An ML-theory lens on
algorithm contfiguration

Outline

1. Statistical learning theory
2. Online learning

Running example

Maximum weight independent set (M\WIS)

Problem instance:
* Graph G = (V,E)
* n vertices with weights wy, ...,w, = 0

Goal: find subset § € [n]
* Maximizing >};eq W;
 No nodesi,j € S are connected: (i,j) € E

Running example: MWIS

Greedy heuristic:

Greedily add vertices v in decreasing order of —~

(1+deg(v))

Maintaining independence

Parameterized heuristic [Gupta, Roughgarden, ITCS"16]:

: : : Wy
Greedily add nodes in decreasing order of Crdee)? P >0

[Inspired by knapsack heuristic by Lehmann et al., JACM'02]

Question: How to choose p?

General model

R%: Set of all parameters
E.g., MWIS parameter p € R, CPLEX parameters, ...

X: Set of all inputs
E.g., graphs, integer programs, ...

&

Oneelementx € X

Algorithmic performance

u,(x) = utility of algorithm parameterized by p € R? on input x
E.g., runtime, solution quality, memory usage, ...

MWIS: It algorithm returns set S, u,(x) = X;cs Wi

Assume u,(x) € [-H, H]

Automated configuration procedure

1. Fix parameterized algorithm
2. Receive set of “typical” inputs sampled from unknown D

Problem instance 1 Problem instance 2
5 vee

3. Return parameter setting p with good avg performance

Runtime, solution quality, etc.

Automated configuration procedure

Seen Unseen
, % 2

Problem instance 1 Problem instance 2 New problem instance
4 & 2

_ AN J

Statistical question: Will p have good future performance?
More formally: Is the expected performance of p also good?

Generalization bounds

Key question: For any parameter setting p,
is average utility on training set close to expected utility?

Formally: Given samples x4, ..., x5 ~D, for any p,

Generalization bounds

Key question: For any parameter setting p,
is average utility on training set close to expected utility?

Formally: Given samples x4, ..., x5 ~D, for any p,

1 N
=) () = Ex [y (]| <2

Empirical average utility

Generalization bounds

Key question: For any parameter setting p,
is average utility on training set close to expected utility?

Formally: Given samples x4, ..., x5 ~D, for any p,

N
1
Nz u, () — B, |u, (0] < ?

Expected utility

Generalization bounds

Key question: For any parameter setting p,
is average utility on training set close to expected utility?

Formally: Given samples x4, ..., x5 ~D, for any p,

N
1
Nz Up (%) — Explu,(0)][<2

Good average empirical utility mp Good expected utility

Convergence

Key question: For any parameter setting p,
is average utility on training set close to expected utility?

//—\\
77N

y .. - 1
te ’ \\‘ ’/ AN a - == Empirical average uUhtyEZ’i\’:l up,(x;)

7 N .
—e |/ N/ o/ S= — Expected utility Ey.p[u,(x)]

/ ~_’
I',
@

Number N of samples in training set

Convergence

Key question: For any parameter setting p,
is average utility on training set close to expected utility?

/’—\\
/, \\ 77N . . . 1 <N
+0.1 / \ ’/ X R -~ == Empirical average utility - %L ; u, (x;)
-0.1| N/ g -7 — Expected utility E,.p[u,(x)]
/ N’
I'l 400

Number N of samples in training set

Outline

1. Statistical learning theory
i. Generalization bounds
ii. Measures of “intrinsic complexity”
iii. Pseudo-dimension of MWIS heuristic

2. Online learning

Intrinsic complexity

“Intrinsic complexity” of function class G
* Measures how well functions in G fit complex patterns
 Specific ways to quantify “intrinsic complexity”:
« VC dimension
* Pseudo-dimension

More complex Less complex

VC dimension

Complexity measure for binary-valued function classes F
(Classes of functions f: Y — {—1,1})

E.g., linear separators

VC dimension of F

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

1 ifx € (a,b)

Example: F = Int | th | i =
xamp ntervals on the real line f, , (x) {O olse

VCdim(F) = 2 — @

VC dimension of F

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

1 ifx € (a,b)

Example: F = Int | th | i =
xamp ntervals on the real line f, , (x) {O clse

VCdim(F) = 2 3= —t

VCdim(F) < 2 _— —

Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, /1]
*Fore,d € (0,1),letN =0 (VCdlm(T) logl)

