Discrete optimization crash course

Content draws on material from Optimization Methods in Management Science from MIT Sloan

An important property of algorithms used in practice is broad applicability

Example: Integer programming solvers

Most popular tool for solving combinatorial (\& nonconvex) problems

Routing

Manufacturing

Scheduling

Planning

Finance

P
...but they can have unsatisfactory default performance Slow runtime, poor solutions, ...

Integer programming (IP)

IP solvers (CPLEX, Gurobi) have a ton of parameters

- CPLEX has 170-page manual describing $\mathbf{1 7 2}$ parameters
- Tuning by hand is notoriously slow, tedious, and error-prone

CPX_PARAM_TILIM $159{ }^{157}$

Integer programming (IP)

IP solvers (CPLEX, Gurobi) have a ton of parameters

- CPLEX has 170-page manual describing $\mathbf{1 7 2}$ parameters
- Tuning by hand is notoriously slow, tedious, and error-prone

What's the best configuration for the application at hand?

Best configuration for routing problems likely not suited for schedulling

Plan

This class: Overview of how these solvers work

Future classes: How to use ML to optimize these solvers

Outline

1. Linear programming

2. Integer programming
3. SAT solving
4. Next steps

Linear programming

Linear programming (LP) is a central topic in optimization

Provides a powerful tool for modeling many applications

Tons of attention over past two decades due to:

- Applicability: Many real-world applications can be modeled via LPs
- Solvability: Efficient techniques for solving large-scale problems

Basic components of an LP

Each optimization problem consists of 3 elements:

- Decision variables: describe our choices that are under our control;
- Objective function: Criterion that we wish to minimize (e.g., cost)
or maximize (e.g., profit)
- Constraints: Limitations restricting our choices for decision variables
"Linear programming" refers to an optimization problem where:
- The objective function is linear
- Each constraint is a linear inequality or equality

An introductory example

A company makes two products (say, P and Q)

- Uses two machines (say, A and B)

Each unit of P that is produced requires:

- 50 minutes processing time on machine A, and
- 30 minutes processing time on machine B

Each unit of Q that is produced requires:

- 24 minutes processing time on machine A, and
- 33 minutes processing time on machine B

An introductory example

- Machine A is going to be available for 40 hours
- Machine B is available for 35 hours
- Profit per unit of P is $\$ 28$
- Profit per unit of Q is $\$ 30$
- Goal: determine production quantity of P and Q such that:

1. Total profit is maximized
2. Available resources aren't exceeded

- Task: formulate this problem as an LP

Step 1: Defining the decision variables

Decision variables: Describe choices under our control

Goal: determine production quantity of P and Q such that ...

So there are 2 decision variables:
x : the number of units of P
y : the number of units of Q

Step 2: Choosing an objective function

Usually seek a criterion to compare alternative solutions
This yields the objective function
Want to maximize the total profit

- Profit per each unit of product P is $\$ 28$
- Profit per each unit of Q is $\$ 30$

Total profit is $28 x+30 y$ if we produce x units of $\mathrm{P} \& y$ units of Q
Leads to the following objective function:
$\max 28 x+30 y$

Step 3: Identifying the constraints

Often are limitations that restrict our decisions
Resource, physical, strategic, economical

We describe these limitations using mathematical constraints

Step 3: Identifying the constraints

- Each unit of P requires 50 minutes on machine A
- Each unit of Q requires 24 minutes on machine A
- If we produce x units of P and y units of Q :
- Machine A needs to be used for $50 x+24 y$
- Machine A is available for 40 hours $=2400$ minutes
- This imposes the following constraint: $50 x+24 y \leq 2400$
- Similarly, amount of time machine B is available means that:

$$
30 x+33 y \leq 2100
$$

Step 3: Identifying the constraints

In most problems, decision variables must be nonnegative

So need to include the following two constraints as well: $x \geq 0$ and $y \geq 0$

In the end, the constraints we're subject to (s.t.) are :

$$
\begin{aligned}
& 50 x+24 y \leq 2400, \text { (machine A time) } \\
& 30 x+33 y \leq 2100, \text { (machine B time) } \\
& x \geq 0, \\
& y \geq 0
\end{aligned}
$$

LP for the example

Here is the LP:
maximize $28 x+30 y$
subject to $50 x+24 y \leq 2400$
$30 x+33 y \leq 2100$
$x \geq 0$ and $y \geq 0$

Optimal solution: $x=30.97, y=35.48$

LP for the example

Fact: Optimal solution of an LP is always at a vertex

LP algorithms

Simplex algorithm: Practical algorithm for solving LPs

- May run in exponential time in the worst case
- Provable runs in polynomial time on "realistic" LPs
- Used by commercial solvers like CPLEX, Gurobi, ...

