
Improving online algorithms
with ML predictions

Ravi Kumar, Manish Purohit, Zoya Svitkina

NeurIPS’18

Online algorithms

Full input not revealed upfront, but at some later stage, e.g.:

Matching: nodes of a graph arrive over time
Must irrevocably decide whether to match a node when it arrives

Caching: memory access requests arrive over time
Must decide what to keep in cache

Scheduling: job lengths not revealed until they terminate
Must decide which jobs to schedule when

Competitive ratio (CR)

Standard measure of online algorithm’s performance:
CR =

ALG
OPT

E.g., in matching:
CR =

weight	of	algorithm!s	matching
maximum	weight	matching

Offline optimal solution that knows the entire input

Online algorithms
Full input not revealed upfront, but at some later stage

What if algorithm receives some predictions about input?
• Online advertising

e.g., Mahdian et al. [EC’07]; Devanur, Hayes [EC’09]; Muñoz Medina, Vassilvitskii
[NeurIPS’17]

• Caching
e.g., Lykouris, Vassilvitskii [ICML’18]

• Data structures
e.g., Mitzenmacher [NeurIPS’18]

• This paper
• …

Outline

1. Ski rental
2. Job scheduling

Example: Ski rental problem
Problem: Skier will ski for unknown number of days
• Can either rent each day for $1/day or buy for $𝑏
• E.g., if ski for 5 days and then buy, total price is 5 + 𝑏

If ski 𝑥 days, optimal clairvoyant strategy pays OPT = min 𝑥, 𝑏

Breakeven strategy: Rent for 𝑏 − 1 days, then buy
• CR = !"#

$%& =
'𝟏 !"#) *+,)* 𝟏 !$#

-./ ',* < 2 (best deterministic)
• Randomized alg. CR = 1

1+, [Karlin et al., Algorithmica ‘94]

Example: Ski rental problem
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Baseline: Buy at beginning if 𝑦 > 𝑏, else rent all days

Theorem: ALG ≤ OPT + 𝜂
If 𝑦 small but 𝑥 ≫ 𝑏, CR can be unbounded

Outline

1. Ski rental
i. Deterministic algorithm
ii. Randomized algorithm

2. Job scheduling

Example: Ski rental problem
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Algorithm (with parameter 𝜆 ∈ [0,1]):
If 𝑦 ≥ 𝑏, buy on start of day 𝜆𝑏 ; else buy on start of day "

#

• If really trust predictions: set 𝜆 = 0
Equivalent to blindly following predictions

• If don’t trust predictions: set 𝜆 = 1
Equivalent to running the worst-case algorithm

Example: Ski rental problem
Prediction 𝑦 of number of skiing days, error 𝜂 = |𝑥 − 𝑦|

Algorithm (with parameter 𝜆 ∈ [0,1]):
If 𝑦 ≥ 𝑏, buy on start of day 𝜆𝑏 ; else buy on start of day "

#

Theorem: Algorithm has CR ≤ min $%#
#
, 1 + 𝜆 + &

$'# ()*
• If predictor is perfect 𝜂 = 0 , CR is small ≤ 1 + 𝜆
• No matter how big 𝜂 is, setting 𝜆 = 1 recovers baseline CR = 2

Theorem: Algorithm has CR ≤ min $%#
#
, 1 + 𝜆 + &

$'# ()*

Example: Ski rental problem

Theorem: Algorithm has CR ≤ min 𝟏%𝝀
𝝀
, 1 + 𝜆 + &

$'# ()*

Proof sketch: If 𝑦 ≥ 𝑏, buys on start of day 𝜆𝑏

ALG
OPT

=

𝑥
𝑥

if	𝑥 < 𝜆𝑏 	

𝜆𝑏 − 1 + 𝑏
𝑥

if 𝜆𝑏 ≤ 𝑥 ≤ 𝑏

𝜆𝑏 − 1 + 𝑏
𝑏

if	𝑥 ≥ 𝑏	

Worst when 𝑥 = 𝜆𝑏 and CR = *) 2* +,
2*

≤ ,)2
2

; similarly for 𝑦 < 𝑏

Theorem: Algorithm has CR ≤ min $%#
#
, 1 + 𝜆 + &

$'# ()*

Design principals

Consistency:
• Predictions are perfect ⇒ recover offline optimal
• Algorithm is 𝛼-consistent if CR → 𝛼 as error 𝜂 → 0

Robustness:
• Predictions are terrible ⇒ no worse than worst-case
• Algorithm is 𝛽-consistent if CR ≤ 𝛽 for all 𝜂

