
Discrete optimization
crash course

Content draws on material from Optimization Methods in Management
Science from MIT Sloan

https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/

An important property of algorithms used in practice is
broad applicability

…but they can have unsatisfactory default performance
Slow runtime, poor solutions, …

Example: Integer programming solvers
Most popular tool for solving combinatorial (& nonconvex) problems

Routing Manufacturing Scheduling Planning Finance

IP solvers (CPLEX, Gurobi) have a ton of parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Integer programming (IP)

IP solvers (CPLEX, Gurobi) have a ton of parameters
• CPLEX has 170-page manual describing 172 parameters
• Tuning by hand is notoriously slow, tedious, and error-prone

Integer programming (IP)

Best configuration for routing problems
likely not suited for scheduling

What’s the best configuration for the application at hand?

Plan

This class: Overview of how these solvers work

Future classes: How to use ML to optimize these solvers

Outline

1. Linear programming
2. Integer programming
3. SAT solving
4. Next steps

Linear programming

Linear programming (LP) is a central topic in optimization

Provides a powerful tool for modeling many applications

Tons of attention over past two decades due to:
• Applicability: Many real-world applications can be modeled via LPs
• Solvability: Efficient techniques for solving large-scale problems

Basic components of an LP

Each optimization problem consists of 3 elements:
• Decision variables: describe our choices that are under our control;
• Objective function: Criterion that we wish to minimize (e.g., cost)

or maximize (e.g., profit)
• Constraints: Limitations restricting our choices for decision variables

“Linear programming” refers to an optimization problem where:
• The objective function is linear
• Each constraint is a linear inequality or equality

An introductory example
A company makes two products (say, P and Q)
• Uses two machines (say, A and B)

Each unit of P that is produced requires:
• 50 minutes processing time on machine A, and
• 30 minutes processing time on machine B

Each unit of Q that is produced requires:
• 24 minutes processing time on machine A, and
• 33 minutes processing time on machine B

An introductory example

• Machine A is going to be available for 40 hours
• Machine B is available for 35 hours
• Profit per unit of P is $28
• Profit per unit of Q is $30
• Goal: determine production quantity of P and Q such that:

1. Total profit is maximized
2. Available resources aren’t exceeded

• Task: formulate this problem as an LP

Step 1: Defining the decision variables

Decision variables: Describe choices under our control

Goal: determine production quantity of P and Q such that …

So there are 2 decision variables:
𝑥: the number of units of P
𝑦: the number of units of Q

Step 2: Choosing an objective function
Usually seek a criterion to compare alternative solutions

This yields the objective function

Want to maximize the total profit
• Profit per each unit of product P is $28
• Profit per each unit of Q is $30

Total profit is 28𝑥 + 30𝑦 if we produce 𝑥 units of P & 𝑦 units of Q

Leads to the following objective function:
max28𝑥 + 30𝑦

Linear

Step 3: Identifying the constraints

Often are limitations that restrict our decisions
Resource, physical, strategic, economical

We describe these limitations using mathematical constraints

Step 3: Identifying the constraints

• Each unit of P requires 50 minutes on machine A
• Each unit of Q requires 24 minutes on machine A
• If we produce 𝑥 units of P and 𝑦 units of Q:
• Machine A needs to be used for 50𝑥 + 24𝑦

• Machine A is available for 40 hours = 2400 minutes
• This imposes the following constraint: 50𝑥 + 24𝑦 ≤ 2400

• Similarly, amount of time machine B is available means that:
30𝑥 + 33𝑦 ≤ 2100

Step 3: Identifying the constraints

In most problems, decision variables must be nonnegative

So need to include the following two constraints as well:
𝑥 ≥ 0 and 𝑦 ≥ 0

In the end, the constraints we’re subject to (s.t.) are :
50𝑥 + 24𝑦 ≤ 2400, (machine A time)
30𝑥 + 33𝑦 ≤ 2100, (machine B time)
𝑥 ≥ 0,
𝑦 ≥ 0

LP for the example
Here is the LP:

maximize 28𝑥 + 30𝑦
subject to 50𝑥 + 24𝑦 ≤ 2400

30𝑥 + 33𝑦 ≤ 2100
𝑥 ≥ 0 and 𝑦 ≥ 0

Optimal solution: 𝑥 = 30.97, 𝑦 = 35.48

100

50𝑥 + 24𝑦 ≤ 2400

30𝑥 + 33𝑦 ≤ 2100

50

50 100
𝑥

𝑦

LP for the example

Fact: Optimal solution of an LP is always at a vertex

LP polytope

𝑥

𝑦

LP algorithms

Simplex algorithm: Practical algorithm for solving LPs
• May run in exponential time in the worst case
• Provable runs in polynomial time on “realistic” LPs
• Used by commercial solvers like CPLEX, Gurobi, …

