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Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈

Goal: for each 𝑖 ∈ 𝑈, estimate fraction of times it appeared, 𝑓!

Challenge: 𝑈 is huge, so you don’t want to just count elements

Standard tool: Hashing
|𝑈| log𝑁 bits
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Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈

𝐵 ≪ 𝑈  buckets, uniformly random hash function ℎ: 𝑈 → 𝐵
For all	𝑖 ∈ 𝑈 and 𝑗 ∈ 𝐵 , ℙ ℎ 𝑖 = 𝑗 = '

(
 

𝒊 0 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 4 2 2 1 3 4 4 5 4 4
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Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈

counter! = 1 counter" = 0 counter# = 1 counter$ = 1 counter% = 0

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5
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Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈

counter! = 3 counter" = 11 counter# = 1 counter$ = 8 counter% = 2

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5
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Frequency estimation

Extremely long sequence of 𝑁 elements from set 𝑈
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Overview

1. Frequency estimation
i. Analysis of a single hash function

2. Improving estimation with domain knowledge



Model

Elements drawn from distribution 𝐷 over 𝑈 = [𝑛]

𝑓! = ℙ"∼$ 𝑗 = 𝑖  

Error: 𝔼!∼$ 3𝑓! − 𝑓! = ∑!%&' 𝑓! 𝔼 3𝑓! − 𝑓!



Error of a single hash function

Theorem: For a single hash, error = ∑!%&' 𝑓! 𝔼 3𝑓! − 𝑓! ≤ &
(

Proof:

• Randomness is only over the hash function ℎ:
for all	𝑖 ∈ 𝑈 and 𝑗 ∈ 𝐵 , ℙ ℎ 𝑖 = 𝑗 = !

"
 

• Ignoring randomness of the sequence (assume it’s really long)
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Count-min

Extremely long sequence of 𝑁 elements from set 𝑈
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counter!,! counter$,! counter%,! counter&,! counter',!
Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Hash function ℎ! 

counter!,$ counter$,$ counter%,$ counter&,$ counter',$Hash function ℎ$ 

counter!,% counter$,% counter%,% counter&,% counter',%Hash function ℎ% 

3𝑓! =
1
25
min count*! ! ,&, count*" ! ,+, count*# ! ,/

Cormode, Muthukrishnan, J. of Algorithms ‘05



Overview

1. Frequency estimation
2. Improving estimation with domain knowledge



Heavy hitters

Extremely long sequence of 𝑁 elements from set 𝑈
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Heavy hitters

Algorithm IDEAL COUNT-MIN:
• Suppose you know the top-𝐵0  most frequent elements
• Reserve 𝐵0 buckets to count individual frequencies
• Use hash function to estimate other elements’ frequencies

Key insight:
Heavy hitters increase error of elements they collide with 

Range is 𝐵( + 1,… , 𝐵



Algorithm IDEAL COUNT-MIN

Extremely long sequence of 𝑁 elements from set 𝑈

counter! = 7 counter$ = 5 counter% = 1 counter& = 7 counter' = 5

Bucket for HH 1 Bucket for HH 2 Bucket 3 Bucket 4 Bucket 5

𝒊 1 2 3 4 5 6 7 8 9
𝒉(𝒊) 1 2 5 3 4 4 5 4 4
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Heavy hitters: 1 and 2



Overview

1. Frequency estimation
2. Improving estimation with domain knowledge

i. Analysis of IDEAL COUNT-MIN



Model

𝐷	is a Zipfian distribution

Means elements can be sorted:
𝑓!! ≥ 𝑓!" ≥ ⋯ ≥ 𝑓!$ with 𝑓!% ∝

&
"

For ease of notation, assume 𝑓! ∝
&
!

Words sorted by frequency

Fr
eq

ue
nc

y

Disclaimer: the paper has 𝑓) =
!
)
, but here I’m sticking with 𝑓) ∝

!
)

As a result, the results in these slides are slightly different, but equivalent, to those in the paper



IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error
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Example: if 𝐵0 = Θ 𝐵 = Θ 𝑛
• Error of IDEAL COUNT-MIN = 𝑂 &
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• In contrast, error of single hash function = 𝑂 &
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IDEAL COUNT-MIN error

Theorem: IDEAL COUNT-MIN has error
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𝑓! 𝔼 3𝑓! − 𝑓! = 𝑂
log+ 𝑛𝐵0

𝐵 − 𝐵0 log+ 𝑛

Proof idea: For 𝑖 ≤ 𝐵0, 3𝑓! = 𝑓! , so
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By same exact argument as before, except hash function maps to 𝐵 − 𝐵( elements, not 𝐵
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IDEAL COUNT-MIN error
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Follows from harmonic number inequalities 𝐻* = ∑)+!* !
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= Θ log 𝑛
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Heavy hitters

Algorithm IDEAL COUNT-MIN:
• Suppose you know the top-𝐵0 most frequent elements
• Reserve 𝐵0 buckets to count individual frequencies
• Use hash function to estimate other elements’ frequencies

Key insight:
Heavy hitters increase error of elements they collide with 

Range is [𝐵 − 𝐵(] 

Also study setting with only a noisy predictor of heavy elements
• E.g., a machine-learned model
• Similar analysis



Overview

Improve error of frequency estimation algorithms
• Use a priori knowledge of heaviest elements,
• Or predict which are heaviest

Paper mostly focuses on experiments
Hopefully these slides help you understand the theory too!


