
Learning-based frequency
estimation algorithms
Chen-Yu Hsu, Piotr Indyk, Dina Katabi, Ali Vakilian

ICLR’19

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈

Goal: for each 𝑖 ∈ 𝑈, estimate fraction of times it appeared, 𝑓!

Challenge: 𝑈 is huge, so you don’t want to just count elements

Standard tool: Hashing
|𝑈| log𝑁 bits

52 8 1 1 5 2 2 7 1 0 8 1 1 3 1 7 6 2 9 2 35 3 4

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈

𝐵 ≪ 𝑈 buckets, uniformly random hash function ℎ: 𝑈 → 𝐵
For all	𝑖 ∈ 𝑈 and 𝑗 ∈ 𝐵 , ℙ ℎ 𝑖 = 𝑗 = '

(

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

52 8 1 1 5 2 2 7 1 0 8 1 1 3 1 7 6 2 9 2 35 3 4

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈
5

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

counter! = 0 counter" = 0 counter# = 0 counter$ = 0 counter% = 0

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈
5

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

counter! = 0 counter" = 0 counter# = 0 counter$ = 1 counter% = 0

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈
5

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

3

counter! = 0 counter" = 0 counter# = 0 counter$ = 1 counter% = 0

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈
5

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

3

counter! = 1 counter" = 0 counter# = 0 counter$ = 1 counter% = 0

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈
5

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

3 4

counter! = 1 counter" = 0 counter# = 0 counter$ = 1 counter% = 0

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈

counter! = 1 counter" = 0 counter# = 1 counter$ = 1 counter% = 0

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

5

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

3 4

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈

counter! = 3 counter" = 11 counter# = 1 counter$ = 8 counter% = 2

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

52 8 1 1 5 2 2 7 1 0 8 1 1 3 1 7 6 2 9 2 35 3 4

9𝑓& =
1
25 ⋅ count' & = =

(:' (*' &

𝑓(⇒ 9𝑓& ≥ 𝑓&

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈
52 8 1 1 5 2 2 7 1 0 8 1 1 3 1 7 6 2 9 2 35 3 4

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

counter! = 3 counter" = 11 counter# = 1 counter$ = 8 counter% = 2

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

9𝑓& =
1
25 ⋅ count' & = =

(:' (*' &

𝑓(⇒ 9𝑓& ≥ 𝑓&

𝑓" =
5
25

9𝑓" =
1
25 ⋅ count' " =

1
25 ⋅ count" =

11
25 = 𝑓! + 𝑓"

Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈
52 8 1 1 5 2 2 7 1 0 8 1 1 3 1 7 6 2 9 2 35 3 4

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

counter! = 3 counter" = 11 counter# = 1 counter$ = 8 counter% = 2

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

9𝑓& =
1
25 ⋅ count' & = =

(:' (*' &

𝑓(⇒ 9𝑓& ≥ 𝑓&

𝑓# =
3
25

9𝑓# =
1
25 ⋅ count' # =

1
25 ⋅ count! =

3
25	

Overview

1. Frequency estimation
i. Analysis of a single hash function

2. Improving estimation with domain knowledge

Model

Elements drawn from distribution 𝐷 over 𝑈 = [𝑛]

𝑓! = ℙ"∼$ 𝑗 = 𝑖

Error: 𝔼!∼$ 3𝑓! − 𝑓! = ∑!%&' 𝑓! 𝔼 3𝑓! − 𝑓!

Error of a single hash function

Theorem: For a single hash, error = ∑!%&' 𝑓! 𝔼 3𝑓! − 𝑓! ≤ &
(

Proof:

• Randomness is only over the hash function ℎ:
for all	𝑖 ∈ 𝑈 and 𝑗 ∈ 𝐵 , ℙ ℎ 𝑖 = 𝑗 = !

"

• Ignoring randomness of the sequence (assume it’s really long)

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! =7
!%&

'

𝑓!𝔼 7
":* " %* !