€2)
* D is an unknown distribution over Y
* f*:Y - {0,1} is an unknown target function

e Let{(v1, f*(¥1)), -, (¥n, f*(¥n))} be the training set
« With pro%ability atleast1 — 6 overy,,..,yn ~ D,Vf € F,

1
Nz 1{f(yi)¢f*(yi)} — Py~2) If)=f"]| <e
=1

Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, '71]: (alternate formulation)
*Fore, 6 € (0,1), letN =0 (VCd:;(T) log%)

* D is an unknown distribution over Y
* With probability 1?;[least1 — 6 overyq,...,yn ~ D,Vf € F,

1
= FO) — Byl O]| <€

VC dimension of F

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

Example: F = Linear separators in R? VCdim(F) = 3

VC dimension of F

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

Example: F = Linear separators in R* VCdim(F) = 3
= [=AR=1[+][+AR+ |[F [=
+ + -/k— = =] [t~ || [+ +] |= =
+ - +
VCdim(F) < 3 + + + -

VCdim({Linear separators in R4}) = d + 1

VC dimension of F

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

Example: F = Axis-aligned rectangles

VC dimension of F

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

Example: F = Axis-aligned rectangles

VCdim(F) =4

VCdim(F) < 4

e -

+

+

4

+

+

+

+
+ = F
+

VC dimension of F

Size of the largestset S € Y
that can be labeled in all 21°l ways by functions in F

Mathematically, for § = {y;, ..., yn},

f(f()’ﬂ)
< E f €F
N\ (yn)

Pseudo-dimension

Complexity measure for real-valued function classes G
(Classes of functions g: Y - [—H, H])

E.g., affine functions

Pseudo-dimension of §

Size of the largest set {y,, ..., yn} € Y s.t.:

Example: § = Affine functions in R

ZZ-

Zl-_

for some targets z;, ..., zy € R,

all 2V above/below patterns achieved by functions in G

Vi

yo
Can also show that Pdim(G) < 2

Vi

| o
—
)

Pdim(G) = 2

Pseudo-dimension of §

Size of the largest set {y,, ..., yn} € Y s.t.:
for some targets z;, ..., zy € R,
all 2V above/below patterns achieved by functions in G

Mathematically,

Lig(y)2z1))

1
N
2

g€
N\ Lgomzzal)

Another interpretation of pseudo-dim

Forany g € G:
B, = indicator function of the region below the graph of g

B,(y,z) = sgn(g(y) — z)

llustration of B, (y, z) with a fixed z and varying y:

Another interpretation of pseudo-dim

Forany g € G:
B, = indicator function of the region below the graph of g
By(y,2) = sgn(g(y) — 2)

Fact: Pdim(G) = VCdim({B,: g € G))

Sample complexity using pseudo-dim

Theorem [Pollard, '84]:
*Fore,d € (0,1),letN =0 (Pdlm(g) logl)

€2)
* D is an unknown distribution over Y
* With probabilityNat least1 — 6 overy,,...,yv ~ D,Vg € G,

1
NZ 9gi) —E, plgy)]| < eH

Sample complexity using pseudo-dim

In the context of algorithm configuration:
* U = {u,: p € R?} measure algorithm performance

*Fore, 6 € (0,1),letN=0 (Pdim(w log%)

€2

 With probability at least 1 — § over x4, ..., xy ~ D,Vp € R,

, N
Nz u,(x;) — Eyp [up(x)] < eH

Empirical average utility Expected utility

Outline

1. Statistical learning theory
i. Generalization bounds
ii. Measures of “intrinsic complexity”
iii. Pseudo-dimension of MWIS heuristic

2. Online learning

Pseudo-dimension of MWIS heuristic

« N MWIS instances x4, ..., xy, each with n vertices

* N targets z4, ...,zy € R

* How many above-below patterns can we make?

(1{up(x1)221})
: pER ;| Z ?

A\ L, ez zp))

A

Theorem [Gupta, Roughgarden, ITCS'16]: at most Nn?