Ellipsoid method: Impractical but provably runs in poly-time

Outline

1. Linear programming
2. Integer programming
3. SAT solving
4. Next steps

Integer programming (IP)

What if the decision variables
must be integral?

maximize 28𝑥 + 30𝑦
subject to 50𝑥 + 24𝑦 ≤ 2400

30𝑥 + 33𝑦 ≤ 2100
𝑥 ≥ 0 and 𝑦 ≥ 0
𝒙, 𝒚 ∈ ℤ

Integer programming is NP-complete

𝑥

𝑦

Example: vertex cover

Vertex cover of a graph:
Set of vertices that includes ≥ 1 endpoint of every edge

Example: vertex cover

Vertex cover of a graph:
Set of vertices that includes ≥ 1 endpoint of every edge

Example: vertex cover

Vertex cover of a graph:
Set of vertices that includes ≥ 1 endpoint of every edge

Goal: Find a vertex cover of minimal size

Vertex cover IP

Input: Graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉, edge set 𝐸
1. Decision variables: For each vertex 𝑣 ∈ 𝑉,

𝑦! = ?10
2. Objective function: minimize ∑!∈# 𝑦!
3. Constraints:

For every edge 𝑢, 𝑣 ∈ 𝐸, need 𝑦$ = 1 and/or 𝑦! = 1
In other words: 𝑦$ + 𝑦! ≥ 1

if 𝑣 in vertex cover
otherwise

Vertex cover IP

Input: Graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉, edge set 𝐸

minimize ∑!∈# 𝑦!
subject to 𝑦$ + 𝑦! ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸

𝑦! ∈ {0,1} for all 𝑣 ∈ 𝑉
Binary integer program

LP relaxations

Input: Graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉, edge set 𝐸

minimize ∑!∈# 𝑦!
subject to 𝑦$ + 𝑦! ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸

0 ≤ 𝑦! ≤ 1
𝑦! ∈ 0,1

If you remove the integrality constraints,
you obtain the LP relaxation of the IP

LP relaxations

Integer program
max 𝒄 E 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ&

LP relaxation
max 𝒄 E 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ&

𝒙'(∗ = optimal solution to IP
𝒙*(∗ = optimal solution to LP relaxation
Fact: 𝒄 E 𝒙'(∗ ≤ 𝒄 E 𝒙*(∗

LP relaxations

Integer program
min 𝒄 E 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ&

LP relaxation
min 𝒄 E 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

𝒙 ∈ ℤ&

𝒙'(∗ = optimal solution to IP
𝒙*(∗ = optimal solution to LP relaxation
Fact: 𝒄 E 𝒙'(∗ ≥ 𝒄 E 𝒙*(∗

Integer programming solvers

Most popular tool for solving combinatorial problems

Routing Manufacturing Scheduling PlanningRobust ML

Branch-and-bound

maximize 15𝑥+ + 12𝑥, + 4𝑥- + 2𝑥.
subject to 8𝑥+ + 5𝑥, + 3𝑥- + 2𝑥. ≤ 10

𝑥+, 𝑥,, 𝑥-, 𝑥. ∈ {0,1}

Branch-and-bound

• Enumeration tree: enumerates all possible solutions of an IP
• At each node, branch on an integer variable
• On each branch, integer variable is restricted to take certain values

maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Branch-and-bound

• Enumeration tree: enumerates all possible solutions of an IP
• If we can enumerate all solutions with the tree, why not

compute objective for each solution and pick the best one?

