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Running example

Maximum weight independent set (MWIS)

Problem instance:
• Graph 𝐺 = (𝑉, 𝐸)
• 𝑛 vertices with weights 𝑤!, … , 𝑤" ≥ 0

Goal: find subset 𝑆 ⊆ [𝑛]
• Maximizing ∑#∈%𝑤#
• No nodes 𝑖, 𝑗 ∈ 𝑆 are connected: 𝑖, 𝑗 ∉ 𝐸



Running example: MWIS
Greedy heuristic:

Greedily add vertices 𝑣 in decreasing order of !!
"#$%& '

Maintaining independence

Parameterized heuristic [Gupta, Roughgarden, ITCS’16]:
Greedily add nodes in decreasing order of !!

"#$%& ' ", 𝜌 ≥ 0
[Inspired by knapsack heuristic by Lehmann et al., JACM’02]

Question: How to choose 𝜌?



ℝ(: Set of all parameters
E.g., MWIS parameter 𝜌 ∈ ℝ, CPLEX parameters, …

𝒳: Set of all inputs
E.g., graphs, integer programs, …

General model

One element 𝑥 ∈ 𝒳



𝑢𝝆 𝑥 = utility of algorithm parameterized by 𝝆 ∈ ℝ(  on input 𝑥
E.g., runtime, solution quality, memory usage, …

MWIS: If algorithm returns set 𝑆, 𝑢𝝆 𝑥 = ∑*∈,𝑤* 

Assume 𝑢𝝆 𝑥 ∈ −𝐻,𝐻

Algorithmic performance



Automated configuration procedure
1.  Fix parameterized algorithm 
2.  Receive set of “typical” inputs sampled from unknown 𝒟

 
3.  Return parameter setting 7𝝆 with good avg performance

Earlier question: How to find 7𝝆 with good avg performance?
Hutter et al. [JAIR’09, LION’11], Ansótegui et al. [CP’09], Kleinberg et al. [NeurIPS’19, IJCAI’17], 
Weisz et al. [ICML’19, NeurIPS’19]; Balcan, Sandholm, V [AAAI’20], …

Runtime, solution quality, etc.

Problem instance 1 Problem instance 2



Automated configuration procedure

1.  Fix parameterized algorithm/mechanism
2.  Receive set of “typical” inputs sampled from unknown 𝒟

 
3.  Return parameter setting 7𝝆 with good avg performance
Statistical question: Will 7𝝆 have good future performance?
More formally: Is the expected performance of 7𝝆 also good?

Seen Unseen ?
New problem instanceProblem instance 1 Problem instance 2



Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥", … , 𝑥-~𝒟, for any 𝝆,



Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥", … , 𝑥-~𝒟, for any 𝝆,
1
𝑁
<
*."

-

𝑢𝝆 𝑥* − 𝔼/~𝒟 𝑢𝝆 𝑥 ≤	??
Empirical average utility
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Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥", … , 𝑥-~𝒟, for any 𝝆,
1
𝑁
<
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-

𝑢𝝆 𝑥* − 𝔼/~𝒟 𝑢𝝆 𝑥 ≤	??
Expected utility



Generalization bounds

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Formally: Given samples 𝑥", … , 𝑥-~𝒟, for any 𝝆,
1
𝑁
<
*."

-

𝑢𝝆 𝑥* − 𝔼/~𝒟 𝑢𝝆 𝑥 ≤	??

Good average empirical utility Good expected utility



Convergence

Empirical average utility !
"
∑#$!" 𝑢𝝆 𝑥#  

Expected utility 𝔼&~𝒟[𝑢𝝆 𝑥 ]
+𝜖
−𝜖

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?