Pseudo-dimension of MWIS heuristic

Let's start with a single instance:

« Weights wy, ...,w,, = 0
e deg(i) + 1 = k;

Algorithm parameterized by p would add node 1 before 2 if:

Wy S Wy > W7
SR T PERe,
1 2 kg 71
Heuristic prioritizes node 2 . Heuristic prioritizes node 1
« | . p
W3
logk, —

kW1

Pseudo-dimension of MWIS heuristic

. (g) thresholds per instance

* Partition R into regions where algorithm’s output is fixed

Algorithm will add exact same
[nodes no matter which p it uses}
N R
| | 5 | " P
W3 W3

W3 Wi
logk, — logk, — logﬁ — logﬁ —
W1 ki Wi kL W1 k, W2

Pseudo-dimension of MWIS heuristic

. (g) thresholds per instance

* Partition R into regions where algorithm’s output is fixed
= u,(x) is constant

u,(x)
(as a function of p)

logk — logk — logr 2 logk S
3 i 2 3
kL W1 ki Wi kL W1 k, W2

Pseudo-dimension of MWIS heuristic

n

2) thresholds

) + 1 regions where u, (x;) is constant Vi

* For N instances x4, ..., xy, total of N(
n

e Partition Rinto N (2

u,(x)
(as a function of p)

Pseudo-dimension of MWIS heuristic

n

2) thresholds

* For N instances x4, ..., xy, total of N(

 Partition R into N (;l) + 1 regions where u, (x;) is constant Vi
(1{up(x1)221}) n
= |4 z pER (<N (,)+1
\ 1{up(xN)zzN} y

* If py, p2 from same region, u, (x;) = u,, (x;) Vi,

L, ()22 L,)2z,
= : = :
1{up1(xN)ZZN} 1{uP2(xN)ZZN}

Pseudo-dimension of MWIS heuristic

If all 2V above/below patterns achievable,

(1{up(x1)221} \ n
N = |4 s pER([<N(,)+1

\ 1{up(xN)zzN} J

Implies that N = O(logn), so Pdim(U) = O(logn)

MWIS sample complexity

Fore, 6 € (0,1),letN =0 (lognlog)

With probability at least 1 — § over x4, ..., xy ~ D,Vp € R,
N

1
NZ u,(x;) — Exop [up (x)] < eH

Empirical average utility Expected utility

Outline

1. Statistical learning theory
2. Online learning

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Day 1: p; Day 2: p, Day 3: ps

Goal: Compete with best parameter setting in hindsight
* Impossible in the worst case
« Under what conditions is online configuration possible?

Setup

To start: finite # of algorithms (can be generalized)

A
- N

Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

Setup

E.g., independent set weight

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

Setup

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

Setup

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

1 % 2.8 9.3 0.3 1.4

Full information: Learner sees all solution qualities
Focus of this lecture (for simplicity)

Will discuss other models in a few slides

Setup

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

1 % 2.8 9.3 0.3 1.4

2

Setup

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

1 % 2.8 9.3 0.3 1.4

2

Setup

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

1 % 2.8 9.3 0.3 1.4
2 @ 3.7 4.3 5.8 1.0

Setup

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

1 % 2.8 9.3 0.3 1.4
2 @ 3.7 4.3 5.8 1.0

Setup

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

1 % 2.8 9.3 0.3 1.4
2 @ 3.7 4.3 5.8 1.0

Setup

Solution quality

Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k
1 % 2.8 9.3 0.3 1.4
: @ 37 43 56 10

Setup

Best in
hindsight

Timestep Algorithm 1 [Algorithm 2] Algorithm 3 Algorithm k

1 % 2.8 9.3 0.3 1.4
2 @ 3.7 4.3 5.8 1.0

Regret = (solution quality of best alg in hindsight) - (learner’s reward)
=(93+43+--4+50)—(28+43+:+2.8)
" @9

9.9 5.0 3.9 2.8

Regret

Regret = (solution quality of best alg in hindsight) - (learner’s reward)
=(93+43+--+50)—(28+43+:+2.8)

Goal: % - (Regret) = 0asT = o
On average, competing with best algorithm in hindsight

(Of course, model applies beyond algorithm selection as well)

Setup

Solution quality
Timestep Algorithm 1 Algorithm 2 Algorithm 3 Algorithm k

t @ u (1) u (2) u (3) u, (k)

u; = (ut(l), ...,ut(k)) € [0,1]* (normalized for simplicity)

Outline

1. Statistical learning theory

2. Onllne learning

i.
1.
V.