• Would work, but # possible solutions explodes exponentially

maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

Branch-and-bound

Key idea of branch-and-bound (B&B):
• Using LP relaxations, bound the optimal integer solutions

in subtrees of the enumeration tree

maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

𝑥! = 0 𝑥! = 1

𝑥" = 1 𝑥" = 0

Branch-and-bound

Key idea of branch-and-bound (B&B):
• Using LP relaxations, bound the optimal integer solutions

in subtrees of the enumeration tree
• Allows us to eliminate a lot of the enumeration tree

maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

𝑥! = 0 𝑥! = 1

𝑥" = 1 𝑥" = 0

Branch-and-bound

To start, we assume we have a feasible solution 𝒙∗
• E.g., 𝒙∗ = (0,0,0,0)

At each iteration of B&B:
• 𝒙∗ is the incumbent solution
• Its objective value 𝑧∗ is the incumbent objective

Here, incumbent means “best so far”

maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:

i. Select an active node 𝑗 and mark it as inactive
ii. 𝒙(𝑗) = optimal solution of LP relaxation of Problem(𝑗)
iii. 𝑧23(𝑗) = objective value of 𝒙(𝑗)
iv. Case 1: If 𝑧∗ < 𝑧23(𝑗) and 𝒙(𝑗) isn’t feasible for IP then

Mark the direct descendants of node 𝑗 as active
v. Case 2: If 𝑧∗ < 𝑧23(𝑗) and 𝒙(𝑗) is feasible for IP then

Replace the incumbent by 𝒙(𝑗) and prune node 𝑗
vi. Case 3: If 𝑧∗ ≥ 𝑧23(𝑗) then prune node 𝑗

1
𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Branch-and-bound
1

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

1. Mark the root node as active
2. While there remain active nodes:

i. Select an active node 𝑗 and mark it as inactive
ii. 𝒙(𝑗) = optimal solution of LP relaxation of Problem(𝑗)
iii. 𝑧(𝑗) = objective value of 𝒙(𝑗)
iv. Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then

Mark the direct descendants of node 𝑗 as active
Possible to find a better incumbent solution among 𝑗’s descendants

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:

i. Select an active node 𝑗 and mark it as inactive
ii. 𝒙(𝑗) = optimal solution of LP relaxation of Problem(𝑗)
iii. 𝑧(𝑗) = objective value of 𝒙(𝑗)
iv. Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then

Mark the direct descendants of node 𝑗 as active
Possible to find a better incumbent solution among 𝑗’s descendants

2 3

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:

i. Select an active node 𝑗 and mark it as inactive
ii. 𝒙(𝑗) = optimal solution of LP relaxation of Problem(𝑗)
iii. 𝑧(𝑗) = objective value of 𝒙(𝑗)
iv. Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then

Mark the direct descendants of node 𝑗 as active
v. Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then

Replace the incumbent by 𝒙(𝑗) and prune node 𝑗
Could be the optimal solution!

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1
2 3

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:

i. Select an active node 𝑗 and mark it as inactive
ii. 𝒙(𝑗) = optimal solution of LP relaxation of Problem(𝑗)
iii. 𝑧(𝑗) = objective value of 𝒙(𝑗)
iv. Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then

Mark the direct descendants of node 𝑗 as active
v. Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then

Replace the incumbent by 𝒙(𝑗) and prune node 𝑗

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1
3

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:

i. Select an active node 𝑗 and mark it as inactive
ii. 𝒙(𝑗) = optimal solution of LP relaxation of Problem(𝑗)
iii. 𝑧(𝑗) = objective value of 𝒙(𝑗)
iv. Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then

Mark the direct descendants of node 𝑗 as active
v. Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then

Replace the incumbent by 𝒙(𝑗) and prune node 𝑗

4 5

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1
3

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:

i. Select an active node 𝑗 and mark it as inactive
ii. 𝒙(𝑗) = optimal solution of LP relaxation of Problem(𝑗)
iii. 𝑧(𝑗) = objective value of 𝒙(𝑗)
iv. Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then

Mark the direct descendants of node 𝑗 as active
v. Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then

Replace the incumbent by 𝒙(𝑗) and prune node 𝑗
vi. Case 3: If LP is infeasible or 𝑧∗ ≥ 𝑧(𝑗) then prune node 𝑗

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1
4 5

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:

i. Select an active node 𝑗 and mark it as inactive
ii. 𝒙(𝑗) = optimal solution of LP relaxation of Problem(𝑗)
iii. 𝑧(𝑗) = objective value of 𝒙(𝑗)
iv. Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then

Mark the direct descendants of node 𝑗 as active
v. Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then

Replace the incumbent by 𝒙(𝑗) and prune node 𝑗
vi. Case 3: If LP is infeasible or 𝑧∗ ≥ 𝑧(𝑗) then prune node 𝑗

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1
5

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

Incumbent: 𝒙∗ = (0,0,0,0)
𝑧∗ = 0

1

Problem(1):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ [0,1]

𝒙 1 = &
'
, 1,0,0

𝑧(1) = 21.38

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then
Mark the direct descendants of node 𝑗 as active

