Improving online algorithms
with ML predictions

Ravi Kumar, Manish Purohit, Zoya Svitkina

NeurlPS5'18

Online algorithms

Full input not revealed upfront, but at some later stage, e.g.:

Matching: nodes of a graph arrive over time
Must irrevocably decide whether to match a node when it arrives

Caching: memory access requests arrive over time
Must decide what to keep in cache

Scheduling: job lengths not revealed until they terminate
Must decide which jobs to schedule when

Competitive ratio (CR)

Standard measure of online algorithm’s performance:

[Offline optimal solution that knows the entire input]

E.g., in matching:
weight of algorithm’s matching

maximum weight matching

Online algorithms

Full input not revealed upfront, but at some later stage

What it algorithm receives some predictions about input?

* Online advertising

e.g., Mahdian et al. [EC'07]; Devanur, Hayes [EC'09]; Mufioz Medina, Vassilvitskii
[NeurlPS'17]

 Caching

e.g., Lykouris, Vassilvitskii [ICML"18]
* Data structures

e.g., Mitzenmacher [NeurlPS'18]
* This paper

Outline

1. Ski rental
2. Job scheduling

Example: Ski rental problem

Problem: Skier will ski for unknown number of days
 Can either rent each day for $1/day or buy for $b
 E.g., if skifor 5 days and then buy, total priceis5 + b

It ski x days, optimal clairvoyant strategy pays OPT = min{x, b}

Breakeven strategy: Rent for b — 1 days, then buy
CR = o = oy < 2 (best deterministic)
* Randomized alg. CR = ﬁ [Karlin et al., Algorithmica ‘94]

Example: Ski rental problem

Prediction y of number of skiing days, errorn = |x — y|
Baseline: Buy at beginning if y > b, else rent all days

Theorem: ALG < OPT +1n
If y small but x > b, CR can be unbounded

Outline

1. Ski rental
i. Deterministic algorithm
ii. Randomized algorithm

2. Job scheduling

Example: Ski rental problem

Prediction y of number of skiing days, errorn = |x — y|

Algorithm (with parameter 1 € [0,1]):
It y = b, buy on start of day [Ab]; else buy on start of day m

* [f really trust predictions: set 4 =0
Equivalent to blindly following predictions

e If don’t trust predictions: set A =1
Equivalent to running the worst-case algorithm

Example: Ski rental problem

Prediction y of number of skiing days, errorn = |x — y|

Algorithm (with parameter 1 € [0,1]):
It y = b, buy on start of day [Ab]; else buy on start of day m

Theorem: Algorithm has CR < min {1%, 1+4+ (1_,{;0”}

e If predictoris perfect (n = 0), CRissmall (£ 1+ 1)
* No matter how big 7 is, setting A = 1 recovers baseline CR = 2

Example: Ski rental problem

Al ety "
Theorem: Algorithm has CR < mln{ —1+a+ (1—/1)0PT}
Proof sketch: If y > b, buys on start of day [Ab]
(X
ALG < IAb]— 1+ b £b] < x < b
OPT X AT = A=
IAbl—1+Db
\ A ifx=Db
Worst when x = [Ab] and CR = b+1Abl-1 1il; similarly fory < b

[Ab] T A

Design principals

Consistency:
* Predictions are perfect = recover offline optimal
 Algorithm is a-consistent it CR - a as errorn — 0

Robustness:

e Predictions are terrible = no worse than worst-case
 Algorithm is B-consistent if CR < S for all

E.g., ski rental: CR < min {ﬂ 1+21+ (1_/{;0”}

+A
(1 + A)-consistent, (>) robust
Bounds are tight [Gollapudi, Panigrahi, ICML'19; Angelopoulos et al., ITCS20]

Lykouris, Vassilvitskii, ICML18

Outline

1. Ski rental

i. Deterministic algorithm
ii. Randomized algorithm

2. Job scheduling

0.25

Randomized algorithm ~

0.15
0.
if y > b: o II
1 2 3 4 5 6 7

Let k « |Ab]
i
Fori € [k], define q; « (E) lb(

—

ul

(@)

1 q; whenb =10,A=0.7,y > b

1_(1_1/b)k)
Buy on day j € [k] sampled from distribution defined by g, ..., gk

else
Let £ < |2

b

b—-1

Fori € [k], define q; « (—){)_i o -

1‘(1‘1/19){))
Buy on day j € [¢] sampled from distribution defined by q4, ..., qs

b

Randomized algorithm

: 1 A n
Theorem: CR < min : (1 T _)
1-exp(—(1-1/)) " 1-exp(-2) OPT
b . 1
(1_exp(_/1))—con5|ste nt, (1_exp(_(l_1/b)))-robust

* Bounds are tight [Wei, Zhang, NeurlPS'20] ,_ ————
1.9 \ —-—- Deterministic
1.8- %

1.5 2.0 2.5 3.0 3.5 4.0 45 50 55 6.0
Robustness

Randomized algorithm

_ 1 A U]
: < OPT
Theorem: CR < min {1—exp(—(l—1/b)) "1-exp(—-21) (1 T OPT)}

Proof sketch:

 Splitinto cases dependingonify = b, x = |Ab],and x > E‘
* Show thm holds in each case using careful algebraic manipulations

Outline

1. Skirental
2. Job scheduling

Job scheduling

Task: schedule n jobs on a single machine

Job j has unknown processing time x;

Goal: minimize sum of completion times of the jobs
i.e., if job j completes at time c;, goal is to minimize ¥, ¢;

Can switch between jobs

Job scheduling

Optimal solution if processing times x;'s are known:

schedule jobs in increasing order of x;
° |fx1 <. < Xn,

n i
o=y HlHE -

i=1j=1

Algorithm with a competitive ratio of 2: round robin
« Schedule 1 unit of time per remaining job, round-robin

Round-robin over k jobs = run jobs simultaneously at rate of%

Algorithms-with-predictions approach

* Predictions y;, ...,y of x4, ..., x,, withn = X0 |y — x4

* If really trust predictions: schedule in increasing order of y;
* "Shortest predicted job first (SPJF)”

e If don’t trust predictions: round-robin (RR)

Algorithm: Preferential round-robin (with parameter 4 € (0,1))
Run SPJF and RR simultaneously

e SPJF atarate A
e RRataratel —A1

Preferential round-robin

Algorithm: Preferential round-robin (with parameter 4 € (0,1))
Run SPJF and RR simultaneously

e SPJF atarate A
e RRataratel —A1

Theorem:

r<minfL(1420), L)
_ITlll’l/1)’ 1 =1 ‘
1

CR of SPJF CR of RR

Overview

Studies how to incorporate predictions into online algorithms
« Ski rental problem
« Job scheduling

o .. . ALG
Provable guarantees on algorithm’s competitive ratio oPT

Design principals [this paper; Lykouris, Vassilvitskii, ICML"18]:
 Consistency: Predictions are perfect = recover offline optimal
* Robustness: Predictions are terrible = no worse than worst-case

