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Why machine learning?

The task: write a program where
• Input: 28x28 grayscale image of a digit
• Output: number in the image

Image: digits from the MNIST data set (http://yann.lecun.com/exdb/mnist/) 

http://yann.lecun.com/exdb/mnist/


Approaches

Approach 1:
• Write a program by hand
• Use your a priori knowledge about what numbers look like

Approach 2 (the machine learning approach):
• Collect a dataset of images & their corresponding numbers
• Let the computer “write its own program”
• Maps these images to their corresponding number

8



Types of learning

Supervised learning:
Learn from (input, output) pairs

Unsupervised learning:
Detecting patterns from inputs alone (for e.g. clustering)
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Example: predicting electricity use

• What will peak power consumption be tomorrow?
• Difficult to build an “a priori” model from first principles
• Easy to record past days of consumption
• Also record additional features that affect consumption (i.e., weather)

Date High Temperature (F) Peak Demand (GW)
2011-06-01 84.0 2.651
2011-06-02 73.0 2.081
2011-06-03 75.2 1.844
2011-06-04 84.9 1.959
… … …



Plot of consumption vs. temperature

Several days of peak demand vs. high temperature
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Predictions

Predicting is equivalent to “drawing line through data”



Hypothesis: linear model

Suppose peak demand approximately fits a linear model         

Peak_Demand ≈ 𝜃& ⋅ High_Temperature + 𝜃'
• 𝜃# is the “slope” of the line
• 𝜃$ is the intercept

Given forecast of tomorrow’s weather, can predict demand



Machine learning notation

Input features: 𝒙 ( ∈ ℝ) , 𝑖 = 1,… ,𝑚
E.g., 𝑥 ! = High_Temperature !

1

Outputs: 𝑦 ( ∈ ℝ (regression task)
E.g., 𝑦 ! ∈ ℝ = Peak_Demand !

Hypothesis function: ℎ𝜽: ℝ) → ℝ, predicts output given input
E.g., ∶ ℎ𝜽 𝒙 = 𝜽&𝒙 = ∑'(#) 𝜃' ⋅ 𝑥'

Model parameters: 𝜽 ∈ ℝ+ (for linear models 𝑘 = 𝑛)

Training data



How to obtain best hypothesis?

How good is a hypothesis function?
• Typically done by introducing a loss function ℓ:ℝ×ℝ → ℝ*
• ℓ ℎ𝜽 𝒙 , 𝑦 = how far apart prediction is from actual output
• E.g., common loss function for linear regression is squared error:

ℓ ℎ𝜽 𝒙 , 𝑦 = ℎ𝜽 𝒙 − 𝑦 $

Optimization:
Find best hypothesis (i.e. with smallest loss) on training data



Canonical machine learning problem

Input: Set of input features and outputs 𝒙 ( , 𝑦 ( , 𝑖 = 1,… ,𝑚

Task: find the parameters that minimize the sum of losses

minimize
𝜽

H
(,&

-

ℓ ℎ𝜽 𝒙 ( , 𝑦 (

Need to specify:
• What’s the hypothesis function?
• What’s the loss function?
• How do we solve the optimization problem?

TrainLoss(𝜽)



Least squares

In this notation
• Hypothesis function: ℎ𝜽 𝒙 = 𝜽.𝒙
• Squared loss: ℓ ℎ𝜽 𝒙 , 𝑦 = ℎ𝜽 𝒙 − 𝑦 '

Leads to ML optimization problem

minimize
𝜽

H
(,&

-

ℓ ℎ𝜽 𝒙 ( , 𝑦 ( ≡ minimize
𝜽

H
(,&

-

𝜽.𝒙 ( − 𝑦 ( '



Solution via gradient descent

Gradient descent to solve optimization problem

minimize
𝜽

H
(,&

-

𝜽.𝒙 ( − 𝑦 ( '

Gradient given by

𝛻𝜽H
(,&

-

𝜽.𝒙 ( − 𝑦 ( '
= 2H

(,&

-

𝒙 ( 𝜽.𝒙 ( − 𝑦 (

Gradient descent: repeat 𝜽 → 𝜽 − 𝜂∑(,&- 𝒙 ( (𝜽.𝒙 ( − 𝑦 ( )



Least squares solution

Gradient descent gives coefficients 𝜃&, 𝜃' leading to the fit:



Alternative loss functions

Why did we pick the squared loss ℓ ℎ𝜽 𝒙 , 𝑦 = ℎ𝜽 𝒙 − 𝑦 '?

