instances x_1, \dots, x_N , total of $N\binom{n}{2}$ thresholds
- Partition \mathbb{R} into $N\binom{n}{2} + 1$ regions where $u_{\rho}(x_i)$ is constant $\forall i$

- For N instances x_1, \dots, x_N , total of $N\binom{n}{2}$ thresholds
- Partition \mathbb{R} into $N\binom{n}{2} + 1$ regions where $u_{\rho}(x_i)$ is constant $\forall i$

$$\Rightarrow \left| \left\{ \begin{pmatrix} \mathbf{1}_{\{u_{\rho}(x_{1}) \ge z_{1}\}} \\ \vdots \\ \mathbf{1}_{\{u_{\rho}(x_{N}) \ge z_{N}\}} \end{pmatrix} : \rho \in \mathbb{R} \right\} \right| \le N \binom{n}{2} + 1$$

• If ρ_{1}, ρ_{2} from same region, $u_{\rho_{1}}(x_{i}) = u_{\rho_{2}}(x_{i}) \forall i$,
 $\Rightarrow \begin{pmatrix} \mathbf{1}_{\{u_{\rho_{1}}(x_{1}) \ge z_{1}\}} \\ \vdots \\ \mathbf{1}_{\{u_{\rho_{1}}(x_{N}) \ge z_{N}\}} \end{pmatrix} = \begin{pmatrix} \mathbf{1}_{\{u_{\rho_{2}}(x_{1}) \ge z_{1}\}} \\ \vdots \\ \mathbf{1}_{\{u_{\rho_{2}}(x_{N}) \ge z_{N}\}} \end{pmatrix}$

If all 2^N above/below patterns achievable,

$$2^{N} = \left| \left\{ \begin{pmatrix} \mathbf{1}_{\{u_{\rho}(x_{1}) \ge z_{1}\}} \\ \vdots \\ \mathbf{1}_{\{u_{\rho}(x_{N}) \ge z_{N}\}} \end{pmatrix} : \rho \in \mathbb{R} \right\} \right| \le N \binom{n}{2} + 1$$

Implies that $N = O(\log n)$, so $Pdim(U) = O(\log n)$

MWIS sample complexity

For
$$\epsilon, \delta \in (0,1)$$
, let $N = O\left(\frac{\log n}{\epsilon^2}\log\frac{1}{\delta}\right)$

With probability at least $1 - \delta$ over $x_1, \dots, x_N \sim \mathcal{D}, \forall \rho \in \mathbb{R}$, $\left| \frac{1}{N} \sum_{i=1}^N u_\rho(x_i) - \mathbb{E}_{x \sim \mathcal{D}} [u_\rho(x)] \right| \leq \epsilon H$ Empirical average utility Expected utility

Outline

Statistical learning theory
 Online learning

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight

- Impossible in the worst case
- Under what conditions is online configuration possible?

To start: finite # of algorithms (can be generalized)

Timestep	Algorithm 1	Algorithm 2	Algorithm 3	•••	Algorithm k
1					

E.g., independent set weight

		S o	lution qual	itv					
		Solution quality							
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	•••	Algorithm k				
1									
I									

		<u> </u>	lution quali	+>/				
		Solution quality						
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	•••	Algorithm k			
1								

	Solution quality						
Timestep	Algorithm 1	Algorithm 2	- Algorithm 3	••••	Algorithm k		
1	2.8	9.3	0.3	•••	1.4		

Full information: Learner sees all solution qualities *Focus of this lecture (for simplicity)*

Will discuss other models in a few slides

	Solution quality					
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	•••	Algorithm k	
1	2.8	9.3	0.3	•••	1.4	
2						

	Solution quality					
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	•••	Algorithm k	
1	2.8	9.3	0.3	•••	1.4	
2						

	Solution quality						
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	••••	Algorithm k		
1	2.8	9.3	0.3	•••	1.4		
2	3.7	4.3	5.8	•••	1.0		

	Solution quality					
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	•••	Algorithm k	
1	2.8	9.3	0.3		1.4	
2	3.7	4.3	5.8		1.0	
:	:	:	:	•.	÷	
Т						

	Solution quality					
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	•••	Algorithm k	
1	2.8	9.3	0.3		1.4	
2	3.7	4.3	5.8		1.0	
:	:	:	:	∿.	:	
Т						

	Solution quality						
Timestep	Algorithm 1	Algorithm 2	- Algorithm 3	•	Algorithm k		
1	2.8	9.3	0.3		1.4		
2	3.7	4.3	5.8	••••	1.0		
:	:	:	:	·.	:		
	9.9	5.0	3.9		2.8		