Number 𝑁 of samples in training set



Convergence

Empirical average utility !
"
∑#$!" 𝑢𝝆 𝑥#  

Expected utility 𝔼&~𝒟[𝑢𝝆 𝑥 ]
+0.1
−0.1

Number 𝑁 of samples in training set

400

Key question: For any parameter setting 𝝆,
is average utility on training set close to expected utility?
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Intrinsic complexity

“Intrinsic complexity” of function class 𝒢
• Measures how well functions in 𝒢 fit complex patterns
• Specific ways to quantify “intrinsic complexity”:

• VC dimension
• Pseudo-dimension

More complex Less complex



VC dimension

Complexity measure for binary-valued function classes ℱ
 (Classes of functions 𝑓:𝒴 → {−1,1})

E.g., linear separators



VC dimension of ℱ 

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Intervals on the real line 𝑓4,6 𝑥 = K1 if	𝑥 ∈ (𝑎, 𝑏)
0 else.	

VCdim(ℱ) ≥ 2



VC dimension of ℱ 

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Intervals on the real line 𝑓4,6 𝑥 = K1 if	𝑥 ∈ (𝑎, 𝑏)
0 else.	

VCdim(ℱ) ≥ 2

VCdim(ℱ) ≤ 2



Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, ’71]:
• For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 78$9: ℱ

<#
log "

=
• 𝒟 is an unknown distribution over 𝒴
• 𝑓∗: 𝒴 → 0,1  is an unknown target function
• Let 𝑦", 𝑓∗ 𝑦" , … , 𝑦- , 𝑓∗ 𝑦-  be the training set
• With probability at least 1 − 𝛿 over 𝑦", … , 𝑦- ∼ 𝒟, ∀𝑓 ∈ ℱ,

1
𝑁
<
*."

-

𝟏 ? @$ A?∗ @$ − ℙ@~𝒟 𝑓 𝑦 ≠ 𝑓∗ 𝑦 ≤ 𝜖

• With probability at least 1 − 𝛿 over 𝑦", … , 𝑦- ∼ 𝒟, ∀𝑓 ∈ ℱ,

Theorem [Vapnik, Chervonenkis, ’71]:
• For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 78$9: ℱ

<#
log "

=
• 𝒟 is an unknown distribution over 𝒴



Sample complexity using VC dimension

Theorem [Vapnik, Chervonenkis, ’71, alternative formulation]:
• For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 78$9: ℱ

<#
log "

=
• 𝒟 is an unknown distribution over 𝒴
• With probability at least 1 − 𝛿 over 𝑦", … , 𝑦- ∼ 𝒟, ∀𝑓 ∈ ℱ,

1
𝑁
<
*."

-

𝑓 𝑦* − 𝔼@~𝒟 𝑓 𝑦 ≤ 𝜖

• With probability at least 1 − 𝛿 over 𝑦", … , 𝑦- ∼ 𝒟, ∀𝑓 ∈ ℱ,

Theorem [Vapnik, Chervonenkis, ’71]:
• For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 78$9: ℱ

<#
log "

=
• 𝒟 is an unknown distribution over 𝒴

(alternate formulation)



VC dimension of ℱ 

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Linear separators in ℝB  VCdim(ℱ) ≥ 3



VC dimension of ℱ 

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Linear separators in ℝB  VCdim(ℱ) ≥ 3

VCdim(ℱ) ≤ 3

VCdim({Linear separators in ℝ(}) = 𝑑 + 1



VC dimension of ℱ 

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Axis-aligned rectangles
VCdim(ℱ) ≥ 4



VC dimension of ℱ 

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Example: ℱ = Axis-aligned rectangles
VCdim(ℱ) ≥ 4

VCdim(ℱ) ≤ 4



VC dimension of ℱ 

Size of the largest set 𝒮 ⊆ 𝒴
that can be labeled in all 2|𝒮| ways by functions in ℱ

Mathematically, for 𝒮 = 𝑦", … , 𝑦- ,
𝑓 𝑦"
⋮

𝑓 𝑦-
: 𝑓 ∈ ℱ = 2-



Pseudo-dimension

Complexity measure for real-valued function classes 𝒢
 (Classes of functions 𝑔:𝒴 → [−𝐻,𝐻])

E.g., affine functions



Pseudo-dimension of 𝒢

Size of the largest set 𝑦", … , 𝑦- ⊆ 𝒴 s.t.:
for some targets 𝑧", … , 𝑧- ∈ ℝ,

all 2- above/below patterns achieved by functions in 𝒢

Example: 𝒢 = Affine functions in ℝ  Pdim(𝒢) ≥ 2

𝑦! 𝑦)

𝑧!