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

Incumbent: 𝒙∗ = (0,0,0,0)
𝑧∗ = 0

Problem(1):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ [0,1]

𝒙 1 = &
'
, 1,0,0

𝑧(1) = 21.38

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then
Mark the direct descendants of node 𝑗 as active

2 3

1

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

Incumbent: 𝒙∗ = (0,0,0,0)
𝑧∗ = 0

1
𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1
2 3

Problem(2):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 0
𝑥", 𝑥#, 𝑥$ ∈ [0,1]

𝒙 2 = 0,1,1,1
𝑧(2) = 18Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then

Replace the incumbent by 𝒙(𝑗) and prune node 𝑗

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

Incumbent: 𝒙∗ = (0,1,1,1)
𝑧∗ = 18

1
𝑥! = 0 𝑥! = 1

Problem(2):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 0
𝑥", 𝑥#, 𝑥$ ∈ [0,1]

𝒙 2 = 0,1,1,1
𝑧(2) = 18

2 3
𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Can’t find better feasible
solution in this subtree

Case 2: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) is feasible for IP then
Replace the incumbent by 𝒙(𝑗) and prune node 𝑗

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

1

3

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Problem(3):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 1
𝑥", 𝑥#, 𝑥$ ∈ [0,1]

𝒙 3 = &
'
, 1,0,0

𝑧(3) = 21.38

Incumbent: 𝒙∗ = (0,1,1,1)
𝑧∗ = 18

Could possibly find
better feasible solution

in this subtree

Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then
Mark the direct descendants of node 𝑗 as active

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

1
𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Problem(3):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 1
𝑥", 𝑥#, 𝑥$ ∈ [0,1]

𝒙 3 = &
'
, 1,0,0

𝑧(3) = 21.38

Incumbent: 𝒙∗ = (0,1,1,1)
𝑧∗ = 18

4 5

Case 1: If 𝑧∗ < 𝑧(𝑗) and 𝒙(𝑗) isn’t feasible for IP then
Mark the direct descendants of node 𝑗 as active

3

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

1

3

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1
Problem(4):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 1
𝑥" = 0
𝑥#, 𝑥$ ∈ [0,1]

𝒙 4 = 1,0, "
#
, 0

𝑧(4) = 17.66

Incumbent: 𝒙∗ = (0,1,1,1)
𝑧∗ = 18

4 5

Case 3: If LP is infeasible or 𝑧∗ ≥ 𝑧(𝑗) then prune node 𝑗

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

1

3

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Incumbent: 𝒙∗ = (0,1,1,1)
𝑧∗ = 18

4 5

Case 3: If LP is infeasible or 𝑧∗ ≥ 𝑧(𝑗) then prune node 𝑗

Problem(4):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 1
𝑥" = 0
𝑥#, 𝑥$ ∈ [0,1]

𝒙 4 = 1,0, "
#
, 0

𝑧(4) = 17.66

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

1

3

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Incumbent: 𝒙∗ = (0,1,1,1)
𝑧∗ = 18

4 5

Case 3: If LP is infeasible or 𝑧∗ ≥ 𝑧(𝑗) then prune node 𝑗

Problem(5):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 1
𝑥" = 1
𝑥#, 𝑥$ ∈ [0,1]

𝒙 5 = infeasible
𝑧(5) = infeasible

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

1

3

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Problem(5):
max 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
s.t 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥! = 1
𝑥" = 1
𝑥#, 𝑥$ ∈ [0,1]

𝒙 5 = infeasible
𝑧(5) = infeasible

Incumbent: 𝒙∗ = (0,1,1,1)
𝑧∗ = 18

4 5

Case 3: If LP is infeasible or 𝑧∗ ≥ 𝑧(𝑗) then prune node 𝑗

Branch-and-bound
maximize 15𝑥! + 12𝑥" + 4𝑥# + 2𝑥$
subject to 8𝑥! + 5𝑥" + 3𝑥# + 2𝑥$ ≤ 10

𝑥!, 𝑥", 𝑥#, 𝑥$ ∈ {0,1}

1

3

𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Incumbent: 𝒙∗ = (0,1,1,1)
𝑧∗ = 18

4 5

Optimal solution

Major challenge of using B&B

Many different ways to configure/optimize this algorithm, e.g.:
• Node selection policy
• Variable selection policy
• …

Best configuration for routing problems
likely not suited for scheduling

What’s the best configuration for the application at hand?