		Best in hindsight							
Timestep	Algorithm 1	Algorithm 2	Algorithm 3	•••	Algorithm k				
1	2.8	9.3	0.3		1.4				
2	3.7	4.3	5.8		1.0				
Regret = (solution quality of best alg in hindsight) - (learner's reward) = $(9.3 + 4.3 + \dots + 5.0) - (2.8 + 4.3 + \dots + 2.8)$									
	9.9	5.0	3.9		2.8				

Regret

Regret = (solution quality of best alg in hindsight) - (learner's reward) = $(9.3 + 4.3 + \dots + 5.0) - (2.8 + 4.3 + \dots + 2.8)$

Goal:
$$\frac{1}{T} \cdot (\text{Regret}) \to 0 \text{ as } T \to \infty$$

On average, competing with best algorithm in hindsight

(Of course, model applies beyond algorithm selection as well)

	Solution quality					
Timestep	Algorithm 1	Algorithm 2	Algorithm 3		Algorithm k	
÷	:	:	:	•••	:	
t t	<i>u</i> _t (1)	<i>u</i> _t (2)	<i>u</i> _t (3)	•••	$u_t(k)$	
:	:	:	:	·.	:	

 $\boldsymbol{u}_t = (u_t(1), \dots, u_t(k)) \in [0,1]^k$ (normalized for simplicity)

Outline

- 1. Statistical learning theory
- 2. Online learning
 - i. Problem setup
 - ii. Hedge algorithm
 - iii. Online learning for MWIS
 - iv. Additional learning models

Hedge algorithm [Freund, Schapire, JCSS'97]

input: Learning rate $\eta > 0$ **initialization:** $U_0 = (0, ..., 0)$ is the all-zeros vector of length k for t = 1, ..., T: choose distribution $p_t \in [0,1]^k$ such that $p_t(i) \propto \exp(\eta U_{t-1}(i))$ Initially, $\boldsymbol{p}_1 = \left(\frac{1}{r_1}, \dots, \frac{1}{r_r}\right)$ choose algorithm $i_t \sim \mathbf{p}_t$, receive reward $u_t(i_t)$ Expected reward is $\langle p_t, u_t \rangle$ observe reward vector \boldsymbol{u}_t update $U_t = U_{t-1} + u_t$

Hedge algorithm [Freund, Schapire, JCSS'97]

input:Learning rate $\eta > 0$ initialization: $U_0 = (0, ..., 0)$ is the all-zeros vector of length kfor t = 1, ..., T:

choose distribution $p_t \in [0,1]^k$ such that $p_t(i) \propto \exp(\eta U_{t-1}(i))$

Exponentially upweight high-reward algorithms

choose algorithm $i_t \sim p_t$, receive reward $u_t(i_t)$

Expected reward is $\langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle$

observe reward vector \boldsymbol{u}_t

update $\boldsymbol{U}_t = \boldsymbol{U}_{t-1} + \boldsymbol{u}_t$

Regret

Theorem: The regret of the Hedge algorithm is $\leq 2\sqrt{T \ln k}$

$$W_t = \sum_{i=1}^k \exp(\eta U_t(i))$$

$$\left(U_t(i) = \sum_{\tau=1}^t u_\tau(i)\right)$$

$$\frac{W_t}{W_{t-1}} = \frac{\sum_{i=1}^k \exp(\eta U_t(i))}{\sum_{i=1}^k \exp(\eta U_{t-1}(i))}$$

$$W_t = \sum_{i=1}^k \exp(\eta U_t(i))$$

$$\left(U_t(i) = \sum_{\tau=1}^t u_\tau(i)\right)$$

$$\frac{W_t}{W_{t-1}} = \frac{\sum_{i=1}^k \exp(\eta U_t(i))}{\sum_{i=1}^k \exp(\eta U_{t-1}(i))}$$

$$=\frac{\sum_{i=1}^{k}\exp\left(\eta\left(U_{t-1}(i)+u_{t}(i)\right)\right)}{\sum_{i=1}^{k}\exp(\eta U_{t-1}(i))}$$

$$\frac{W_t}{W_{t-1}} = \frac{\sum_{i=1}^k \exp\left(\eta \left(U_{t-1}(i) + u_t(i)\right)\right)}{\sum_{i=1}^k \exp(\eta U_{t-1}(i))}$$

$$\frac{W_{t}}{W_{t-1}} = \frac{\sum_{i=1}^{k} \exp\left(\eta \left(U_{t-1}(i) + u_{t}(i)\right)\right)}{\sum_{i=1}^{k} \exp(\eta U_{t-1}(i))}$$
$$= \frac{\sum_{i=1}^{k} \exp(\eta U_{t-1}(i)) \exp(\eta u_{t}(i))}{\sum_{i=1}^{k} \exp(\eta U_{t-1}(i))}$$