Problem setup
Hedge algorithm

Online learning for MWIS
Additional learning models

Hedge algorithm [Freund, Schapire, JCSS'97]

input: Learning raten > 0
initialization: U, = (0, ...,0) is the all-zeros vector of length k
fort=1,..,T:

choose distribution p; € [0,1]% such that p,(i) « exp(nUt_l(i))

1 1

Initially, p; = (;, E)
choose algorithm i; ~ p;, receive reward u;(i;)

Expected reward is (p¢, u;)
observe reward vector u;
update Uy = Us_q + u,

Hedge algOrithm [Freund, Schapire, JCSS'97]

input: Learning raten > 0
initialization: U, = (0, ...,0) is the all-zeros vector of length k
fort=1,..,T:

choose distribution p; € [0,1]% such that p,(i) « exp(nUt_l(i))

Exponentially upweight high-reward algorithms

choose algorithm i; ~ p;, receive reward u;(i;)

Expected reward is (p¢, u;)
observe reward vector u;
update Uy = Us_q + u,

Regret

Regret = (sol qjgality of beTst alg in hindsight) - (learner’s reward)
= {g[a;gz ue (i) — Z@t,ut)
t=1 t=1

T

i = arggrel[a}g](Z u, (i)
t=

Theorem: The regret of the Hedge algorithm is < 2vTInk

Proof that Hedge's regret is O(VT In k)
W, = i exp(n Ut(i)) (Ut(i) = Zu&i))

l

W, _ Z?:leXp(UUt(i))
Wir T, exp(nUp—, (D))

Proof that Hedge's regret is O(VT In k)
W, = i exp(n Ut(i)) (Ut(i) = iu&i))

=1
l

W, _ Xiiexp(nU (D))
Weer 3k exp(nUs_1 (D)

B Z?=1 exXp (U(Ut—1(i) + ut(l)))
2R exp(nUe—1 (D)

Proof that Hedge's regret is O(VT In k)

|4 B Z?=1 2% (”(Ut—l(i) + ut(i)))
Wiy & exp(nU;_1(0))

Proof that Hedge's regret is O(VT In k)

|4 B Zé(=1 exXp (U(Ut—1(i) T ut(i)))
Wt—l B Z?:l exp(TIUt—l(i))
_ Zéc=1 eXP(’?Ut—1(i)) exp(nut(i))
Z?:l eXP(’?Ut—1(i))

Proof that Hedge's regret is O(VT In k)

W, Zé(=1 €Xp (”(Ut—1(i) + ut(i)))

Wit Zéc=1 exp(TIUt—l(i))
_ Zéc=1 eXP(’?Ut—1(i)) eXp(nut (l))
z:}z{(=1 eXP(TIUt—1(i))

Remember: pt(i) e exp(r]Ut 1(i)) so p; (i) =

Z p. (1) exp (Uut (1))

exp(nU¢—1(1))
256:1 exp(nUs-1(1))

Wt 1

Proof that Hedge's regret is O(VT In k)

Wt ; zpt(l) eXp(nut(l))

Proof that Hedge's regret is O(VT In k)

T Zpta) exp (71, (1)

Useful inequality: Foru € [0,1] andn > 0,7 <1 + (e — 1)u

T Zm@)@ + (" = D (D)

Proof that Hedge's regret is O(VT In k)

Wt) zpt(l) exp(nu,(i))

Useful inequality: Foru € [0,1] andn > 0,e™ <1+ (e" — 1)u

T Z pe (1 + (7 = D ()

=1+ (7 — 1)(ps, uy)

Proof that Hedge's regret is O(VT In k)

Wy
Wt -1

<1+ (e"—=1)p:u)

Useful inequality: 1 + 7z < e¢?,Vz € R

Wy
Wt -1

< exp((e" — 1)(1%»“15))

Proof that Hedge's regret is O(VT In k)

Wy
Wt -1

<1+ (e"—1){p: u.)

Useful inequality: 1 + z < e?,vVze R

Wi
Wi_q

W. W, W. W
_r_1.2z2. <exp| (e — 1)2(1% u;)
WO WO Wl WT 1

< exp((e” — 1){(p;, u;))

Proof that Hedge's regret is O(VT In k)

T
% < exp ((6" - 1) ;(puud)

Wr = > exp(nUr(i)) = exp(nUr(i*))

M- M-

k
exp(nUy (1)) = z exp(n-0) =k

=1

Wo =

Il
—

L

Proof that Hedge's regret is O(VT In k)

exp(nUr(i)) = exp(nUr (i)

k
exp(nUy (1)) = z exp(n-0) =k

=1

Tf TI‘M?T‘
HM?T =

Proof that Hedge's regret is O(VT In k)

Proof that Hedge's regret is O(VT In k)