Ellipsoid method: Impractical but provably runs in poly-time

Outline

1. Linear programming
2. Integer programming
3. SAT solving
4. Next steps

Integer programming (IP)

What if the decision variables must be integral?

```
maximize 28x+30y
subject to 50x +24y\leq2400
    30x+33y\leq2100
    x\geq0 and y\geq0
    x,y\in\mathbb{Z}
```


Integer programming is NP-complete

Example: vertex cover

Vertex cover of a graph:
Set of vertices that includes ≥ 1 endpoint of every edge

Example: vertex cover

Vertex cover of a graph:
Set of vertices that includes ≥ 1 endpoint of every edge

Example: vertex cover

Vertex cover of a graph:
Set of vertices that includes ≥ 1 endpoint of every edge

Goal: Find a vertex cover of minimal size

Vertex cover IP

Input: Graph $G=(V, E)$ with vertex set V, edge set E

1. Decision variables: For each vertex $v \in V$,

$$
y_{v}= \begin{cases}1 & \text { if } v \text { in vertex cover } \\ 0 & \text { otherwise }\end{cases}
$$

2. Objective function: minimize $\sum_{v \in V} y_{v}$
3. Constraints:

For every edge $(u, v) \in E$, need $y_{u}=1$ and/or $y_{v}=1$ In other words: $y_{u}+y_{v} \geq 1$

Vertex cover IP

Input: Graph $G=(V, E)$ with vertex set V, edge set E
minimize $\sum_{v \in V} y_{v}$
subject to $y_{u}+y_{v} \geq 1$ for all $(u, v) \in E$
$y_{v} \in\{0,1\}$ for all $v \in V$
Binary integer program

LP relaxations

Input: Graph $G=(V, E)$ with vertex set V, edge set E
minimize $\quad \sum_{v \in V} y_{v}$
subject to $y_{u}+y_{v} \geq 1$ for all $(u, v) \in E$

$$
0 \leq y_{v} \leq 1
$$

$$
\hat{y}_{v} \subset(0,1\}
$$

If you remove the integrality constraints, you obtain the LP relaxation of the IP

LP relaxations

Integer program
 $\max \boldsymbol{c} \cdot \boldsymbol{x}$
 s.t. $\quad \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ $x \in \mathbb{Z}^{n}$

LP relaxation
 $\max \boldsymbol{c} \cdot \boldsymbol{x}$
 s.t. $\quad A \boldsymbol{x} \leq \boldsymbol{b}$ $x \subset \mathbb{Z n}$

$\boldsymbol{x}_{I P}^{*}=$ optimal solution to IP
$\boldsymbol{x}_{L P}^{*}=$ optimal solution to LP relaxation
Fact: $\boldsymbol{c} \cdot \boldsymbol{x}_{I P}^{*} \leq \boldsymbol{c} \cdot \boldsymbol{x}_{L P}^{*}$

LP relaxations

Integer program $\min \boldsymbol{c} \cdot \boldsymbol{x}$
 s.t. $\quad \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ $x \in \mathbb{Z}^{n}$

$\boldsymbol{x}_{I P}^{*}=$ optimal solution to IP $\boldsymbol{x}_{L P}^{*}=$ optimal solution to LP relaxation Fact: $\boldsymbol{c} \cdot \boldsymbol{x}_{I P}^{*} \geq \boldsymbol{c} \cdot \boldsymbol{x}_{L P}^{*}$

LP relaxation $\min \boldsymbol{c} \cdot \boldsymbol{x}$
 s.t. $\quad A \boldsymbol{x} \leq \boldsymbol{b}$ $x \subset \mathbb{Z}$

Integer programming solvers

Most popular tool for solving combinatorial problems

Robust ML

Routing

Manufacturing

Scheduling

Planning

Branch-and-bound

maximize $15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4}$
subject to $8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10$
$x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}$

