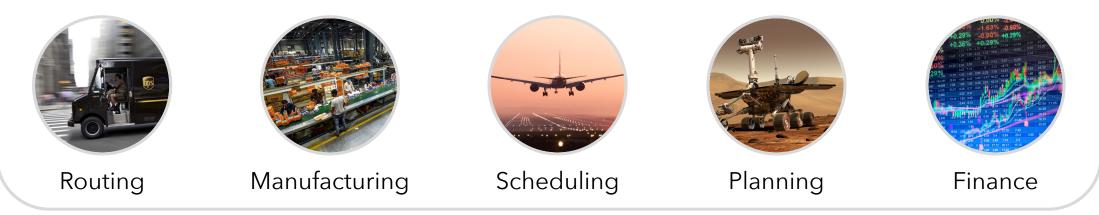
Discrete optimization crash course

Content draws on material from <u>Optimization Methods in Management</u> <u>Science</u> from MIT Sloan

An important property of algorithms used in practice is **broad applicability**

Example: Integer programming solvers

Most popular tool for solving combinatorial (& nonconvex) problems



...but they can have **unsatisfactory** default performance Slow runtime, poor solutions, ...

Integer programming (IP)

IP solvers (CPLEX, Gurobi) have a ton of parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

CPX PARAM NODEFILEIND 100 CPX PARAM NODELIM 101 CPX PARAM NODESEL 102 CPX_PARAM_NZREADLIM 103 CPX PARAM OBJDIF 104 CPX_PARAM_OBJLLIM 105 CPX_PARAM_OBJULIM 105 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_PERIND 110 CPX PARAM PERLIM 111 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHAFTERTIME 116 CPX_PARAM_POLISHTIME (deprecated) 116 CPX_PARAM_POPULATELIM 117 CPX PARAM PPRIIND 118 CPX_PARAM_PREDUAL 119 CPX_PARAM_PREIND 120 CPX_PARAM_PRELINEAR 120 CPX_PARAM_PREPASS 121 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPX_PARAM_PROBE 123 CPX_PARAM_PROBEDETTIME 124 CPX_PARAM_PROBETIME 124 CPX_PARAM_QPMAKEPSDIND 125 CPX_PARAM_QPMETHOD 138 CPX PARAM OPNZREADLIM 126

CPX PARAM TRELIM 160 CPX_PARAM_TUNINGDETTILIM 160 CPX PARAM TUNINGDISPLAY 162 CPX_PARAM_NUMERICALEMPHASIS_102CPX_PARAM_TUNINGMEASURE_163 CPX_PARAM_TUNINGREPEAT 164 CPX_PARAM_TUNINGTILIM 165 CPX_PARAM_VARSEL 166 CPX_PARAM_WORKDIR 167 CPX_PARAM_WORKMEM 168 CPX PARAM WRITELEVEL 169 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPXPARAM_DistMIP_Rampup_Duration 128 CPXPARAM_LPMethod 136 CPXPARAM_MIP_Cuts_BQP 38 CPXPARAM_MIP_Cuts_LocalImplied 77 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM_MIP_Cuts_ZeroHalfCut 170 CPXPARAM_MIP_Limits_CutsFactor 52 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP_Limits_Solutions 79 CPXPARAM MIP Limits StrongCand 154 CPXPARAM_MIP_Limits_StrongIt 154 CPXPARAM_MIP_Limits_TreeMemory 160 CPXPARAM_MIP_OrderType 91 CPXPARAM_MIP_Pool_AbsGap 146 CPXPARAM_MIP_Pool_Capacity 147 CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130 CPX PARAM REDUCE 131 CPX_PARAM_REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX PARAM REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX_PARAM_RLT 136 CPX_PARAM_ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX_PARAM_SOLNPOOLAGAP_146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX_PARAM_SOLUTIONTYPE 152 CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX_PARAM_STRONGITLIM 154 CPX PARAM SUBALG 99 CPX_PARAM_SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156 CPX_PARAM_THREADS 157 CPX_PARAM_TILIM 159

CPXPARAM_MIP_Pool_RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM MIP SubMIP NodeLimit 155 CPXPARAM_OptimalityTarget 106 CPXPARAM Output WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM_Sifting_Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM_Tune_DetTimeLimit 160 CPXPARAM_Tune_Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM_Tune_TimeLimit 165 CPXPARAM_WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX_PARAM_FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX_PARAM_GUBCOVERS 75 CPX_PARAM_HEURFREQ 76 CPX_PARAM_IMPLBD 76 CPX_PARAM_INTSOLFILEPREFIX 78 CPX_PARAM_COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX_PARAM_NETITLIM 98 CPX PARAM NETPPRIIND 98

CPX PARAM BRDIR 39 CPX_PARAM_BTTOL 40 CPX_PARAM_CALCOCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX_PARAM_COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 83CPX_PARAM_DATACHECK 54 CPX PARAM DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX PARAM FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Integer programming (IP)

IP solvers (CPLEX, Gurobi) have a **ton** of parameters

- CPLEX has 170-page manual describing 172 parameters
- Tuning by hand is notoriously **slow**, **tedious**, and **error-prone**

What's the best **configuration** for the application at hand?