Proof that Hedge's regret is O(VT In k)

T T
el —1 Ink
2 u (i) < ‘ Z<pt»ut> T
n o n

t=1 =

Proof that Hedge's regret is O(VT In k)

N1~

T
. el —1 Ink
ut(l) S)7 'Z(}?t,ut) +T

1

mT—1-— Ink
ug(i*) — z<pt u) < i ! Z@t u;) ‘|‘n_

S
Il

]~

regret =

o~
Il
—

Proof that Hedge's regret is O(VT In k)

N1~

T
. el —1 Ink
ut(l) S)7 'Z()?t,ut) +T

1

m—1— Ink
ug(i*) — z<pt ut><e ! 2@1& ut)‘l‘n_

e —1—n Ink
< T+ —
n n

S
Il

]~

regret =

o~
Il
—

Proof that Hedge's regret is O(VT In k)

e —1—n Ink

T
u(i*)—Z<) < T —
t t=1pt t n n

regret =

N1~

1

(o
I

Proof that Hedge's regret is O(VT In k)

T T

e —1—n In k
regret = z u,(i*) — Z(pt,ut) < T +—
t=1 t=1 T n
Useful inequality: Forn € [0,1],¢7 — 1 —1n < (e — 2)n*
Ink
regret < (e — 2)nT + S

Settingn = /lnTk we have that regret < 2V/TInk

Outline

1. Statistical learning theory

2. Online learning
i. Problem setup
ii. Hedge algorithm
iii. Online learning for MWIS
iv. Additional learning models

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1:
14 O
1, (1) Utility on instance x; as a function of p
ﬁ—»p
. . , .
u, (x1) Utlllty on Instance x; as a function of P

Gupta and Roughgarden, ITCS'16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1:

u, () Adversary chooses x; or x; with equal probability

+>p

up (1) |
p

Gupta and Roughgarden, ITCS'16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has linear regret

Round 1:

up (xl)

-

up (x1)

P

Round 2:

up (xz)

!/

Uy (x2)

1 O—

Gupta and Roughgarden, ITCS'16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1: Round 2: | |

T Sr— C om Repeatedly halves optimal region
u,(x1) u,(x2)

_ —— D ——>)

u,(x1) | u, (x3) |
p p

Gupta and Roughgarden, ITCS'16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1: Round 2: | |

T Sr— C om Repeatedly halves optimal region
u,(x1) u,(x2)

_ —— D ——>)

u,(x1) | u, (x3) |
p p

Gupta and Roughgarden, ITCS'16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:

Every full information online algorithm has linear regret
Round 2:

Round 1:

(13 O—)
up(xl)

_ P

up (xz)

o~ Repeatedly halves optimal region

’ Learner’s expected reward: —

Reward of best p in hlhdSlght T
tp (1) tp (x2) Expected regret = -
p p 2

Gupta and Roughgarden, ITCS'16

Smoothed adversary

Sub-linear regret is possible if adversary has a “shaky hand”:
* Wy, ...,Wy, kq, ..., k,, are stochastic
* Joint density of (Wi, ki,]) is bounded

Density
of Wi

/\/

Density
of Wi

In this case, discretize and run Hedge

Gupta and Roughgarden, ITCS'16

Smoothed adversary

Sub-linear regret is possible if adversary has a “shaky hand”:
* Wy, ...,Wy, kq, ..., k,, are stochastic

* Joint density of (Wi, ki,]) is bounded

Density
of Wi

/'\/

Density
of Wi

Later generalized by Cohen-Addad, Kanade [AISTATS, "17/];
Balcan, Dick, Vitercik [FOCS'18]: Balcan et al. [UAI'20]: ...

Gupta and Roughgarden, ITCS'16

Outline

1. Statistical learning theory

2. Online learning
i. Problem setup
ii. Hedge algorithm
iii. Online learning for MWIS
iv. Additional learning models

Other models

* Full information: Learner sees all runtimes
e Focus of this lecture

* Bandit: Learner only sees runtime of chosen algorithm
« E.g., Balcan, Dick, Vitercik, FOCS'18

» Semi-bandit: Mixture of the two
« E.g., Balcan, Dick, Pegden, UAI'20

» Continuous parameters (piecewise-Lipschitz performance)

« E.g., Gupta, Roughgarden, ITCS'16; Cohen-Addad, Kanade, AISTATS, “17; Balcan, Dick,
Vitercik, FOCS'18: ...