Branch-and-bound

$$
\begin{array}{ll}
\operatorname{maximize} & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
$$

- Enumeration tree: enumerates all possible solutions of an IP
- At each node, branch on an integer variable
- On each branch, integer variable is restricted to take certain values

$$
\text { Branch-and-bound } \begin{aligned}
& \text { maximize } \\
& \text { subject to }
\end{aligned} \begin{aligned}
& 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
& 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{aligned}
$$

- Enumeration tree: enumerates all possible solutions of an IP
- If we can enumerate all solutions with the tree, why not compute objective for each solution and pick the best one?
- Would work, but \# possible solutions explodes exponentially

$$
\text { Branch-anの-ด○unの } \begin{array}{ll}
\text { maximize } & \begin{array}{l}
15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } \\
8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
\end{array}
$$

Key idea of branch-and-bound (B\&B):

- Using LP relaxations, bound the optimal integer solutions in subtrees of the enumeration tree

$$
\text { Branch-ano-@ouno } \begin{array}{ll}
\text { maximize } & \begin{array}{l}
15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } \\
8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
\end{array}
$$

Key idea of branch-and-bound (B\&B):

- Using LP relaxations, bound the optimal integer solutions in subtrees of the enumeration tree
- Allows us to eliminate a lot of the enumeration tree

$$
\text { Branch-and-oound } \begin{array}{ll}
\text { maximize } & \begin{array}{l}
15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } \\
8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
\end{array}
$$

To start, we assume we have a feasible solution \boldsymbol{x}^{*}

- E.g., $\boldsymbol{x}^{*}=(0,0,0,0)$

At each iteration of $B \& B$:

- \boldsymbol{x}^{*} is the incumbent solution
- Its objective value z^{*} is the incumbent objective

Here, incumbent means "best so far"

Branch-and-bound

1. Mark the root node as active

2. While there remain active nodes:

Branch-and-bound

1. Mark the root node as active

2. While there remain active nodes:
i. Select an active node j and mark it as inactive
ii. $\quad x(j)=$ optimal solution of LP relaxation of Problem(j)
iii. $z(j)=$ objective value of $x(j)$
iv. Case 1: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ isn't feasible for IP then

Mark the direct descendants of node j as active
Possible to find a better incumbent solution among j's descendants

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:
i. Select an active node j and mark it as inactive
ii. $\quad x(j)=$ optimal solution of LP relaxation of Problem(j)
iii. $z(j)=$ objective value of $\boldsymbol{x}(j)$
iv. Case 1: If $z^{*}<z(j)$ and $x(j)$ isn't feasible for IP then

Mark the direct descendants of node j as active
Possible to find a better incumbent solution among j's descendants

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:
i. Select an active node j and mark it as inactive
ii. $\quad x(j)=$ optimal solution of LP relaxation of Problem(j)
iii. $z(j)=$ objective value of $\boldsymbol{x}(j)$
iv. Case 1: If $z^{*}<z(j)$ and $x(j)$ isn't feasible for IP then

Mark the direct descendants of node j as active
v. Case 2: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ is feasible for IP then

Replace the incumbent by $\boldsymbol{x}(j)$ and prune node j
Could be the optimal solution!

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:
i. Select an active node j and mark it as inactive
ii. $\quad x(j)=$ optimal solution of LP relaxation of Problem(j)
iii. $z(j)=$ objective value of $\boldsymbol{x}(j)$
iv. Case 1: If $z^{*}<z(j)$ and $x(j)$ isn't feasible for IP then

Mark the direct descendants of node j as active
v. Case 2: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ is feasible for IP then

Replace the incumbent by $\boldsymbol{x}(j)$ and prune node j

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:
i. Select an active node j and mark it as inactive
ii. $\quad x(j)=$ optimal solution of LP relaxation of Problem(j)
iii. $z(j)=$ objective value of $\boldsymbol{x}(j)$
iv. Case 1: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ isn't feasible for IP then

Mark the direct descendants of node j as active
v. Case 2: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ is feasible for IP then