Node selection policy
𝑥! = 0 𝑥! = 1

𝑥" = 0 𝑥" = 1 𝑥" = 0 𝑥" = 1

Among many active nodes, which to explore next?

𝑥# = 0 𝑥# = 1 𝑥# = 0 𝑥# = 1

Node selection policy

• Depth-first search (DFS)
• Finds incumbent solutions quickly

• Best-first search (BFS)
• Explore node with highest

LP objective value
• The “most promising” nodes

• BFS with plunging
• Mix of BFS and DFS

Among many active nodes, which to explore next?

Variable selection policy
𝑥! = 0

𝑥" = 0 𝑥" = 1

Better branching order than 𝑥+, 𝑥,, 𝑥-, 𝑥.?

𝑥# = 0

𝑥$ = 0

𝑥# = 1

Variable selection policy
𝑥$ = 0

𝑥# = 0 𝑥# = 1

Better branching order than 𝑥+, 𝑥,, 𝑥-, 𝑥.? E.g., 𝑥., 𝑥-, 𝑥+, 𝑥,

𝑥! = 0

𝑥" = 0

𝑥! = 1

Variable selection policy

Chooses variables to branch on on-the-fly
Rather than pre-defined order

𝑥$ = 0

𝑥# = 0 𝑥# = 1

𝑥! = 0

𝑥" = 0

𝑥! = 1

Variable selection policy

On Problem(𝑗) with LP objective value 𝑧(𝑗):
• Let 𝑧34(𝑗) be the LP objective value after setting 𝑥3 = 1
• Let 𝑧35(𝑗) be the LP objective value after setting 𝑥3 = 0
• Branch on the variable 𝑥3 that maximizes

max 𝑧 𝑗 − 𝑧34 𝑗 , 𝑧 𝑗 − 𝑧35 𝑗

Maximal change in objective value

Variable selection policy

On Problem(𝑗) with LP objective value 𝑧(𝑗):
• Let 𝑧34(𝑗) be the LP objective value after setting 𝑥3 = 1
• Let 𝑧35(𝑗) be the LP objective value after setting 𝑥3 = 0
• Branch on the variable 𝑥3 that maximizes

min 𝑧 𝑗 − 𝑧34 𝑗 , 𝑧 𝑗 − 𝑧35 𝑗

Minimal change in objective value

Variable selection policy

On Problem(𝑗) with LP objective value 𝑧(𝑗):
• Let 𝑧34(𝑗) be the LP objective value after setting 𝑥3 = 1
• Let 𝑧35(𝑗) be the LP objective value after setting 𝑥3 = 0
• Branch on the variable 𝑥3 that maximizes

𝜇 ⋅ min 𝑧 𝑗 − 𝑧@A 𝑗 , 𝑧 𝑗 − 𝑧@B 𝑗 + 1 − 𝜇 ⋅ max 𝑧 𝑗 − 𝑧@A 𝑗 , 𝑧 𝑗 − 𝑧@B 𝑗

For some IPs, it’s better to choose 𝜇 closer to 0…
For others, it’s better to choose 𝜇 closer to 1

Often, 𝜇 = 6
7

works well [Achterberg, ‘09]

Variable selection policy

On Problem(𝑗) with LP objective value 𝑧(𝑗):
• Let 𝑧34(𝑗) be the LP objective value after setting 𝑥3 = 1
• Let 𝑧35(𝑗) be the LP objective value after setting 𝑥3 = 0
• Branch on the variable 𝑥3 that maximizes

𝜇 ⋅ min 𝑧 𝑗 − 𝑧@A 𝑗 , 𝑧 𝑗 − 𝑧@B 𝑗 + 1 − 𝜇 ⋅ max 𝑧 𝑗 − 𝑧@A 𝑗 , 𝑧 𝑗 − 𝑧@B 𝑗

Challenge: Computing 𝑧35 𝑗 , 𝑧34(𝑗) requires solving a lot of LPs
Computing all of these LP relaxations referred to as “strong-branching”

Pseudo-cost branching: only use estimates of these LP values

Variable selection policy

On Problem(𝑗) with LP objective value 𝑧(𝑗):
• Let 𝑧34(𝑗) be the LP objective value after setting 𝑥3 = 1
• Let 𝑧35(𝑗) be the LP objective value after setting 𝑥3 = 0
• Branch on the variable 𝑥3 that maximizes

𝜇 ⋅ min 𝑧 𝑗 − 𝑧@A 𝑗 , 𝑧 𝑗 − 𝑧@B 𝑗 + 1 − 𝜇 ⋅ max 𝑧 𝑗 − 𝑧@A 𝑗 , 𝑧 𝑗 − 𝑧@B 𝑗

Many other possible variable selection policies!
See, e.g., [Achterberg, ‘09]

Major challenge of using B&B

How to choose the best {node, variable, …}-selection policy?