Some other alternatives:
• Absolute loss: ℓ ℎ𝜽 𝒙 , 𝑦 = ℎ𝜽 𝒙 − 𝑦
• Deadband loss: ℓ ℎ𝜽 𝒙 , 𝑦 = max 0, ℎ𝜽 𝒙 − 𝑦 − 𝜖 , 𝜖 ∈ ℝ
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Plot of consumption vs. temperature

Several days of peak demand vs. high temperature: all months



“Non-linear” regression

Linear regression applied to non-linear features of input, e.g.:

𝒙 ( =
High_Temperature ( '

High_Temperature (

1

Same hypothesis class as before ℎ𝜽 𝒙 = 𝜽.𝒙
Prediction will be non-linear (i.e., quadratic) function of base input

Same solution method as before, e.g., gradient descent



“Non-linear” regression

Linear regression with 2nd degree polynomial features



“Non-linear” regression

Linear regression with 4th degree polynomial features



“Non-linear” regression

Linear regression with 30th degree polynomial features



Training and validation loss
Fundamental problem: find parameters that optimize

minimize
𝜽

H
(,&

-

ℓ ℎ𝜽 𝒙 ( , 𝑦 (

But what we really care about:
ℓ ℎ𝜽 𝒙′ , 𝑦′ on new examples 𝒙/, 𝑦/ (“generalization error”)

Divide data into:
• Training set: used to find parameters 𝜽 for fixed hypothesis class𝐻
• Validation set: used to choose 𝐻 (e.g., polynomial degree)



Training and validation loss

Training set and validation set; 30th degree polynomial features



Training and validation loss

General intuition:

Would like hypothesis class that minimizes validation loss



Training and validation loss

Training and validation loss on peak demand prediction



Model complexity and regularization

Many different ways to control “model complexity”

Obvious one: keep # of features (# of parameters) low

Less obvious method: keep magnitude of the parameters small



Regularization intuition

If 30th degree polynomial that passes through many points
⇒ Requires very large entries in 𝜽



Regularization

Prevent large entries in 𝜽 by penalizing magnitude of its entries

Leads to regularized loss minimization problem

minimize
𝜽

H
(,&

-

ℓ ℎ𝜽 𝒙 ( , 𝑦 ( + 𝜆H
(,&

)

𝜃('

𝜆 > 0 is a regularization parameter



Regularized loss minimization

Degree 30 polynomial, 𝜆 = 0 (unregularized)



Regularized loss minimization

Degree 30 polynomial, 𝜆 = 1



Evaluating ML algorithms

The proper way to evaluate an ML algorithm:
1. Break all data into training/testing sets

E.g., 70%/30%
2. Break training set into training/validation set

E.g., 70%/30%
3. Choose hyperparameters using validation set
4. (Optional) Retrain using all the training set
5. Evaluate performance on the testing set
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Classification problems

Task: predict discrete outputs (rather than continuous)

Is the email spam or not? (YES/NO)

What digit is in this image? (0/1/2/3/4/5/6/7/8/9)
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Example: breast cancer classification

Task: Diagnose whether a tumor is benign or malignant

Doctor’s procedure:
1. Extract a sample of fluid from tumor
2. Stains cell
3. Outline several cells

Features for each cell:
Area, perimeter, concavity, texture, …



Example: breast cancer classification

Plot of two features: mean area vs. mean concave points



Linear classification example

Linear classification ≡ “class separator is linear” 



Formal setting

• Input features: 𝒙 ( ∈ ℝ) , 𝑖 = 1,… ,𝑚

E.g., 𝒙 ! =
Mean_Area !

Mean_Concave_Points !
1

• Outputs: 𝑦 ( ∈ {−1,+1}, 𝑖 = 1,… ,𝑚
E.g., 𝑦 ! ∈ {−1 benign ,+1 (malignant)}

• Model parameters: 𝜽 ∈ ℝ)

• Hypothesis: ℎ𝜽: ℝ) → ℝ, aims for same sign as output 
E.g., ℎ𝜽 𝒙 = 𝜽&𝒙, ]𝑦 = sign ℎ𝜽 𝒙



Linear classification diagrams

• Color shows regions where ℎ𝜽(𝒙) is positive
• Separating boundary is given by the equation ℎ𝜽 𝒙 = 0



Linear classification diagrams

• As we move away from decision boundary, ℎ𝜽 𝒙 increases 
• ℎ𝜽 𝒙 = 𝜽.𝒙 measures model’s “confidence” on input



Loss functions

The loss we would like to minimize (0/1 loss, or just “error”):

ℓ0/& ℎ𝜽 𝒙 , 𝑦 = Y0 if sign ℎ𝜽 𝒙 = 𝑦
1 otherwise.

