Learning-based frequency estimation algorithms

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, Ali Vakilian

ICLR'19

Frequency estimation

Extremely long sequence of N elements from set U

Goal: for each $i \in U$, estimate fraction of times it appeared, f_{i}

Challenge: U is huge, so you don't want to just count elements $|U| \log N$ bits
Standard tool: Hashing

Frequency estimation

Extremely long sequence of N elements from set U

	3	4	2	5	8	1	1	5	2	2	7	0		8	1	1	3	1	7	6	2	9			

$B \ll|U|$ buckets, uniformly random hash function $h: U \rightarrow[B]$ For all $i \in U$ and $j \in[B], \mathbb{P}[h(i)=j]=\frac{1}{B}$

\boldsymbol{i}	0	1	2	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	4	2	2	1	3	4	4	5	4	4

Frequency estimation

Extremely long sequence of N elements from set U

 5| counter $_{1}=0$ | |
| :---: | :---: |
| Bucket 1 | $\operatorname{counter}_{2}=0$ |
| Bucket 2 | $\underbrace{\operatorname{counter}_{4}=0}_{\text {Bucket 3 }} \underbrace{\operatorname{counter}_{5}=0}_{\text {Bucket 4 }}$ |
| Bucket 5 | |

\boldsymbol{i}	0	1	2	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	4	2	2	1	3	4	4	5	4	4

Frequency estimation

Extremely long sequence of N elements from set U

5	counter $_{1}=0$	
Bucket 1	$\operatorname{counter}_{2}=0$	
$\operatorname{counter}_{3}=0$	$\underbrace{\operatorname{counter}_{4}=1}_{\text {Bucket 2 }} \underbrace{\operatorname{counter}_{5}=0}_{\text {Bucket 3 }}$	
Bucket 5		

\boldsymbol{i}	0	1	2	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	4	2	2	1	3	4	4	5	4	4

Frequency estimation

Extremely long sequence of N elements from set U

Bucket 1

Bucket 2

$$
\text { counter }_{4}=1
$$

$$
\text { counter }_{5}=0
$$

Bucket 4
Bucket 5

\boldsymbol{i}	0	1	2	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	4	2	2	1	3	4	4	5	4	4

Frequency estimation

Extremely long sequence of N elements from set U

Bucket 1

\boldsymbol{i}	0	1	2	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	4	2	2	1	3	4	4	5	4	4

Frequency estimation

Extremely long sequence of N elements from set U

\boldsymbol{i}	0	1	2	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	4	2	2	1	3	4	4	5	4	4

Frequency estimation

Extremely long sequence of N elements from set U
534

counter $_{1}=1$	
Bucket 1	$\operatorname{counter}_{2}=0$
Bucket 2	$\underbrace{\operatorname{counter}_{3}=1}_{\text {Bucket 3 }} \underbrace{\operatorname{counter}_{4}=1}_{\text {Bucket 4 }} \underbrace{\operatorname{counter}_{5}=0}_{\text {Bucket 5 }}$

\boldsymbol{i}	0	1	2	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	4	2	2	1	3	4	4	5	4	4

Frequency estimation

Extremely long sequence of N elements from set U

5	4	2	5	8	1	1	5	2	2	7	1	0	8	1	1
3	1	7	6	2	9	2	3								

Bucket 1

$$
\text { counter }_{5}=2
$$

Bucket 5

$$
\tilde{f}_{i}=\frac{1}{25} \cdot \operatorname{count}_{h(i)}=\sum_{j: h(j)=h(i)} f_{j} \quad\left(\Rightarrow \tilde{f}_{i} \geq f_{i}\right)
$$

\boldsymbol{i}	0	1	2	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	4	2	2	1	3	4	4	5	4	4

Frequency estimation

Extremely long sequence of N elements from set U

Frequency estimation

Extremely long sequence of N elements from set U

Overview

1. Frequency estimation
i. Analysis of a single hash function
2. Improving estimation with domain knowledge

Model

Elements drawn from distribution D over $U=[n]$

$$
f_{i}=\mathbb{P}_{j \sim D}[j=i]
$$

Error: $\mathbb{E}_{i \sim D}\left[\left|\tilde{f}_{i}-f_{i}\right|\right]=\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right]$

Error of a single hash function

Theorem: For a single hash, error $=\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right] \leq \frac{1}{B}$
Proof:
$\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right]=\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\sum_{j: h(j)=h(i)} f_{j}-f_{i}\right]$

- Randomness is only over the hash function h :

$$
\text { for all } i \in U \text { and } j \in[B], \mathbb{P}[h(i)=j]=\frac{1}{B}
$$

- Ignoring randomness of the sequence (assume it's really long)

Error of a single hash function

$$
\begin{aligned}
& \sum_{i=1}^{n} f_{i} \mathbb{E}\left[\mid \tilde{f}_{i}-f_{i}\right]=\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\sum_{j: n}(j)=n(i)<f_{j}-f_{i}\right] \\
& =\sum_{i=1}^{n} f_{i \in \mathbb{E}}\left[\sum_{j \neq i n(i)=n(i)} f_{j}\right]
\end{aligned}
$$

Error of a single hash function

$$
\begin{aligned}
\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right] & =\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\sum_{j: h(j)=h(i)} f_{j}-f_{i}\right] \\
& =\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\sum_{j \neq i n h(j)=h(i)} f_{j}\right] \\
& =\sum_{i=1}^{n} f_{i} \sum_{j \neq i} f_{j} \mathbb{P}[h(j)=h(i)]
\end{aligned}
$$

Error of a single hash function

$$
\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right]=\sum_{i=1}^{n} f_{i} \sum_{j \neq i} f_{j} \mathbb{P}[h(j)=h(i)]
$$