𝑓" − 𝑓!

Error of a single hash function

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! =7
!%&

'

𝑓!𝔼 7
":* " %* !

𝑓" − 𝑓! ≤ 7
!%&

'

𝑓!

+
1
𝐵
	

=7
!%&

'

𝑓!𝔼 7
",!:* " %* !

𝑓" 	

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! =7
!%&

'

𝑓!𝔼 7
":* " %* !

𝑓" − 𝑓!

Error of a single hash function

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! =7
!%&

'

𝑓!𝔼 7
":* " %* !

𝑓" − 𝑓! ≤ 7
!%&

'

𝑓!

+
1
𝐵
	

=7
!%&

'

𝑓!𝔼 7
",!:* " %* !

𝑓" 	

= 7
!%&

'

𝑓!7
",!

𝑓"ℙ ℎ 𝑗 = ℎ 𝑖

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! =7
!%&

'

𝑓!𝔼 7
":* " %* !

𝑓" − 𝑓!

Error of a single hash function

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! =7
!%&

'

𝑓!7
",!

𝑓"ℙ ℎ 𝑗 = ℎ 𝑖 ≤ 7
!%&

'

𝑓!

+

⋅
1
𝐵

	

=7
!%&

'

𝑓!7
",!

𝑓"ℙ ℎ 𝑗 = ℎ 𝑖7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓!

Error of a single hash function

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! =7
!%&

'

𝑓!7
",!

𝑓"ℙ ℎ 𝑗 = ℎ 𝑖 ≤ 7
!%&

'

𝑓!

+

⋅
1
𝐵

	ℙ ℎ 𝑗 = ℎ 𝑖 = 7
-%&

(

ℙ ℎ 𝑗 = ℎ 𝑖 = 𝑘 	

	 = 7
-%&

(

ℙ ℎ 𝑗 = 𝑘 ⋅ ℙ ℎ 𝑖 = 𝑘 = 7
-%&

(
1
𝐵
⋅
1
𝐵

=
1
𝐵

=7
!%&

'

𝑓!7
",!

𝑓"ℙ ℎ 𝑗 = ℎ 𝑖7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓!

Error of a single hash function

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! =7
!%&

'

𝑓!7
",!

𝑓"ℙ ℎ 𝑗 = ℎ 𝑖 ≤ 7
!%&

'

𝑓!

+

⋅
1
𝐵
=
1
𝐵
	

	ℙ ℎ 𝑗 = ℎ 𝑖 = 7
-%&

(

ℙ ℎ 𝑗 = ℎ 𝑖 = 𝑘 	

	 = 7
-%&

(

ℙ ℎ 𝑗 = 𝑘 ⋅ ℙ ℎ 𝑖 = 𝑘 = 7
-%&

(
1
𝐵
⋅
1
𝐵

=
1
𝐵

=7
!%&

'

𝑓!7
",!

𝑓"ℙ ℎ 𝑗 = ℎ 𝑖7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓!

Count-min

Extremely long sequence of 𝑁 elements from set 𝑈
52 8 1 1 5 2 2 7 1 0 8 1 1 3 1 7 6 2 9 2 35 3 4

counter!,! counter$,! counter%,! counter&,! counter',!
Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Hash function ℎ!

counter!,$ counter$,$ counter%,$ counter&,$ counter',$Hash function ℎ$

counter!,% counter$,% counter%,% counter&,% counter',%Hash function ℎ%

3𝑓! =
1
25
min count*! ! ,&, count*" ! ,+, count*# ! ,/

Cormode, Muthukrishnan, J. of Algorithms ‘05

Overview

1. Frequency estimation
2. Improving estimation with domain knowledge

Heavy hitters

Extremely long sequence of 𝑁 elements from set 𝑈
52 8 1 1 5 2 2 7 1 0 8 1 1 3 1 7 6 2 9 2 35 3 4