Replace the incumbent by $x(j)$ and prune node j

Branch-and-bound

1. Mark the root node as active

2. While there remain active nodes:
i. Select an active node j and mark it as inactive
ii. $\quad x(j)=$ optimal solution of LP relaxation of Problem(j)
iii. $z(j)=$ objective value of $\boldsymbol{x}(j)$
iv. Case 1: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ isn't feasible for IP then

Mark the direct descendants of node j as active
v. Case 2: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ is feasible for IP then

Replace the incumbent by $x(j)$ and prune node j
vi. Case 3: If LP is infeasible or $z^{*} \geq z(j)$ then prune node j

Branch-and-bound

1. Mark the root node as active
2. While there remain active nodes:
i. Select an active node j and mark it as inactive
ii. $\quad \boldsymbol{x}(j)=$ optimal solution of LP relaxation of Problem (j)
iii. $\quad z(j)=$ objective value of $x(j)$
iv. Case 1: If $z^{*}<z(j)$ and $x(j)$ isn't feasible for IP then

Mark the direct descendants of node j as active
v. Case 2: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ is feasible for IP then

Replace the incumbent by $\boldsymbol{x}(j)$ and prune node j
vi. Case 3: If LP is infeasible or $z^{*} \geq z(j)$ then prune node j

$$
\begin{array}{ll}
\operatorname{maximize} & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
$$

Case 1: If $z^{*}<z(j)$ and $x(j)$ isn't feasible for IP then Mark the direct descendants of node j as active

Problem(1):

$\max \quad 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4}$
s.t

$$
8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10
$$

$$
x_{1}, x_{2}, x_{3}, x_{4} \in[0,1]
$$

$x(1)=\left(\frac{5}{8}, 1,0,0\right)$
$z(1)=21.38$

$$
\begin{aligned}
& \text { Incumbent: } \boldsymbol{x}^{*}=(0,0,0,0) \\
& z^{*}=0
\end{aligned}
$$

$$
\text { Branch-and-bound } \begin{array}{ll}
\text { maximize } & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
$$

Case 1: If $z^{*}<z(j)$ and $x(j)$ isn't feasible for IP then Mark the direct descendants of node j as active

$$
\begin{aligned}
\text { Incumbent: } \boldsymbol{x}^{*} & =(0,0,0,0) \\
z^{*} & =0
\end{aligned}
$$

Problem(1):

$\max \quad 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4}$
s.t

$$
8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10
$$

$$
x_{1}, x_{2}, x_{3}, x_{4} \in[0,1]
$$

$x(1)=\left(\frac{5}{8}, 1,0,0\right)$
$z(1)=21.38$

$$
\begin{array}{ll}
\text { maximize } & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
$$

$$
\begin{aligned}
& \text { Incumbent: } \boldsymbol{x}^{*}=(0,0,0,0) \\
& z^{*}=0
\end{aligned}
$$

Case 2: If $z^{*}<z(j)$ and $\boldsymbol{x}(j)$ is feasible for IP then Replace the incumbent by $\boldsymbol{x}(j)$ and prune node j

$$
\begin{aligned}
& \text { Problem(2): } \\
& \text { max } \quad 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
& \text { s.t } \quad 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& \\
& \\
& \\
& \\
& \\
& \\
& x_{1}=0 \\
& x_{2}, x_{3}, x_{4} \in[0,1] \\
& x(2)=(0,1,1,1) \\
& z(2)=18
\end{aligned}
$$

Branch-and-bound

$$
\begin{array}{ll}
\text { maximize } & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
$$

$$
\text { Branch-anの-@ounの } \quad \begin{array}{ll}
\text { maximize } & \begin{array}{l}
15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } \\
8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
\end{array}
$$

$$
\text { Branch-and-bound } \begin{array}{ll}
\text { maximize } & \begin{array}{l}
15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } \\
8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
\end{array}
$$

$$
\begin{aligned}
\text { Incumbent: } \boldsymbol{x}^{*} & =(0,1,1,1) \\
z^{*} & =18
\end{aligned}
$$

(3)

$$
x_{2}=0
$$

$$
x_{2}=1
$$

Case 1: If $z^{*}<z(j)$ and $x(j)$ isn't feasible for IP then Mark the direct descendants of node j as active

$$
\begin{aligned}
x(3) & =\left(\frac{5}{8}, 1,0,0\right) \\
z(3) & =21.38
\end{aligned}
$$