𝑧)

𝑦! 𝑦)

𝑧!

𝑧)

𝑦! 𝑦)

𝑧!

𝑧)

𝑦! 𝑦)

𝑧!

𝑧)

Can also show that Pdim(𝒢) ≤ 2



Pseudo-dimension of 𝒢

Size of the largest set 𝑦", … , 𝑦- ⊆ 𝒴 s.t.:
for some targets 𝑧", … , 𝑧- ∈ ℝ,

all 2- above/below patterns achieved by functions in 𝒢

Mathematically,
𝟏 C @& DE&

⋮
𝟏 C @' DE'

: 𝑔 ∈ 𝒢 = 2-



Another interpretation of pseudo-dim

For any 𝑔 ∈ 𝒢:
𝐵C = indicator function of the region below the graph of 𝑔

𝐵C 𝑦, 𝑧 = sgn 𝑔 𝑦 − 𝑧

Illustration of 𝐵C 𝑦, 𝑧  with a fixed 𝑧 and varying 𝑦:

𝑧

𝑦

𝐵* 𝑦, 𝑧 = 1

𝐵* 𝑦, 𝑧 = −1
𝑧

𝑦



Another interpretation of pseudo-dim

For any 𝑔 ∈ 𝒢:
𝐵C = indicator function of the region below the graph of 𝑔

𝐵C 𝑦, 𝑧 = sgn 𝑔 𝑦 − 𝑧

Fact: Pdim 𝒢 = VCdim 𝐵C: 𝑔 ∈ 𝒢



Sample complexity using pseudo-dim

Theorem [Pollard, ’84]:
• For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 F$9: 𝒢

<#
log "

=
• 𝒟 is an unknown distribution over 𝒴
• With probability at least 1 − 𝛿 over 𝑦", … , 𝑦- ∼ 𝒟, ∀𝑔 ∈ 𝒢,

1
𝑁
<
*."

-

𝑔 𝑦* − 𝔼@~𝒟 𝑔 𝑦 ≤ 𝜖𝐻



Sample complexity using pseudo-dim

In the context of algorithm configuration:
• 𝒰 = 𝑢𝝆: 𝝆 ∈ ℝ(  measure algorithm performance
• For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 F$9: 𝒰

<#
log "

=
• With probability at least 1 − 𝛿 over 𝑥", … , 𝑥- ∼ 𝒟, ∀𝝆 ∈ ℝ(,

1
𝑁
<
*."

-

𝑢𝝆 𝑥* − 𝔼/~𝒟 𝑢𝝆 𝑥 ≤ 𝜖𝐻

Empirical average utility Expected utility
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Pseudo-dimension of MWIS heuristic

• 𝑁 MWIS instances 𝑥", … , 𝑥-, each with 𝑛 vertices
• 𝑁 targets 𝑧", … , 𝑧- ∈ ℝ
• How many above-below patterns can we make?

𝟏 I" /& DE&
⋮

𝟏 I" /' DE'

: 𝜌 ∈ ℝ ≤

Theorem [Gupta, Roughgarden, ITCS’16]: at most 𝑁𝑛B

?



Pseudo-dimension of MWIS heuristic

Let’s start with a single instance:
• Weights 𝑤!, … , 𝑤" ≥ 0
• deg 𝑖 + 1 = 𝑘#

Algorithm parameterized by 𝜌 would add node 1 before 2 if:
𝑤"
𝑘"
J ≥

𝑤B
𝑘B
J . 	 ⟺. . . . . 𝜌 ≥ logK#

K&

𝑤B
𝑤"

log+!
+"

𝑤)
𝑤!