Little theory about which to use when

This course:
Use machine learning to optimize B&B’s performance

Outline

1. Linear programming
2. Integer programming
3. SAT solving (SAT solvers also use tree search)
4. Next steps

SAT refresher
• 𝑥+, 𝑥,, 𝑥-, … ∈ {0,1}
• 𝑥̅+ means Not 𝑥+
• If 𝑥C = 1 then 𝑥̅C = 0; if 𝑥C = 0 then 𝑥̅C = 1

• ∨ means Or
• 𝑥C ∨ 𝑥D evaluates to True if 𝑥C = 1 or 𝑥D = 1
• 𝑥C ∨ 𝑥̅D evaluates to True if 𝑥C = 1 or 𝑥D = 0

• ∧ means And
• 𝑥C ∧ 𝑥D evaluates to True if 𝑥C = 1 and 𝑥D = 1
• 𝑥C ∧ 𝑥̅D evaluates to True if 𝑥C = 1 and 𝑥D = 0

• (𝑥+ ∨ 𝑥,) ∧ (𝑥, ∨ 𝑥̅-) evaluates to True for 𝑥+, 𝑥,, 𝑥- = (1,0,0)

SAT refresher

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

SAT: Is there an assignment of 𝑥+, … , 𝑥+, ∈ {0,1}
such that this formula evaluates to True?

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 𝑥! = 1
𝑥!

How to prune if there’s
no objective function?

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0
𝑥!

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥!

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥# = 1

𝑥#

𝑥!

𝑥# = 0

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥# = 1

𝑥#

𝑥!

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥# = 1 ⇒ 𝑥' = 0

𝑥#

𝑥!

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥# = 1 ⇒ 𝑥' = 0 ⇒ 𝑥!" = 1

𝑥#

𝑥!

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥# = 1 ⇒ 𝑥' = 0 ⇒ 𝑥!" = 1

𝑥#

𝑥"

𝑥!

𝑥" = 0

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥# = 1 ⇒ 𝑥' = 0 ⇒ 𝑥!" = 1

𝑥#

𝑥"

𝑥!

𝑥" = 0 ⇒
𝑥!! = 1

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥# = 1 ⇒ 𝑥' = 0 ⇒ 𝑥!" = 1

𝑥#

𝑥"

𝑥!

𝑥(

𝑥" = 0 ⇒
𝑥!! = 1

𝑥(= 1 ⇒ 𝑥) = 1

SAT tree search

∧ 𝑥+ ∨ 𝑥.
∧ 𝑥+ ∨ 𝑥̅- ∨ 𝑥̅8
∧ 𝑥+ ∨ 𝑥8 ∨ 𝑥+,
∧ 𝑥, ∨ 𝑥++
∧ 𝑥̅9 ∨ 𝑥̅- ∨ 𝑥:
∧ 𝑥̅9 ∨ 𝑥8 ∨ 𝑥̅:
∧ 𝑥9 ∨ 𝑥8 ∨ 𝑥̅+;
∧ 𝑥9 ∨ 𝑥+; ∨ 𝑥̅+,

𝑥! = 0 ⇒
𝑥$ = 1

𝑥# = 1 ⇒ 𝑥' = 0 ⇒ 𝑥!" = 1

𝑥#

𝑥"

𝑥!

𝑥(

𝑥" = 0 ⇒
𝑥!! = 1

𝑥(= 1 ⇒ 𝑥) = 1

SAT tree search

Many similar design choices as IP tree search

Variable selection: branch on variable that leads to the
largest number of deductions on other variables

Outline

1. Linear programming
2. Integer programming
3. SAT solving
4. Next steps

Next steps

• Today: Saw many ways solvers can be optimized & configured
• With a deft configuration:

Can quickly solve extremely challenging real-world problems

• Future classes: How to use ML to optimize these solvers

Routing Manufacturing Scheduling Planning Finance

Plan for the next few classes

This Thursday: GNNs overview

Tu 4/18, Th 4/20: GNN paper discussions

Tu 4/25, Th 4/27: IP/SAT paper discussions