Problem(3):

$\max \quad 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4}$
s.t $\quad 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10$
$x_{1}=1$
$x_{2}, x_{3}, x_{4} \in[0,1]$

$$
\begin{array}{ll}
\text { maximize } & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
$$

$$
\begin{aligned}
\text { Incumbent: } \boldsymbol{x}^{*} & =(0,1,1,1) \\
z^{*} & =18
\end{aligned}
$$

Case 3: If LP is infeasible or $z^{*} \geq z(j)$ then prune node j

$$
\begin{array}{ll}
\text { maximize } & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
$$

$$
\begin{aligned}
\text { Incumbent: } \boldsymbol{x}^{*} & =(0,1,1,1) \\
z^{*} & =18
\end{aligned}
$$

Case 3: If LP is infeasible or $z^{*} \geq z(j)$ then prune node j

$$
\text { Branch-and-bound } \begin{array}{ll}
\text { maximize } & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
$$

$$
\begin{aligned}
& \text { Incumbent: } \boldsymbol{x}^{*}=(0,1,1,1) \\
& z^{*}=18
\end{aligned}
$$

Case 3: If LP is infeasible or $z^{*} \geq z(j)$ then prune node j

Problem(5):

max
$15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4}$
s.t
$8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10$
$x_{1}=1$
$x_{2}=1$
$x_{3}, x_{4} \in[0,1]$
$\boldsymbol{x}(5)=$ infeasible
$z(5)=$ infeasible

$$
\text { Branch-and-bound } \begin{aligned}
& \text { maximize } \\
& \text { subject to }
\end{aligned} \begin{aligned}
& 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
& 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{aligned}
$$

Problem(5):

$$
\begin{array}{ll}
\text { max } & 15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { s.t } & 8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
& x_{1}=1 \\
& x_{2}=1 \\
& x_{3}, x_{4} \in[0,1]
\end{array}
$$

$\boldsymbol{x}(5)=$ infeasible
$z(5)=$ infeasible

$$
\text { Branch-and-bound } \begin{array}{ll}
\text { maximize } & \begin{array}{l}
15 x_{1}+12 x_{2}+4 x_{3}+2 x_{4} \\
\text { subject to } \\
8 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{array}
\end{array}
$$

Optimal solution

Major challenge of using B\&B

Many different ways to configure/optimize this algorithm, e.g.:

- Node selection policy
- Variable selection policy
- ...

What's the best configuration for the application at hand?

Best configuration for routing problems likely not suited for scheduling

Node selection policy

Among many active nodes, which to explore next?

Node selection policy

Among many active nodes, which to explore next?

- Depth-first search (DFS)
- Finds incumbent solutions quickly
- Best-first search (BFS)
- Explore node with highest LP objective value
- The "most promising" nodes
- BFS with plunging
- Mix of BFS and DFS

Variable selection policy

Better branching order than $x_{1}, x_{2}, x_{3}, x_{4}$?

Variable selection policy

Better branching order than $x_{1}, x_{2}, x_{3}, x_{4}$? E.g., $x_{4}, x_{3}, x_{1}, x_{2}$

Variable selection policy

Chooses variables to branch on on-the-fly Rather than pre-defined order

Variable selection policy

On Problem(j) with LP objective value $z(j)$:

- Let $z_{i}^{+}(j)$ be the LP objective value after setting $x_{i}=1$
- Let $z_{i}^{-}(j)$ be the LP objective value after setting $x_{i}=0$
- Branch on the variable x_{i} that maximizes

$$
\max \left\{z(j)-z_{i}^{+}(j), z(j)-z_{i}^{-}(j)\right\}
$$

Variable selection policy

On Problem(j) with LP objective value $z(j)$:

- Let $z_{i}^{+}(j)$ be the LP objective value after setting $x_{i}=1$
- Let $z_{i}^{-}(j)$ be the LP objective value after setting $x_{i}=0$
- Branch on the variable x_{i} that maximizes

$$
\min \left\{z(j)-z_{i}^{+}(j), z(j)-z_{i}^{-}(j)\right\}
$$

Variable selection policy

On Problem (j) with LP objective value $z(j)$:

