Learning-based frequency
estimation algorithms

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, Ali Vakilian

ICLR"19

Frequency estimation

Extremely long sequence of N elements from set U

SU3AI205(8[115227108 1T[[T1I[3]1||7]|6| 2|22 3 eee

Goal: for each i € U, estimate fraction of times it appeared, f;

Challenge: U is huge, so you don’t want to just count elements
|U|log N bits

Standard tool: Hashing

Frequency estimation

Extremely long sequence of N elements from set U

SU3A2058[1152271081 [T1[3|1||7!|6|2|[22] 3

B « |U| buckets, uniformly random hash function h: U — [B]

Foralli € Uandj € [B],P[h(i) =] :%

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4

Frequency estimation

Extremely long sequence of N elements from set U

S

[counter; = 0 } [counter, = 0 } [counter; = 0 } [counter, = 0 } [counterg = 0 }

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4

Frequency estimation

Extremely long sequence of N elements from set U

S

[counter; = 0 } [counter, = 0 } [counter; = 0 } [counter, =1 } [counterg = 0 }

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4

Frequency estimation

Extremely long sequence of N elements from set U

513

[counter; = 0 } [counter, = 0 } [counter; = 0 } [counter, =1 } [counterg = 0 }

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4

Frequency estimation

Extremely long sequence of N elements from set U

513

[counter; =1 } [counter, = 0 } [counter; = 0 } [counter, =1 } [counterg = 0 }

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4

Frequency estimation

Extremely long sequence of N elements from set U

5(131|4
[counter; =1 } [counter, = 0 } ‘ counter; = 0 \ [counter, =1 } [counterg = 0 }
Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4

Frequency estimation

Extremely long sequence of N elements from set U

5(131|4
[counter; =1 } [counter, = 0 } ‘ counter; =1 \ [counter, =1 } [counterg = 0 }
Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4

Frequency estimation

Extremely long sequence of N elements from set U

SU3AI205(8[115227108 1T[[T1I[3]1||7]|6| 2|22 3 eee

[counter; = 3 } [counterz =11 } [counter; =1 } [counter, = 8 } [counterg = 2 }

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

.1
fi_zs

- county;y = z fi (=f=f)
j:h(j)=h(D)

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4

Frequency estimation

Extremely long sequence of N elements from set U

SII3|41|2(5|8||1[1]|5]2]]2

/

THO8 T3 T11[7] 6|29

[counter; = 3 } [counterz =11 } [counter; =1 } [counter, = 8 } [counterg = 2 }

Bucket 1 Bucket 2

i|0123456789

h(@)[4 2 2 1 3 4 4 5 4 4

Bucket 3 Bucket 4
_ 1
fi = 2—5 . Counth(l-) = Z f}
j:h(j)=h(i)
5
f2 = 25
- 1 1
fr = 7 county ;) = o count, =

Bucket 5

(=f=z1)

11
2_5:f1 + 12

Frequency estimation

Extremely long sequence of N elements from set U

SU3A2]5(8[1| 1S 2(2|[7|1[O[8|1|[T1I{3]1||7]|6| 2|22 3 eee

[counter; = 3 } [counterz =11 } [counter; =1 } [counter, = 8 } [counterg = 2 }

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5
- 1 -
fi = 7 - countyy = z fi (=fi=f)
j:h(j)=h(i)
B 3
0123456789 fs =3¢
; - 1 1 3
hi)|4 2 2 1 3 4 4 5 4 4 : _
| fz = oc - countp(zy = 7 count, oT

Overview

1. Frequency estimation
i. Analysis of a single hash function

2. Improving estimation with domain knowledge

Model

Elements drawn from distribution D over U = [n]
fi = Pj~D[i = i]

Error: E,_,||f; — fi|l| = X%~ f: E||fi — fi]]

Error of a single hash function

Theorem: For a single hash, error =Y, fi E[|f; — fi|] < %

Proof:
2 SEl -l = 2 fE| D sy
i=1 i=1 j:h(D=h()

« Randomness is only over the hash function h:
foralli e Uandj € [B],P[h(i) =j] =
. Ignoring randomness of the sequence

assume it's really long)

Error of a single hash function

sl = Yae] > -]

j:h(D=h(i)

=im€' D fj]

Lj#i:h(j)=h(i)

n
=1

Error of a single hash function

ifm[\fl f;\]—Zﬁ B ﬁ-—ﬁ-]

-j:h(j)=h(i)

fe| >

Lj#=i:h(j)=h(i)

MﬂMm

fi) fPIAG) = h(D)

JEX!