𝜌
Heuristic prioritizes node 2 Heuristic prioritizes node 1



Pseudo-dimension of MWIS heuristic

• 𝑛
2  thresholds per instance

• Partition ℝ into regions where algorithm’s output is fixed

log+!
+"

𝑤)
𝑤!

𝜌

log+#
+!

𝑤,
𝑤)

log+#
+"

𝑤,
𝑤!

log+$
+%

𝑤#
𝑤-

Algorithm will add exact same 
nodes no matter which 𝜌 it uses



Pseudo-dimension of MWIS heuristic

• 𝑛
2  thresholds per instance

• Partition ℝ into regions where algorithm’s output is fixed
           ⇒ 𝑢J 𝑥  is constant

𝜌

𝑢. 𝑥  
(as a function of 𝜌) 

log+!
+"

𝑤)
𝑤!

log+#
+!

𝑤,
𝑤)

log+#
+"

𝑤,
𝑤!

log+$
+%

𝑤#
𝑤-



Pseudo-dimension of MWIS heuristic

• For 𝑁 instances 𝑥", … , 𝑥-, total of 𝑁 𝑛
2  thresholds

• Partition ℝ into 𝑁 𝑛
2 + 1 regions where 𝑢J 𝑥*  is constant ∀𝑖

 
𝜌

𝑢. 𝑥  
(as a function of 𝜌) 

log+!
+"

𝑤)
𝑤!

log+#
+!

𝑤,
𝑤)

log+#
+"

𝑤,
𝑤!

log+$
+%

𝑤#
𝑤-



Pseudo-dimension of MWIS heuristic

• For 𝑁 instances 𝑥", … , 𝑥-, total of 𝑁 𝑛
2  thresholds

• Partition ℝ into 𝑁 𝑛
2 + 1 regions where 𝑢J 𝑥*  is constant ∀𝑖

⇒
𝟏 I" /& DE&

⋮
𝟏 I" /' DE'

: 𝜌 ∈ ℝ ≤ 𝑁 𝑛
2 + 1

• If 𝜌!, 𝜌? from same region, 𝑢@! 𝑥# = 𝑢@" 𝑥#  ∀𝑖,

⇒
𝟏 A#! B! CD!

⋮
𝟏 A#! B$ CD$

=
𝟏 A#" B! CD!

⋮
𝟏 A#" B$ CD$



Pseudo-dimension of MWIS heuristic

If all 2- above/below patterns achievable,

2- =
𝟏 I" /& DE&

⋮
𝟏 I" /' DE'

: 𝜌 ∈ ℝ ≤ 𝑁 𝑛
2 + 1

Implies that 𝑁 = 𝑂 log 𝑛 , so Pdim(𝒰) = 𝑂 log 𝑛



MWIS sample complexity

For 𝜖, 𝛿 ∈ 0,1 , let 𝑁 = 𝑂 LM& N
<#

log "
=

With probability at least 1 − 𝛿 over 𝑥", … , 𝑥- ∼ 𝒟, ∀𝜌 ∈ ℝ,
1
𝑁
<
*."

-

𝑢J 𝑥* − 𝔼/~𝒟 𝑢J 𝑥 ≤ 𝜖𝐻

Empirical average utility Expected utility
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Day 1: 𝝆! Day 2: 𝝆) Day 3: 𝝆,

Online algorithm configuration

What if inputs are not i.i.d., but even adversarial?

Goal: Compete with best parameter setting in hindsight
• Impossible in the worst case
• Under what conditions is online configuration possible?