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4

counter! = 3 counter$ = 11 counter% = 1 counter& = 8 counter' = 2

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Key insight:
Heavy hitters increase error of elements they collide with

Heavy hitters

Algorithm IDEAL COUNT-MIN:
• Suppose you know the top-𝐵0 most frequent elements
• Reserve 𝐵0 buckets to count individual frequencies
• Use hash function to estimate other elements’ frequencies

Key insight:
Heavy hitters increase error of elements they collide with

Range is 𝐵(+ 1,… , 𝐵

Algorithm IDEAL COUNT-MIN

Extremely long sequence of 𝑁 elements from set 𝑈

counter! = 7 counter$ = 5 counter% = 1 counter& = 7 counter' = 5

Bucket for HH 1 Bucket for HH 2 Bucket 3 Bucket 4 Bucket 5

𝒊 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 1 2 5 3 4 4 5 4 4

52 8 1 1 5 2 2 7 1 1 8 1 1 3 1 7 6 2 9 2 35 3 4

Heavy hitters: 1 and 2

Overview

1. Frequency estimation
2. Improving estimation with domain knowledge

i. Analysis of IDEAL COUNT-MIN

Model

𝐷	is a Zipfian distribution

Means elements can be sorted:
𝑓!! ≥ 𝑓!" ≥ ⋯ ≥ 𝑓!$ with 𝑓!% ∝

&
"

For ease of notation, assume 𝑓! ∝
&
!

Words sorted by frequency

Fr
eq

ue
nc

y

Disclaimer: the paper has 𝑓) =
!
)
, but here I’m sticking with 𝑓) ∝

!
)

As a result, the results in these slides are slightly different, but equivalent, to those in the paper

IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! = 𝑂
log+ 𝑛𝐵0

𝐵 − 𝐵0 log+ 𝑛

Example: if 𝐵0 = Θ 𝐵 = Θ 𝑛
• Error of IDEAL COUNT-MIN = 𝑂 &

' 123" '

• In contrast, error of single hash function = 𝑂 &
'

IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! = 𝑂
log+ 𝑛𝐵0

𝐵 − 𝐵0 log+ 𝑛

Proof idea: For 𝑖 ≤ 𝐵0, 3𝑓! = 𝑓! , so

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! = 7
!4(&

𝑓!𝔼 3𝑓! − 𝑓! ≤ 7
!4(&

𝑓!
+

⋅
1

𝐵 − 𝐵0

By same exact argument as before, except hash function maps to 𝐵 − 𝐵(elements, not 𝐵

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! ≤ 7
!4(&

𝑓!
+

⋅
1

𝐵 − 𝐵0

IDEAL COUNT-MIN error

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! ≤ 7
!4(&

𝑓!
+

⋅
1

𝐵 − 𝐵0
= 𝑂

log 𝑛𝐵0
log 𝑛

+

⋅
1

𝐵 − 𝐵0

Follows from harmonic number inequalities 𝐻* = ∑)+!* !
)
= Θ log 𝑛

7
!%&

'

𝑓! 𝔼 3𝑓! − 𝑓! ≤ 7
!4(&

𝑓!
+

⋅
1

𝐵 − 𝐵0

Heavy hitters

Algorithm IDEAL COUNT-MIN:
• Suppose you know the top-𝐵0 most frequent elements
• Reserve 𝐵0 buckets to count individual frequencies
• Use hash function to estimate other elements’ frequencies

Key insight:
Heavy hitters increase error of elements they collide with

Range is [𝐵 − 𝐵(]

Also study setting with only a noisy predictor of heavy elements
• E.g., a machine-learned model
• Similar analysis

Overview

Improve error of frequency estimation algorithms
• Use a priori knowledge of heaviest elements,
• Or predict which are heaviest

Paper mostly focuses on experiments
Hopefully these slides help you understand the theory too!