E.g., ski rental: CR ≤ min $%#
#
, 1 + 𝜆 + &

$'# ()*

1 + 𝜆 -consistent, ,)2
2

-robust
Bounds are tight [Gollapudi, Panigrahi, ICML’19; Angelopoulos et al., ITCS’20]

E.g., ski rental: CR ≤ min $%#
#
, 1 + 𝜆 + &

$'# ()*

1 + 𝜆 -consistent, ,)2
2 -robust

Lykouris, Vassilvitskii, ICML’18

Outline

1. Ski rental
i. Deterministic algorithm
ii. Randomized algorithm

2. Job scheduling

Randomized algorithm

if 𝑦 ≥ 𝑏:
Let 𝑘 ← 𝜆𝑏

For 𝑖 ∈ [𝑘], define 𝑞3 ←
*+,
*

4+3 ,

* ,+ ,+ 5% #
&

Buy on day 𝑗 ∈ [𝑘] sampled from distribution defined by 𝑞,, … , 𝑞4
else

Let ℓ ← *
2

For 𝑖 ∈ [𝑘], define 𝑞3 ←
*+,
*

ℓ+3 ,

* ,+ ,+ 5% #
ℓ

Buy on day 𝑗 ∈ [ℓ] sampled from distribution defined by 𝑞,, … , 𝑞ℓ

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7

𝑞! when 𝑏 = 10, 𝜆 = 0.7, 𝑦 ≥ 𝑏

Randomized algorithm

Theorem: CR ≤ min $

$'-./ ' #' 0! "
, #
$'-./ '#

1 + &
()*

• 2
,+ABC +2 -consistent, ,

,+ABC + 2+ 5% #
-robust

• Bounds are tight [Wei, Zhang, NeurIPS’20]

Randomized algorithm

Theorem: CR ≤ min $

$'-./ ' #' 0! "
, #
$'-./ '#

1 + &
()*

Proof sketch:
• Split into cases depending on if 𝑦 ≥ 𝑏, 𝑥 ≥ 𝜆𝑏 , and 𝑥 ≥ *

2
• Show thm holds in each case using careful algebraic manipulations

Outline

1. Ski rental
2. Job scheduling

Job scheduling

Task: schedule 𝑛 jobs on a single machine

Job 𝑗 has unknown processing time 𝑥1

Goal: minimize sum of completion times of the jobs
i.e., if job 𝑗 completes at time 𝑐D, goal is to minimize ∑𝑐D

Can switch between jobs

Job scheduling
Optimal solution if processing times 𝑥1 ’s are known:

schedule jobs in increasing order of 𝑥1
• If 𝑥, ≤ ⋯ ≤ 𝑥E,

OPT =D
3F,

E

D
DF,

3

𝑥D

Algorithm with a competitive ratio of 2: round robin
• Schedule 1 unit of time per remaining job, round-robin

Round-robin over 𝑘 jobs ≡ run jobs simultaneously at rate of $
2

Algorithms-with-predictions approach

• Predictions 𝑦$, … , 𝑦3 of 𝑥$, … , 𝑥3 with 𝜂 = ∑45$3 𝑦4 − 𝑥4
• If really trust predictions: schedule in increasing order of 𝑦4
• “Shortest predicted job first (SPJF)”

• If don’t trust predictions: round-robin (RR)

Algorithm: Preferential round-robin (with parameter 𝜆 ∈ 0,1)
Run SPJF and RR simultaneously
• SPJF at a rate 𝜆
• RR at a rate 1 − 𝜆

Preferential round-robin

Algorithm: Preferential round-robin (with parameter 𝜆 ∈ 0,1)
Run SPJF and RR simultaneously
• SPJF at a rate 𝜆
• RR at a rate 1 − 𝜆

Theorem:
CR ≤ min

1
𝜆
1 +

2𝜂
𝑛

,
1

1 − 𝜆
⋅ 2

CR of SPJF CR of RR

Algorithm: Preferential round-robin (with parameter 𝜆 ∈ 0,1)
Run SPJF and RR simultaneously
• SPJF at a rate 𝜆
• RR at a rate 1 − 𝜆

Overview

Studies how to incorporate predictions into online algorithms
• Ski rental problem
• Job scheduling

Provable guarantees on algorithm’s competitive ratio 678
()*

Design principals [this paper; Lykouris, Vassilvitskii, ICML’18]:
• Consistency: Predictions are perfect ⇒ recover offline optimal
• Robustness: Predictions are terrible ⇒ no worse than worst-case