Setup

Timestep Algorithm 1 Algorithm 2 Algorithm 3 ⋯ Algorithm 𝒌

1 2.8 9.3 0.3 ⋯ 1.4

2 3.7 4.3 5.8 ⋯ 1.0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑇 9.9 5.0 3.9 ⋯ 2.8

To start: finite # of algorithms (can be generalized)



Setup

Timestep Algorithm 1 Algorithm 2 Algorithm 3 ⋯ Algorithm 𝒌

1 2.8 9.3 0.3 ⋯ 1.4

2 3.7 4.3 5.8 ⋯ 1.0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑇 9.9 5.0 3.9 ⋯ 2.8

Solution quality
E.g., independent set weight



Setup

Timestep Algorithm 1 Algorithm 2 Algorithm 3 ⋯ Algorithm 𝒌

1 2.8 9.3 0.3 ⋯ 1.4

2 3.7 4.3 5.8 ⋯ 1.0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑇 9.9 5.0 3.9 ⋯ 2.8

Solution quality



Setup

Timestep Algorithm 1 Algorithm 2 Algorithm 3 ⋯ Algorithm 𝒌

1 2.8 9.3 0.3 ⋯ 1.4

2 3.7 4.3 5.8 ⋯ 1.0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑇 9.9 5.0 3.9 ⋯ 2.8

Full information: Learner sees all solution qualities
Focus of this lecture (for simplicity)

Will discuss other models in a few slides

Solution quality
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Setup

Timestep Algorithm 1 Algorithm 2 Algorithm 3 ⋯ Algorithm 𝒌

1 2.8 9.3 0.3 ⋯ 1.4

2 3.7 4.3 5.8 ⋯ 1.0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑇 9.9 5.0 3.9 ⋯ 2.8
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Setup

Timestep Algorithm 1 Algorithm 2 Algorithm 3 ⋯ Algorithm 𝒌

1 2.8 9.3 0.3 ⋯ 1.4

2 3.7 4.3 5.8 ⋯ 1.0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑇 9.9 5.0 3.9 ⋯ 2.8

Best in 
hindsight

Regret = (solution quality of best alg in hindsight) – (learner’s reward)
   = 9.3 + 4.3 + ⋯+ 5.0 − 2.8 + 4.3 + ⋯+ 2.8 	



Regret

Goal: "
O
⋅	(Regret) → 0 as 𝑇 → ∞

On average, competing with best algorithm in hindsight

(Of course, model applies beyond algorithm selection as well)

Regret = (solution quality of best alg in hindsight) – (learner’s reward)
   = 9.3 + 4.3 + ⋯+ 5.0 − 2.8 + 4.3 + ⋯+ 2.8 	



Setup

Timestep Algorithm 1 Algorithm 2 Algorithm 3 ⋯ Algorithm 𝒌

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝑡 𝑢/ 1 𝑢/ 2 𝑢/ 3
⋯ 𝑢/ 𝑘

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝒖/ = 𝑢/ 1 , … , 𝑢/ 𝑘 ∈ 0,1 + (normalized for simplicity)

Solution quality



Outline

1. Statistical learning theory
2. Online learning

i. Problem setup
ii. Hedge algorithm
iii. Online learning for MWIS
iv. Additional learning models



Hedge algorithm [Freund, Schapire, JCSS’97]

input:  Learning rate 𝜂 > 0
initialization: 𝑼P = 0,… , 0  is the all-zeros vector of length 𝑘
for 𝑡 = 1,… , 𝑇:

choose distribution 𝒑Q ∈ 0,1 R such that 𝑝Q 𝑖 ∝ exp 𝜂𝑈QS! 𝑖

choose algorithm 𝑖Q ∼ 𝒑Q, receive reward 𝑢Q 𝑖Q

observe reward vector 𝒖Q
update 𝑼Q = 𝑼QS! + 𝒖Q

Initially, 𝒑! =
!
+
, … , !