- Let $z_{i}^{+}(j)$ be the LP objective value after setting $x_{i}=1$
- Let $z_{i}^{-}(j)$ be the LP objective value after setting $x_{i}=0$
- Branch on the variable x_{i} that maximizes
$\mu \cdot \min \left\{z(j)-z_{i}^{+}(j), z(j)-z_{i}^{-}(j)\right\}+(1-\mu) \cdot \max \left\{z(j)-z_{i}^{+}(j), z(j)-z_{i}^{-}(j)\right\}$

For some IPs, it's better to choose μ closer to $0 \ldots$ For others, it's better to choose μ closer to 1
Often, $\mu=\frac{5}{6}$ works well [Achterberg, '09]

Variable selection policy

On Problem(j) with LP objective value $z(j)$:

- Let $z_{i}^{+}(j)$ be the LP objective value after setting $x_{i}=1$
- Let $z_{i}^{-}(j)$ be the LP objective value after setting $x_{i}=0$
- Branch on the variable x_{i} that maximizes
$\mu \cdot \min \left\{z(j)-z_{i}^{+}(j), z(j)-z_{i}^{-}(j)\right\}+(1-\mu) \cdot \max \left\{z(j)-z_{i}^{+}(j), z(j)-z_{i}^{-}(j)\right\}$
Challenge: Computing $z_{i}^{-}(j), z_{i}^{+}(j)$ requires solving a lot of LPs Computing all of these LP relaxations referred to as "strong-branching" Pseudo-cost branching: only use estimates of these LP values

Variable selection policy

On Problem(j) with LP objective value $z(j)$:

- Let $z_{i}^{+}(j)$ be the LP objective value after setting $x_{i}=1$
- Let $z_{i}^{-}(j)$ be the LP objective value after setting $x_{i}=0$
- Branch on the variable x_{i} that maximizes
$\mu \cdot \min \left\{z(j)-z_{i}^{+}(j), z(j)-z_{i}^{-}(j)\right\}+(1-\mu) \cdot \max \left\{z(j)-z_{i}^{+}(j), z(j)-z_{i}^{-}(j)\right\}$

Many other possible variable selection policies!
See, e.g., [Achterberg, '09]

Major challenge of using B\&B

How to choose the best \{node, variable, ...\}-selection policy?

Little theory about which to use when

This course:

Use machine learning to optimize B\&B's performance

Outline

1. Linear programming
2. Integer programming
3. SAT solving (SAT solvers also use tree search)
4. Next steps

SAT refresher

- $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}$
- \bar{x}_{1} means Not x_{1}
- If $x_{1}=1$ then $\bar{x}_{1}=0$; if $x_{1}=0$ then $\bar{x}_{1}=1$
- V means $\mathbf{O r}$
- $x_{1} \vee x_{2}$ evaluates to True if $x_{1}=1$ or $x_{2}=1$
- $x_{1} \vee \bar{x}_{2}$ evaluates to True if $x_{1}=1$ or $x_{2}=0$
- \wedge means And
- $x_{1} \wedge x_{2}$ evaluates to True if $x_{1}=1$ and $x_{2}=1$
- $x_{1} \wedge \bar{x}_{2}$ evaluates to True if $x_{1}=1$ and $x_{2}=0$
- $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)$ evaluates to True for $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$

SAT refresher

$\left(x_{1} \vee x_{4}\right) \quad$ SAT: Is there an assignment of $x_{1}, \ldots, x_{12} \in\{0,1\}$ $\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$ such that this formula evaluates to True?

$$
\begin{aligned}
& \wedge\left(x_{1} \vee x_{8} \vee x_{12}\right) \\
& \wedge\left(x_{2} \vee x_{11}\right) \\
& \wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right) \\
& \wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right) \\
& \wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right) \\
& \wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)
\end{aligned}
$$

SAT tree search

$$
\begin{aligned}
&\left(x_{1} \vee x_{4}\right) \\
& \wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right) \\
& \wedge\left(x_{1} \vee x_{8} \vee x_{12}\right) \\
& \wedge\left(x_{2} \vee x_{11}\right) \\
& \wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right) \\
& \wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right) \\
& \wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right) \\
& \wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)
\end{aligned}
$$

How to prune if there's no objective function?