$$\begin{aligned} \frac{W_{t}}{W_{t-1}} &= \frac{\sum_{i=1}^{k} \exp\left(\eta \left(U_{t-1}(i) + u_{t}(i)\right)\right)}{\sum_{i=1}^{k} \exp(\eta U_{t-1}(i))} \\ &= \frac{\sum_{i=1}^{k} \exp(\eta U_{t-1}(i)) \exp(\eta u_{t}(i))}{\sum_{i=1}^{k} \exp(\eta U_{t-1}(i))} \end{aligned}$$
Remember: $p_{t}(i) \propto \exp(\eta U_{t-1}(i))$, so $p_{t}(i) = \frac{\exp(\eta U_{t-1}(i))}{\sum_{t=1}^{k} \exp(\eta U_{t-1}(i))} \\ &= \frac{W_{t}}{W_{t-1}} = \sum_{i=1}^{k} p_{t}(i) \exp(\eta u_{t}(i)) \end{aligned}$

$$\frac{W_t}{W_{t-1}} = \sum_{i=1}^k p_t(i) \exp(\eta u_t(i))$$

$$\frac{W_t}{W_{t-1}} = \sum_{i=1}^k p_t(i) \exp(\eta u_t(i))$$

Useful inequality: For $u \in [0,1]$ and $\eta > 0$, $e^{\eta u} \le 1 + (e^{\eta} - 1)u$

$$\frac{W_t}{W_{t-1}} \le \sum_{i=1}^k p_t(i) (1 + (e^{\eta} - 1)u_t(i))$$

$$\frac{W_t}{W_{t-1}} = \sum_{i=1}^k p_t(i) \exp(\eta u_t(i))$$

Useful inequality: For $u \in [0,1]$ and $\eta > 0$, $e^{\eta u} \le 1 + (e^{\eta} - 1)u$

$$\frac{W_t}{W_{t-1}} \le \sum_{i=1}^k p_t(i) (1 + (e^{\eta} - 1)u_t(i))$$
$$= 1 + (e^{\eta} - 1) \langle \mathbf{p}_t, \mathbf{u}_t \rangle$$

$$\frac{W_t}{W_{t-1}} \leq 1 + (e^{\eta} - 1) \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle$$

Useful inequality: $1 + z \leq e^z$, $\forall z \in \mathbb{R}$

$$\frac{W_t}{W_{t-1}} \leq \exp\left((e^{\eta} - 1)\langle \boldsymbol{p}_t, \boldsymbol{u}_t\rangle\right)$$

$$\frac{W_t}{W_{t-1}} \leq 1 + (e^{\eta} - 1) \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle$$

Useful inequality: $1 + z \le e^z$, $\forall z \in \mathbb{R}$

$$\frac{W_t}{W_{t-1}} \le \exp\left((e^{\eta} - 1)\langle \boldsymbol{p}_t, \boldsymbol{u}_t\rangle\right)$$
$$\frac{W_T}{W_0} = \frac{W_1}{W_0} \cdot \frac{W_2}{W_1} \cdots \frac{W_T}{W_{T-1}} \le \exp\left((e^{\eta} - 1)\sum_{t=1}^T \langle \boldsymbol{p}_t, \boldsymbol{u}_t\rangle\right)$$

$$\frac{W_T}{W_0} \le \exp\left((e^{\eta} - 1)\sum_{t=1}^T \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle\right)$$

$$W_T = \sum_{i=1}^k \exp(\eta U_T(i)) \ge \exp(\eta U_T(i^*))$$

$$W_0 = \sum_{i=1}^k \exp(\eta U_0(i)) = \sum_{i=1}^k \exp(\eta \cdot 0) = k$$
$$\frac{\exp(\eta U_T(i^*))}{k} \leq \frac{W_T}{W_0} \leq \exp\left((e^{\eta} - 1)\sum_{t=1}^T \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle\right)$$

$$W_T = \sum_{i=1}^k \exp(\eta U_T(i)) \ge \exp(\eta U_T(i^*))$$

$$W_0 = \sum_{i=1}^k \exp(\eta U_0(i)) = \sum_{i=1}^k \exp(\eta \cdot 0) = k$$

$$\frac{\exp(\eta U_T(i^*))}{k} \leq \frac{W_T}{W_0} \leq \exp\left((e^{\eta} - 1)\sum_{t=1}^T \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle\right)$$

$$U_T(i^*) \leq \frac{e^{\eta} - 1}{\eta} \cdot \sum_{t=1}^T \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle + \frac{\ln k}{\eta}$$