+

Expected reward is 𝒑/ , 𝒖/



Hedge algorithm [Freund, Schapire, JCSS’97]

input:  Learning rate 𝜂 > 0
initialization: 𝑼P = 0,… , 0  is the all-zeros vector of length 𝑘
for 𝑡 = 1,… , 𝑇:

choose distribution 𝒑Q ∈ 0,1 R such that 𝑝Q 𝑖 ∝ exp 𝜂𝑈QS! 𝑖

choose algorithm 𝑖Q ∼ 𝒑Q, receive reward 𝑢Q 𝑖Q

observe reward vector 𝒖Q
update 𝑼Q = 𝑼QS! + 𝒖Q

Exponentially upweight high-reward algorithms

Expected reward is 𝒑/ , 𝒖/



Regret

Regret = (sol quality of best alg in hindsight) – (learner’s reward)

= max
*∈[K]

<
S."

O

𝑢S 𝑖 −<
S."

O

𝒑S , 𝒖S 	

𝑖∗ = argmax
*∈[K]

<
S."

O

𝑢S 𝑖 	

Theorem: The regret of the Hedge algorithm is ≤ 2 𝑇 ln 𝑘



Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

𝑊S =<
*."

K

exp 𝜂𝑈S 𝑖 	

𝑊S

𝑊ST"
=

∑*."K exp 𝜂𝑈S 𝑖
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=
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𝑈/ 𝑖 = W
0$!

/

𝑢0 𝑖

=
∑*."K exp 𝜂 𝑈ST" 𝑖 + 𝑢S 𝑖

∑*."K exp 𝜂𝑈ST" 𝑖



Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

𝑊S

𝑊ST"
=
∑*."K exp 𝜂 𝑈ST" 𝑖 + 𝑢S 𝑖

∑*."K exp 𝜂𝑈ST" 𝑖
.	=

∑*."K exp 𝜂 𝑈ST" 𝑖 + 𝑢S 𝑖

∑*."K exp 𝜂𝑈ST" 𝑖



Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

𝑊S

𝑊ST"
=
∑*."K exp 𝜂 𝑈ST" 𝑖 + 𝑢S 𝑖

∑*."K exp 𝜂𝑈ST" 𝑖
.	

=
∑*."K exp 𝜂𝑈ST" 𝑖 exp 𝜂𝑢S 𝑖
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=
∑*."K exp 𝜂 𝑈ST" 𝑖 + 𝑢S 𝑖

∑*."K exp 𝜂𝑈ST" 𝑖



Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

𝑊S

𝑊ST"
=
∑*."K exp 𝜂 𝑈ST" 𝑖 + 𝑢S 𝑖

∑*."K exp 𝜂𝑈ST" 𝑖
.	

=
∑*."K exp 𝜂𝑈ST" 𝑖 exp 𝜂𝑢S 𝑖

∑*."K exp 𝜂𝑈ST" 𝑖

Remember: 𝑝S 𝑖 ∝ exp 𝜂𝑈ST" 𝑖 , so 𝑝S 𝑖 = %UV WX()& *
∑$*&
+ %UV WX()& *

=
∑*."K exp 𝜂 𝑈ST" 𝑖 + 𝑢S 𝑖

∑*."K exp 𝜂𝑈ST" 𝑖

𝑊S
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𝑊S

𝑊ST"
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*."
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𝑝S 𝑖 exp 𝜂𝑢S 𝑖 	

Useful inequality: For 𝑢 ∈ 0,1  and 𝜂 > 0, 𝑒WI ≤ 1 + 𝑒W − 1 𝑢

𝑊S

𝑊ST"
≤<

*."

K

𝑝S 𝑖 1 + 𝑒W − 1 𝑢S 𝑖
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𝑝S 𝑖 exp 𝜂𝑢S 𝑖 	

Useful inequality: For 𝑢 ∈ 0,1  and 𝜂 > 0, 𝑒WI ≤ 1 + 𝑒W − 1 𝑢

𝑊S

𝑊ST"
≤<

*."

K

𝑝S 𝑖 1 + 𝑒W − 1 𝑢S 𝑖

= 1 + 𝑒W − 1 𝒑S , 𝒖S 	

𝑊S

𝑊ST"
=<

*."