= 𝟏{𝑦 ⋅ ℎ𝜽 𝒙 ≤ 0}



Alternative losses

Optimization is hard: ℓ0/& ℎ𝜽 𝒙 , 𝑦 isn’t convex
Gradient is zero almost everywhere

Alternative losses for classification are typically used instead

Loss functions depend on 𝑦ℎ𝜽 𝒙 (larger the better)



Alternative losses

ℓ!/# = 1 𝑦 ⋅ ℎ$ 𝑥 ≤ 0
ℓ%&'()*(+ = log 1 + exp −𝑦 ⋅ ℎ$ 𝑥
ℓ,(-'. = max{1 −𝑦 ⋅ ℎ$ 𝑥 , 0}
ℓ./0 = exp(−𝑦 ⋅ ℎ$ 𝑥 )

More confident and wrong More confident and right



Support vector machine (SVM)

SVM uses regularized hinge loss and a linear hypothesis

minimize
𝜽

H
(,&

-

max 1 − 𝑦 ( ⋅ 𝜽.𝒙 ( , 0 + 𝜆H
(,&

)

𝜃('

Updates using gradient descent:

𝜽 ≔ 𝜽 − 𝜂H
(,&

-

−𝑦 ( 𝒙 ( 𝟏{ 𝑦 ( ⋅ 𝜽.𝒙 ( ≤ 1}

Linear penalty if wrong and no penalty if confidently correct



Support vector machine example

Running support vector machine on cancer dataset

𝜃 =
1.456
1.848
−0.189



SVM optimization progress

Optimization objective & error versus gradient descent iteration

Hinge loss 0-1 error
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Supervised learning example

Example: learn if our friend will play tennis on a given day

Simple training dataset:
Day Outlook Temperature Humidity Wind Play tennis
D1 Sunny Hot Normal Weak Yes
D2 Sunny Hot High Weak No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Strong No
D5 Rain Cool Normal Weak Yes

example label



Supervised learning example

“Labeled example” (𝒙, 𝑦) where: 
• 𝒙 = 𝑥&, 𝑥', 𝑥2, 𝑥3 = ( )

• 𝑦 = “Yes”
Outlook Temp Humidity Wind

Sunny Hot Normal Weak 

Day Outlook Temperature Humidity Wind Play tennis
D1 Sunny Hot Normal Weak Yes
D2 Sunny Hot High Weak No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Strong No
D5 Rain Cool Normal Weak Yes

example label



Decision tree learning

• Each internal node: test one (discrete-valued) attribute 𝑥(
• Each branch from a node: corresponds to a value for 𝑥(
• Each leaf: predict 𝑦

Outlook

Humidity Wind

No Yes No Yes

Sunny Rain

Yes

High Normal Strong Weak

Overcast



Decision tree learning

𝑓:< Outlook, Temperature, Humidity,Wind >→ PlayTennis?
𝒙 = 𝑥&, 𝑥', 𝑥2, 𝑥3 = ( )

𝑓 𝒙 = 𝐍𝐨
Outlook

Humidity Wind

No Yes No Yes

Sunny Rain

Yes

High Normal Strong Weak

Overcast

Outlook Temp Humidity Wind

Sunny Hot High Weak 



Top-down induction of decision trees

• Grow tree from the root to the leaves
• Repeatedly replacing an existing leaf with an internal node

Outlook

Humidity Wind

No Yes No Yes

Sunny Rain

Yes

High Normal Strong Weak

Overcast



Top-down induction of decision trees

Main loop:
1. 𝐴← “best” decision attribute for next node
2. For each value of 𝐴, create new descendent of node
3. Sort training examples to leaf nodes

Day Outlook Temp Humidity Wind Tennis
D1 Sunny Hot Normal Weak Yes
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak No
D5 Rain Cool Normal Weak Yes

Outlook

Sunny RainOvercast



Top-down induction of decision trees

Main loop:
1. 𝐴← “best” decision attribute for next node
2. For each value of 𝐴, create new descendent of node
3. Sort training examples to leaf nodes

Outlook

Sunny RainOvercast

Day Outlook Temp Humidity Wind Tennis
D1 Sunny Hot Normal Weak Yes
D2 Sunny Hot High Weak No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Strong No
D5 Rain Cool Normal Weak Yes



Top-down induction of decision trees

Main loop:
1. 𝐴← “best” decision attribute for next node
2. For each value of 𝐴, create new descendent of node
3. Sort training examples to leaf nodes

Day Outlook Temp Humidity Wind Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak No
D5 Rain Cool Normal Weak Yes

Outlook

Sunny RainOvercast



Top-down induction of decision trees

Main loop:
1. 𝐴← “best” decision attribute for next node
2. For each value of 𝐴, create new descendent of node
3. Sort training examples to leaf nodes