$$\frac{\exp(\eta U_T(i^*))}{k} \leq \frac{W_T}{W_0} \leq \exp\left((e^{\eta} - 1)\sum_{t=1}^T \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle\right)$$

$$\sum_{t=1}^{T} u_t(i^*) \leq \frac{e^{\eta} - 1}{\eta} \cdot \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle + \frac{\ln k}{\eta}$$

$$\sum_{t=1}^{T} u_t(i^*) \leq \frac{e^{\eta} - 1}{\eta} \cdot \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle + \frac{\ln k}{\eta}$$

$$\sum_{t=1}^{T} u_t(i^*) \leq \frac{e^{\eta} - 1}{\eta} \cdot \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle + \frac{\ln k}{\eta}$$

$$\leq \frac{e^{\eta} - 1 - \eta}{\eta} \cdot \frac{\mathbf{T}}{\mathbf{T}} + \frac{\ln k}{\eta}$$

$$\operatorname{regret} = \sum_{t=1}^{T} u_t(i^*) - \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle \leq \frac{e^{\eta} - 1 - \eta}{\eta} \cdot T + \frac{\ln k}{\eta}$$

$$\operatorname{regret} = \sum_{t=1}^{T} u_t(i^*) - \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{u}_t \rangle \leq \frac{e^{\eta} - 1 - \eta}{\eta} \cdot T + \frac{\ln k}{\eta}$$

Useful inequality: For $\eta \in [0,1]$, $e^{\eta} - 1 - \eta \leq (e-2)\eta^2$

$$\operatorname{regret} \leq (e-2)\eta T + \frac{\ln k}{\eta}$$

Setting
$$\eta = \sqrt{\frac{\ln k}{T}}$$
, we have that $\frac{\operatorname{regret}}{\operatorname{regret}} \leq 2\sqrt{T \ln k}$

Outline

- 1. Statistical learning theory
- 2. Online learning
 - i. Problem setup
 - ii. Hedge algorithm

iii. Online learning for MWIS

iv. Additional learning models

Exists adversary choosing MWIS instances s.t.: **Every** full information online algorithm has **linear regret** Round 1:

Utility on instance x_1 as a function of ho

 $u_{\rho}(x_1)$

Utility on instance x_1' as a function of ho

Exists adversary choosing MWIS instances s.t.: **Every** full information online algorithm has **linear regret** Round 1:

Adversary chooses x_1 or x'_1 with equal probability

 $u_{\rho}(x_1)$

Exists adversary choosing MWIS instances s.t.: **Every** full information online algorithm has **linear regret**

Round 1: Round 2:

Exists adversary choosing MWIS instances s.t.: **Every** full information online algorithm has **linear regret**

Repeatedly halves optimal region

Exists adversary choosing MWIS instances s.t.: **Every** full information online algorithm has **linear regret**

Repeatedly halves optimal region

Exists adversary choosing MWIS instances s.t.: **Every** full information online algorithm has **linear regret**

Repeatedly halves optimal region

Learner's expected reward: $\frac{T}{2}$ Reward of best ρ in hindsight: T Expected regret = $\frac{T}{2}$

Smoothed adversary

Sub-linear regret is possible if adversary has a "shaky hand":

- $w_1, \ldots, w_n, k_1, \ldots, k_n$ are stochastic
- Joint density of (w_i, w_j, k_i, k_j) is bounded

In this case, discretize and run Hedge

Smoothed adversary

Sub-linear regret is possible if adversary has a "shaky hand":

- $w_1, \ldots, w_n, k_1, \ldots, k_n$ are stochastic
- Joint density of (w_i, w_j, k_i, k_j) is bounded

Later generalized by Cohen-Addad, Kanade [AISTATS, '17]; Balcan, Dick, Vitercik [FOCS'18]; Balcan et al. [UAI'20]; ...

Outline

- 1. Statistical learning theory
- 2. Online learning
 - i. Problem setup
 - ii. Hedge algorithm
 - iii. Online learning for MWIS

iv. Additional learning models

Other models

- Full information: Learner sees all runtimes
 - Focus of this lecture
- **Bandit:** Learner only sees runtime of chosen algorithm
 - E.g., Balcan, Dick, Vitercik, FOCS'18
- Semi-bandit: Mixture of the two
 - E.g., Balcan, Dick, Pegden, UAI'20

Continuous parameters (piecewise-Lipschitz performance)

• E.g., Gupta, Roughgarden, ITCS'16; Cohen-Addad, Kanade, AISTATS, '17; Balcan, Dick, Vitercik, FOCS'18; ...