K

𝑝S 𝑖 exp 𝜂𝑢S 𝑖

1 + 𝑒W − 1 𝒑S , 𝒖S 	
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≤ 1 + 𝑒W − 1 𝒑S , 𝒖S 	

Useful inequality: 1 + 𝑧 ≤ 𝑒E , ∀𝑧 ∈ ℝ

𝑊S

𝑊ST"
≤ exp 𝑒W − 1 𝒑S , 𝒖S

𝑊O

𝑊P
=
𝑊"

𝑊P
⋅
𝑊B

𝑊"
⋯

𝑊O

𝑊OT"
≤ exp 𝑒W − 1 <

S."

O

𝒑S , 𝒖S .	

1 + 𝑒W − 1 𝒑S , 𝒖S 	
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⋅
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⋯

𝑊O
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O

𝒑S , 𝒖S .	

1 + 𝑒W − 1 𝒑S , 𝒖S 	

exp 𝑒W − 1 <
S."

O

𝒑S , 𝒖S
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exp 𝜂𝑈O 𝑖∗

𝑘
≤
𝑊O

𝑊P
≤ exp 𝑒W − 1 <

S."

O

𝒑S , 𝒖S .	
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exp 𝜂 ⋅ 0 = 𝑘
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Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

exp 𝜂𝑈O 𝑖∗

𝑘
≤
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≤ exp 𝑒W − 1 <

S."

O
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O
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𝜂
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𝜂
	

exp 𝑒W − 1 <
S."

O

𝒑S , 𝒖S
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𝜂
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Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

𝑈O 𝑖∗ ≤
𝑒W − 1
𝜂

⋅<
S."

O

𝒑S , 𝒖S +
ln 𝑘
𝜂

regret =<
S."

O

𝑢S 𝑖∗ −<
S."

O

𝒑S , 𝒖S ≤
𝑒W − 1 − 𝜂

𝜂
⋅<
S."

O

𝒑S , 𝒖S +
ln 𝑘
𝜂

<
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𝑒W − 1
𝜂

⋅<
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O
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ln 𝑘
𝜂
	



Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

𝑈O 𝑖∗ ≤
𝑒W − 1
𝜂

⋅<
S."

O

𝒑S , 𝒖S +
ln 𝑘
𝜂

regret =<
S."

O

𝑢S 𝑖∗ −<
S."

O

𝒑S , 𝒖S ≤
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𝜂
⋅<
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O

𝒑S , 𝒖S +
ln 𝑘
𝜂

	 ≤
𝑒W − 1 − 𝜂

𝜂
⋅ 𝑇 +

ln 𝑘
𝜂≤

𝑒W − 1 − 𝜂
𝜂

⋅ 𝑇 +
ln 𝑘
𝜂

<
S."
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𝑢S 𝑖∗ ≤
𝑒W − 1
𝜂

⋅<
S."

O

𝒑S , 𝒖S +
ln 𝑘
𝜂
	



Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

regret =<
S."

O

𝑢S 𝑖∗ −<
S."

O

𝒑S , 𝒖S ≤
𝑒W − 1 − 𝜂

𝜂
⋅ 𝑇 +

ln 𝑘
𝜂

Useful inequality: For 𝜂 ∈ 0,1 , 𝑒W − 1 ≤ 2𝜂

	 regret ≤ 𝜂𝑇 +
ln 𝑘
𝜂

Setting 𝜂 = LZ K
O

, we have that 𝐫𝐞𝐠𝐫𝐞𝐭 ≤ 𝟐 𝑻 𝐥𝐧𝒌

≤
𝑒W − 1 − 𝜂

𝜂
⋅ 𝑇 +

ln 𝑘
𝜂



Proof that Hedge’s regret is 𝑂 𝑇 ln 𝑘

regret =<
S."

O

𝑢S 𝑖∗ −<
S."