Day Outlook Temp Humidity Wind Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak No
D5 Rain Cool Normal Weak Yes

Outlook

Sunny RainOvercast



Top-down induction of decision trees

Main loop:
1. 𝐴← “best” decision attribute for next node
2. For each value of 𝐴, create new descendent of node
3. Sort training examples to leaf nodes
4. If training examples perfectly classified, then STOP,

Else iterate over new leaf nodes



Top-down induction of decision trees

Main loop:
1. 𝐴← “best” decision attribute for next node
2. For each value of 𝐴, create new descendent of node
3. Sort training examples to leaf nodes
4. If training examples perfectly classified, then STOP,

Else iterate over new leaf nodes

Many different heuristics can be used to choose attribute
E.g., entropy (ID3)
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Multiclass classification

Label 𝑦 ∈ {1,… , 𝑘} (e.g., digit classification)

Approach 1:
• Build 𝑘 different binary classifiers ℎ𝜽!
• ℎ𝜽! predicts class 𝑖 vs all others
• Output predictions n𝑦 = argmax

(
ℎ𝜽!(𝒙)



Multiclass classification

Label 𝑦 ∈ {1,… , 𝑘} (e.g., digit classification)

Approach 2:
• Use a hypothesis function ℎ𝜽: ℝ) → ℝ+
• Define a loss function ℓ:ℝ+× 1,… , 𝑘 → ℝ4
• E.g., softmax loss (also called cross entropy loss): 

ℓ ℎ𝜽 𝒙 , 𝑦 = logH
5,&

+

exp ℎ𝜽 𝒙 5 − ℎ𝜽 𝒙 6
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Neural networks for machine learning

3 components of ML algorithms:
1. Hypothesis class: set of functions we consider
2. Loss function: measures how good a hypothesis is
3. Optimization: how we find a hypothesis with low loss

Neural network: a type of hypothesis class
Composed non-linear functions

Any loss function and optimization approach could be used



Linear hypotheses and feature learning

Until now, mostly analyzed linear hypotheses ℎ𝜽 𝒙 = 𝜽.𝒙

Performance depends on coming up with good features 𝒙

Key question:
Can we automatically learn the features from raw data?



Feature learning, take one

Two-stage hypothesis class where:
1. One linear function creates the features, and
2. Another produces the final hypothesis

ℎ𝜽 𝒙 = 𝑊'𝜙 𝒙 + 𝒃' = 𝑊' 𝑊&𝒙 + 𝒃& + 𝒃'
where 𝜽 = 𝑊& ∈ ℝ+×) , 𝒃& ∈ ℝ+ ,𝑊' ∈ ℝ&×+ , 𝒃' ∈ ℝ



Neural networks

Neural networks are a simple extension of this idea

Apply a non-linear function after each linear transformation

ℎ8 𝑥 = 𝑓' 𝑊'𝑓& 𝑊&𝑥 + 𝑏& + 𝑏'
𝑓&, 𝑓': ℝ → ℝ are non-linear functions (applied elementwise)



Neural networks

Common choices of 𝑓(:

Hyperbolic tangent: 𝑓 𝑥 = tanh 𝑥 = 1!"2#
1!"3#

Sigmoid: 𝑓 𝑥 = 𝜎 𝑥 = #
#31#"

Rectified linear unit (ReLU): 𝑓 𝑥 = max 𝑥, 0



Illustrating neural networks

Middle layer 𝑧 is referred to as the hidden layer or activations
• These are the learned features
• Nothing in the data prescribed what values they should take

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2



Deep learning

Hypothesis function for 𝑘-layer network
𝒛(4& = 𝑓( 𝑊(𝒛( + 𝒃( , 𝒛& = 𝒙, ℎ𝜽 𝒙 = 𝒛+

(𝐳! here refers to a vector, not an entry in a vector)

z1 = x

...
...

W1, b1

z5... ...

z2 z3 z4

W3, b3

W4, b4

= hθ(x)

W2, b2

“Multi-layer 
perceptron”



Training neural networks

Gradient descent, repeat:
• For 𝑖 = 1,… ,𝑚: 𝒈 ! ← 𝛻𝜽ℓ ℎ𝜽 𝒙 ! , 𝑦 !

• Update parameters: 𝜽 ← 𝜽 − 𝜂∑!(#O 𝒈 !

Stochastic gradient descent (SGD), repeat:
• For 𝑖 = 1,… ,𝑚: 𝜽 ← 𝜽 − 𝛼𝛻𝜽ℓ ℎ𝜽 𝒙 ! , 𝑦 !

In practice, SGD uses a small “minibatch” of samples
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Next class:
• Linear programming relaxations
• Integer programming solvers
• SAT solvers


