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Frequency estimation

Extremely long sequence of N elements from set U

SU3AI205(8[ 115227108 1T[[T1I[3]1||7]|6| 2|22 3 eee

Goal: for each i € U, estimate fraction of times it appeared, f;

Challenge: U is huge, so you don’t want to just count elements
|U|log N bits

Standard tool: Hashing
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B « |U| buckets, uniformly random hash function h: U — [B]

Foralli € Uandj € [B],P[h(i) =] :%

i [01 234567 89
h(@)[4 2 2 1 3 4 4 5 4 4
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Frequency estimation
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Overview

1. Frequency estimation
i. Analysis of a single hash function

2. Improving estimation with domain knowledge



Model

Elements drawn from distribution D over U = [n]
fi = Pj~D[i = i]

Error: E,_,||f; — fi|l| = X%~ f: E||fi — fi]]



Error of a single hash function

Theorem: For a single hash, error =Y, fi E[|f; — fi|] < %

Proof:
2 SEl -l = 2 fE| D sy
i=1 i=1 j:h(D=h()

« Randomness is only over the hash function h:
foralli e Uandj € [B],P[h(i) =j] =
. Ignoring randomness of the sequence

assume it's really long)




Error of a single hash function
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Error of a single hash function
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Error of a single hash function
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Error of a single hash function

if E[|; - fil] = ZﬁZf, [h() = h(D)

=1 J#i
B

P[A() = h(D] = z [h()) = h(D) = K

Z [h() = k] - P[A() = k Z( ~)=2

k=1



Error of a single hash function

ifm[\fl fl\]‘ZﬁZf] [h()) = h(D)] < (Zf)

i=1 JE! =1
B
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Z [h() = k] - P[A() = k Z( ~)=2
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Count-min

Extremely long sequence of N elements from set U
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Hash function h4 [counterlll ] [counterm ] [counterm ] [counter“ ] [Countersll ]

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Hash function h, | countery , counter; counters , countery , counters ,

Hash function h; [counter1,3 ] [counterzs ] [counter3,3 ] [counter4’3 ] [counter5,3 ]

. 1
Ji = 25

mm{counthl@ 17 COunthz(l) 2) Counth3(1) 3}

Cormode, Muthukrishnan, J. of Algorithms ‘05



Overview

1. Frequency estimation
2. Improving estimation with domain knowledge



Heavy hitters

Extremely long sequence of N elements from set U
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Key insight:
Heavy hitters increase error of elements they collide with



Heavy hitters

Key insight:
Heavy hitters increase error of elements they collide with

Algorithm IDEAL COUNT-MIN:
* Suppose you know the top-B, most frequent elements
 Reserve B, buckets to count individual frequencies

« Use hash function to estimate other elements’ frequencies
Rangeis {B, + 1, ..., B}




Algorithm IDEAL COUNT-MIN

Extremely long sequence of N elements from set U
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Heavy hitters: 1 and 2
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Bucket for HH 1 Bucket for HH 2 Bucket 3 Bucket 4 Bucket 5

i [1 23456789
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Overview

1. Frequency estimation

2. Improving estimation with domain knowledge
i. Analysis of IDEAL COUNT-MIN
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D is a Zipfian distribution
5\ 0.01
Means elements can be sorted: § soot L
. 1
fo 2 fiy 2 = 2 fi, with f; <=
0.0001 E_
. 1
For ease of notation, assume f; « - 1
1

Disclaimer: the paper has f; = % but here I'm sticking with f; oc%
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100
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Words sorted by frequency

As a result, the results in these slides are slightly different, but equivalent, to those in the paper



IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error
n ( longi )
Ellf = £|] = r
2 FEllf =l = 0\ G317

Example: if B, = 6(B) = 0(n)
e Error of IDEAL COUNT-MIN = 0 ( ! )

nlog?n

1

* In contrast, error of single hash function = 0 (;)



IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error
n lOgZ ﬂ
> Sl - fill = 0 -
- y Lot (B —B,)log?n
1=

Proof igea: Fori < B,, f; = f; so

2 fEllfi =7l = ), Fellfi il < (2 f) L; fBJ

i>B, i>B,

By same exact argument as before, except hash function maps to B — B, elements, not B




IDEAL COUNT-MIN error

n ) oo 2\
Sean-a(30] ol 25

[ Follows from harmonic number inequalities H,, = Z?zll_ = 0(logn) ]

l




Heavy hitters

Key insight:
Heavy hitters increase error of elements they collide with

Algorithm IDEAL COUNT-MIN:
* Suppose you know the top-B, most frequent elements

Also study setting with only a noisy predictor of heavy elements

* E.g., a machine-learned model
e Similar analysis




Overview

Improve error of frequency estimation algorithms
* Use a priori knowledge of heaviest elements,
* Or predict which are heaviest

Paper mostly focuses on experiments
Hopefully these slides help you understand the theory too!