O

𝒑S , 𝒖S ≤
𝑒W − 1 − 𝜂

𝜂
⋅ 𝑇 +

ln 𝑘
𝜂

Useful inequality: For 𝜂 ∈ 0,1 , 𝑒W − 1 − 𝜂 ≤ 𝑒 − 2 𝜂B

	 regret ≤ (𝑒 − 2)𝜂𝑇 +
ln 𝑘
𝜂

Setting 𝜂 = LZ K
O

, we have that 𝐫𝐞𝐠𝐫𝐞𝐭 ≤ 𝟐 𝑻 𝐥𝐧𝒌

≤
𝑒W − 1 − 𝜂

𝜂
⋅ 𝑇 +

ln 𝑘
𝜂
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Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Utility on instance 𝑥" as a function of 𝜌

Gupta and Roughgarden, ITCS’16

Round 1:

𝜌

𝜌

𝑢. 𝑥!

𝑢. 𝑥!1 Utility on instance 𝑥"[  as a function of 𝜌

1



Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Adversary chooses 𝑥"	or 𝑥"[  with equal probability

Gupta and Roughgarden, ITCS’16

Round 1:

𝜌

𝜌

𝑢. 𝑥!

𝑢. 𝑥!1

1



Gupta and Roughgarden, ITCS’16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

Round 1:

𝜌

𝜌

𝑢. 𝑥!

𝑢. 𝑥!1

Round 2:

𝑢. 𝑥)

𝑢. 𝑥)1≈≈

1



Round 1:
Repeatedly halves optimal region

Gupta and Roughgarden, ITCS’16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

𝜌

𝜌

𝑢. 𝑥!

𝑢. 𝑥!1

Round 2:

𝜌

𝜌

𝑢. 𝑥)

𝑢. 𝑥)1

≈≈

1



Round 1:
Repeatedly halves optimal region

Gupta and Roughgarden, ITCS’16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

𝜌

𝜌

𝑢. 𝑥!

𝑢. 𝑥!1

Round 2:

𝜌

𝜌

𝑢. 𝑥)

𝑢. 𝑥)1

≈≈

1



Round 1:

Learner’s expected reward: O
B

Reward of best 𝜌 in hindsight: 𝑇
Expected regret = O

B

Repeatedly halves optimal region

Gupta and Roughgarden, ITCS’16

Worst-case MWIS instance

Exists adversary choosing MWIS instances s.t.:
Every full information online algorithm has linear regret

𝜌

𝜌

𝑢. 𝑥!

𝑢. 𝑥!1

Round 2:

𝜌

𝜌

𝑢. 𝑥)

𝑢. 𝑥)1

≈≈

1



Smoothed adversary

Sub-linear regret is possible if adversary has a “shaky hand”:
• 𝑤", … , 𝑤N , 𝑘", … , 𝑘N are stochastic
• Joint density of 𝑤* , 𝑤\ , 𝑘* , 𝑘\  is bounded

In this case, discretize and run Hedge 

Density 
of 𝑤#

Density 
of 𝑤#

Gupta and Roughgarden, ITCS’16



Smoothed adversary

Sub-linear regret is possible if adversary has a “shaky hand”:
• 𝑤", … , 𝑤N , 𝑘", … , 𝑘N are stochastic
• Joint density of 𝑤* , 𝑤\ , 𝑘* , 𝑘\  is bounded

Later generalized by Cohen-Addad, Kanade [AISTATS, ’17]; 
Balcan, Dick, Vitercik [FOCS’18]; Balcan et al. [UAI’20]; …

Density 
of 𝑤#

Density 
of 𝑤#

Gupta and Roughgarden, ITCS’16
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Other models

• Full information: Learner sees all runtimes
• Focus of this lecture

• Bandit: Learner only sees runtime of chosen algorithm
• E.g., Balcan, Dick, Vitercik, FOCS’18

• Semi-bandit: Mixture of the two
• E.g., Balcan, Dick, Pegden, UAI’20

• Continuous parameters (piecewise-Lipschitz performance)
• E.g., Gupta, Roughgarden, ITCS’16; Cohen-Addad, Kanade, AISTATS, ‘17; Balcan, Dick, 

Vitercik, FOCS’18; …