l

Il
—

Error of a single hash function

FEN = £l = D f:) fPIAG) = h(D)

n
=1 =1 Jj#i

Error of a single hash function

if E[|; - fil] = ZﬁZf, [h() = h(D)

=1 J#i
B

P[A() = h(D] = z [h()) = h(D) = K

Z [h() = k] - P[A() = k Z(~)=2

k=1

Error of a single hash function

ifm[\fl fl\]‘ZﬁZf] [h()) = h(D)] < (Zf)

i=1 JE! =1
B

P[A() = h(D] = z [h()) = h(D) = K

Z [h() = k] - P[A() = k Z(~)=2

k=1

Count-min

Extremely long sequence of N elements from set U

SU3AI205(8[115227108 1T[[T1I[3]1||7]|6| 2|22 3 eee

Hash function h4 [counterlll] [counterm] [counterm] [counter“] [Countersll]

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Hash function h, | countery , counter; counters , countery , counters ,

Hash function h; [counter1,3] [counterzs] [counter3,3] [counter4’3] [counter5,3]

. 1
Ji = 25

mm{counthl@ 17 COunthz(l) 2) Counth3(1) 3}

Cormode, Muthukrishnan, J. of Algorithms ‘05

Overview

1. Frequency estimation
2. Improving estimation with domain knowledge

Heavy hitters

Extremely long sequence of N elements from set U

SU3A2[5(8[1|[1[S22|[7|1[O[8||1T[T1I[3]1||7]|6|2||2/|2| 3 eee

((
counter; = 3 } [counter, = 11 } [counters = 1 } counter, = 8 } [counters = 2 }

_ _

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

i [01 23456789
h@[4 2 2 1 3 4 45 4 4

Key insight:
Heavy hitters increase error of elements they collide with

Heavy hitters

Key insight:
Heavy hitters increase error of elements they collide with

Algorithm IDEAL COUNT-MIN:
* Suppose you know the top-B, most frequent elements
 Reserve B, buckets to count individual frequencies

« Use hash function to estimate other elements’ frequencies
Rangeis {B, + 1, ..., B}

Algorithm IDEAL COUNT-MIN

Extremely long sequence of N elements from set U

SU3A2]5(8[1|1 S22 7 118 1[[T1I[3]1||7]|6| 2|22 3 eee

Heavy hitters: 1 and 2

[counter; =7 } [counter, = 5 } [counter; =1 } [counter, = 7 } [counters = 5 }

Bucket for HH 1 Bucket for HH 2 Bucket 3 Bucket 4 Bucket 5

i [1 23456789
h@[1 2 5 3 4 45 4 4

Overview

1. Frequency estimation

2. Improving estimation with domain knowledge
i. Analysis of IDEAL COUNT-MIN

IIIIII

German - Simplicissimus
Russian - Roadside Picnic
French - Terre a la Lune
———— |talian - Promessi Sposi

M.English - Towneley Plays

IlllI

N
LSyl

Model
0.1 g\
D is a Zipfian distribution
5\ 0.01
Means elements can be sorted: § soot L
. 1
fo 2 fiy 2 = 2 fi, with f; <=
0.0001 E_
. 1
For ease of notation, assume f; « - 1
1

Disclaimer: the paper has f; = % but here I'm sticking with f; oc%

10

100

1000

10000

Words sorted by frequency

As a result, the results in these slides are slightly different, but equivalent, to those in the paper

IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error
n (longi)
Ellf = £|] = r
2 FEllf =l = 0\ G317

Example: if B, = 6(B) = 0(n)
e Error of IDEAL COUNT-MIN = 0 (!)

nlog?n

1

* In contrast, error of single hash function = 0 (;)

IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error
n lOgZ ﬂ
> Sl - fill = 0 -
- y Lot (B —B,)log?n
1=

Proof igea: Fori < B,, f; = f; so

2 fEllfi =7l =), Fellfi il < (2 f) L; fBJ

i>B, i>B,

By same exact argument as before, except hash function maps to B — B, elements, not B

IDEAL COUNT-MIN error

n) oo 2\
Sean-a(30] ol 25

[Follows from harmonic number inequalities H,, = Z?zll_ = 0(logn)]

l

Heavy hitters

Key insight:
Heavy hitters increase error of elements they collide with

Algorithm IDEAL COUNT-MIN:
* Suppose you know the top-B, most frequent elements

Also study setting with only a noisy predictor of heavy elements

* E.g., a machine-learned model
e Similar analysis

Overview

Improve error of frequency estimation algorithms
* Use a priori knowledge of heaviest elements,
* Or predict which are heaviest

Paper mostly focuses on experiments
Hopefully these slides help you understand the theory too!