SAT tree search

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \\
\wedge & \left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right) \\
\wedge & \left(x_{1} \vee x_{8} \vee x_{12}\right) \\
\wedge & \left(x_{2} \vee x_{11}\right) \\
\wedge & \left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right) \\
\wedge & \left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right) \\
\wedge & \left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right) \\
\wedge & \left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)
\end{aligned}
$$

SAT tree search

$$
\begin{aligned}
& x_{1}=0 \Rightarrow \\
& x=1
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \\
\wedge & \left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right) \\
\wedge & \left(x_{1} \vee x_{8} \vee x_{12}\right) \\
\wedge & \left(x_{2} \vee x_{11}\right) \\
\wedge & \left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right) \\
\wedge & \left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right) \\
\wedge & \left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right) \\
\wedge & \left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)
\end{aligned}
$$

$$
x_{4}=1
$$

SAT tree search

$\left(x_{1} \vee x_{4}\right)$
$\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$
$\wedge\left(x_{1} \vee x_{8} \vee x_{12}\right)$
$\wedge\left(x_{2} \vee x_{11}\right)$
$\wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right)$
$\wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right)$
$\wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right)$
$\wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)$

SAT tree search

$\left(x_{1} \vee x_{4}\right)$
$\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$
$\wedge\left(x_{1} \vee x_{8} \vee x_{12}\right)$
$\wedge\left(x_{2} \vee x_{11}\right)$
$\wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right)$
$\wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right)$
$\wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right)$
$\wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)$

SAT tree search

$\left(x_{1} \vee x_{4}\right)$
$\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$
$\wedge\left(x_{1} \vee x_{8} \vee x_{12}\right)$
$\wedge\left(x_{2} \vee x_{11}\right)$
$\wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right)$
$\wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right)$
$\wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right)$
$\wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)$

SAT tree search

$\left(x_{1} \vee x_{4}\right)$
$\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$
$\wedge\left(x_{1} \vee x_{8} \vee x_{12}\right)$
$\wedge\left(x_{2} \vee x_{11}\right)$
$\wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right)$
$\wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right)$
$\wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right)$
$\wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)$

SAT tree search

$\left(x_{1} \vee x_{4}\right)$
$\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$
$\wedge\left(x_{1} \vee x_{8} \vee x_{12}\right)$
$\wedge\left(x_{2} \vee x_{11}\right)$
$\wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right)$
$\wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right)$
$\wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right)$
$\wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)$

SAT tree search

$\left(x_{1} \vee x_{4}\right)$
$\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$
$\wedge\left(x_{1} \vee x_{8} \vee x_{12}\right)$
$\wedge\left(x_{2} \vee x_{11}\right)$
$\wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right)$
$\wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right)$
$\wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right)$
$\wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)$

SAT tree search

$\left(x_{1} \vee x_{4}\right)$
$\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$
$\wedge\left(x_{1} \vee x_{8} \vee x_{12}\right)$
$\wedge\left(x_{2} \vee x_{11}\right)$
$\wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right)$
$\wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right)$
$\wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right)$
$\wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)$

SAT tree search

$\left(x_{1} \vee x_{4}\right)$
$\wedge\left(x_{1} \vee \bar{x}_{3} \vee \bar{x}_{8}\right)$
$\wedge\left(x_{1} \vee x_{8} \vee x_{12}\right)$
$\wedge\left(x_{2} \vee x_{11}\right)$
$\wedge\left(\bar{x}_{7} \vee \bar{x}_{3} \vee x_{9}\right)$
$\wedge\left(\bar{x}_{7} \vee x_{8} \vee \bar{x}_{9}\right)$
$\wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{10}\right)$
$\wedge\left(x_{7} \vee x_{10} \vee \bar{x}_{12}\right)$

SAT tree search

Many similar design choices as IP tree search

Variable selection: branch on variable that leads to the largest number of deductions on other variables

Outline

1. Linear programming
2. Integer programming
3. SAT solving
4. Next steps

Next steps

- Today: Saw many ways solvers can be optimized \& configured
- With a deft configuration:

Can quickly solve extremely challenging real-world problems

Scheduling

Planning

Finance

- Future classes: How to use ML to optimize these solvers

Plan for the next few classes

This Thursday: GNNs overview

Tu 4/18, Th 4/20: GNN paper discussions

Tu 4/25, Th 4/27: IP/SAT paper discussions