Error of a single hash function

$$
\begin{aligned}
\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right] & =\sum_{i=1}^{n} f_{i} \sum_{j \neq i} f_{j} \mathbb{P}[h(j)=h(i)] \\
\mathbb{P}[h(j)=h(i)] & =\sum_{k=1}^{B} \mathbb{P}[h(j)=h(i)=k] \\
& =\sum_{k=1}^{B} \mathbb{P}[h(j)=k] \cdot \mathbb{P}[h(i)=k]=\sum_{k=1}^{B}\left(\frac{1}{B} \cdot \frac{1}{B}\right)=\frac{1}{B}
\end{aligned}
$$

Error of a single hash function

$$
\begin{aligned}
\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right] & =\sum_{i=1}^{n} f_{i} \sum_{j \neq i} f_{j} \mathbb{P}[h(j)=h(i)] \leq\left(\sum_{i=1}^{n} f_{i}\right)^{2} \cdot \frac{1}{B} \\
\mathbb{P}[h(j)=h(i)] & =\sum_{k=1}^{B} \mathbb{P}[h(j)=h(i)=k] \\
& =\sum_{k=1}^{B} \mathbb{P}[h(j)=k] \cdot \mathbb{P}[h(i)=k]=\sum_{k=1}^{B}\left(\frac{1}{B} \cdot \frac{1}{B}\right)=\frac{1}{B}
\end{aligned}
$$

Count-min

Extremely long sequence of N elements from set U

Overview

1. Frequency estimation
2. Improving estimation with domain knowledge

Heavy hitters

Extremely long sequence of N elements from set U

Key insight:

Heavy hitters increase error of elements they collide with

Heavy hitters

Key insight:

Heavy hitters increase error of elements they collide with

Algorithm Ideal Count-Min:

- Suppose you know the top- B_{r} most frequent elements
- Reserve B_{r} buckets to count individual frequencies
- Use hash function to estimate other elements' frequencies Range is $\left\{B_{r}+1, \ldots, B\right\}$

Algorithm IDEAL COUNT-MIN

Extremely long sequence of N elements from set U

5	3	4	2	5	8	1	1	5	2	2	7	1	1	8	1	1	3	1	7	6	2	9	2	3

Heavy hitters: 1 and 2

Bucket for HH 1

Bucket for HH 2

Bucket 3

Bucket 4

$$
\text { counter }_{5}=5
$$

Bucket 5

\boldsymbol{i}	$\mathbf{1}$	$\mathbf{2}$	3	4	5	6	7	8	9
$\boldsymbol{h}(\boldsymbol{i})$	$\mathbf{1}$	$\mathbf{2}$	5	3	4	4	5	4	4

Overview

1. Frequency estimation
2. Improving estimation with domain knowledge i. Analysis of Ideal Count-Min

Model

D is a Zipfian distribution

Means elements can be sorted:

$$
f_{i_{1}} \geq f_{i_{2}} \geq \cdots \geq f_{i_{n}} \text { with } f_{i_{j}} \propto \frac{1}{j}
$$

For ease of notation, assume $f_{i} \propto \frac{1}{i}$

Disclaimer: the paper has $f_{i}=\frac{1}{i^{\prime}}$, but here I'm sticking with $f_{i} \propto \frac{1}{i}$
As a result, the results in these slides are slightly different, but equivalent, to those in the paper

IDEAL COUNT-MIN error

Theorem: Ideal Count-Min has error

$$
\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right]=O\left(\frac{\log ^{2} \frac{n}{B_{r}}}{\left(B-B_{r}\right) \log ^{2} n}\right)
$$

Example: if $B_{r}=\Theta(B)=\Theta(n)$

- Error of IDEAL COUNT-MIN $=O\left(\frac{1}{n \log ^{2} n}\right)$
- In contrast, error of single hash function $=O\left(\frac{1}{n}\right)$

IDEAL COUNT-MIN error

Theorem: Ideal Count-Min has error

$$
\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right]=O\left(\frac{\log ^{2} \frac{n}{B_{r}}}{\left(B-B_{r}\right) \log ^{2} n}\right)
$$

Proof idea: For $i \leq B_{r}, \tilde{f}_{i}=f_{i}$, so

$$
\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right]=\sum_{i>B_{r}} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right] \leq\left(\sum_{i>B_{r}} f_{i}\right)^{2} \cdot \frac{1}{B-B_{r}}
$$

By same exact argument as before, except hash function maps to $B-B_{r}$ elements, not B

Ideal Count-Min error

$$
\begin{array}{r}
\sum_{i=1}^{n} f_{i} \mathbb{E}\left[\left|\tilde{f}_{i}-f_{i}\right|\right] \leq\left(\sum_{i>B_{r}} f_{i}\right)^{2} \cdot \frac{1}{B-B_{r}}=O\left(\left(\frac{\log \frac{n}{B_{r}}}{\log n}\right)^{2} \cdot \frac{1}{B-B_{r}}\right) \\
\text { Follows from harmonic number inequalities } H_{n}=\sum_{i=1}^{n}=\frac{1}{i}=\theta(\log n)
\end{array}
$$

Heavy hitters

Key insight:

Heavy hitters increase error of elements they collide with

Algorithm Ideal Count-Min:

- Suppose you know the top- B_{r} most frequent elements

Also study setting with only a noisy predictor of heavy elements

- E.g., a machine-learned model
- Similar analysis

Overview

Improve error of frequency estimation algorithms

- Use a priori knowledge of heaviest elements,
- Or predict which are heaviest

Paper mostly focuses on experiments
Hopefully these slides help you understand the theory too!