Best configuration for **routing** problems likely not suited for **scheduling**

This class: Overview of how these solvers work

Future classes: How to use ML to optimize these solvers

Outline

1. Linear programming

- 2. Integer programming
- 3. SAT solving
- 4. Next steps

Linear programming

Linear programming (LP) is a central topic in optimization

Provides a powerful tool for modeling many applications

Tons of attention over past two decades due to:

- Applicability: Many real-world applications can be modeled via LPs
- **Solvability:** Efficient techniques for solving large-scale problems

Basic components of an LP

Each optimization problem consists of 3 elements:

- **Decision variables**: describe our choices that are under our control;
- **Objective function**: Criterion that we wish to minimize (e.g., cost) or maximize (e.g., profit)
- **Constraints**: Limitations restricting our choices for decision variables

"Linear programming" refers to an optimization problem where:

- The **objective function** is linear
- Each **constraint** is a linear inequality or equality

An introductory example

A company makes two products (say, P and Q)

• Uses two machines (say, A and B)

Each unit of P that is produced requires:

- 50 minutes processing time on machine A, and
- 30 minutes processing time on machine B

Each unit of Q that is produced requires:

- 24 minutes processing time on machine A, and
- 33 minutes processing time on machine B

An introductory example

- Machine A is going to be available for 40 hours
- Machine B is available for 35 hours
- Profit per unit of P is \$28
- Profit per unit of Q is \$30
- **Goal:** determine production quantity of P and Q such that:
 - 1. Total profit is maximized
 - 2. Available resources aren't exceeded
- **Task:** formulate this problem as an LP

Step 1: Defining the decision variables

Decision variables: Describe choices under our control

Goal: determine production quantity of P and Q such that ...

So there are 2 decision variables: x: the number of units of P y: the number of units of Q

Step 2: Choosing an objective function

Usually seek a criterion to compare alternative solutions This yields the objective function

Want to maximize the total profit

- Profit per each unit of product P is \$28
- Profit per each unit of Q is \$30

Total profit is 28x + 30y if we produce x units of P & y units of Q

Leads to the following objective function: $\max 28x + 30y$

Linear

Step 3: Identifying the constraints

Often are limitations that restrict our decisions *Resource, physical, strategic, economical*

We describe these limitations using **mathematical constraints**

Step 3: Identifying the constraints

- Each unit of P requires 50 minutes on machine A
- Each unit of Q requires 24 minutes on machine A
- If we produce x units of P and y units of Q:
 - Machine A needs to be used for 50x + 24y
- Machine A is available for 40 hours = 2400 minutes
 - This imposes the following constraint: $50x + 24y \le 2400$
- Similarly, amount of time machine B is available means that: $30x + 33y \le 2100$

Step 3: Identifying the constraints

In most problems, decision variables must be nonnegative

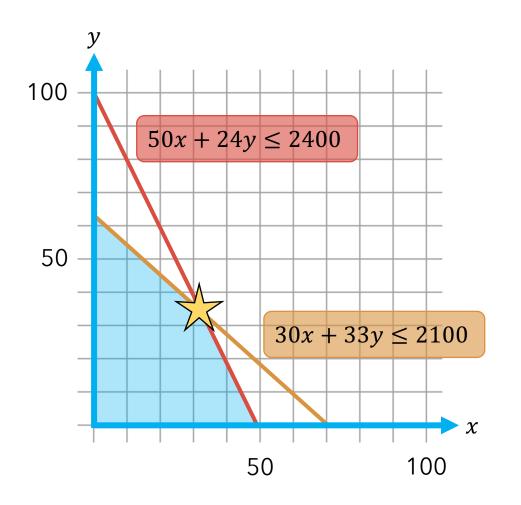
So need to include the following two constraints as well: $x \ge 0$ and $y \ge 0$

In the end, the constraints we're subject to (s.t.) are : $50x + 24y \le 2400$, (machine A time) $30x + 33y \le 2100$, (machine B time) $x \ge 0$, $y \ge 0$

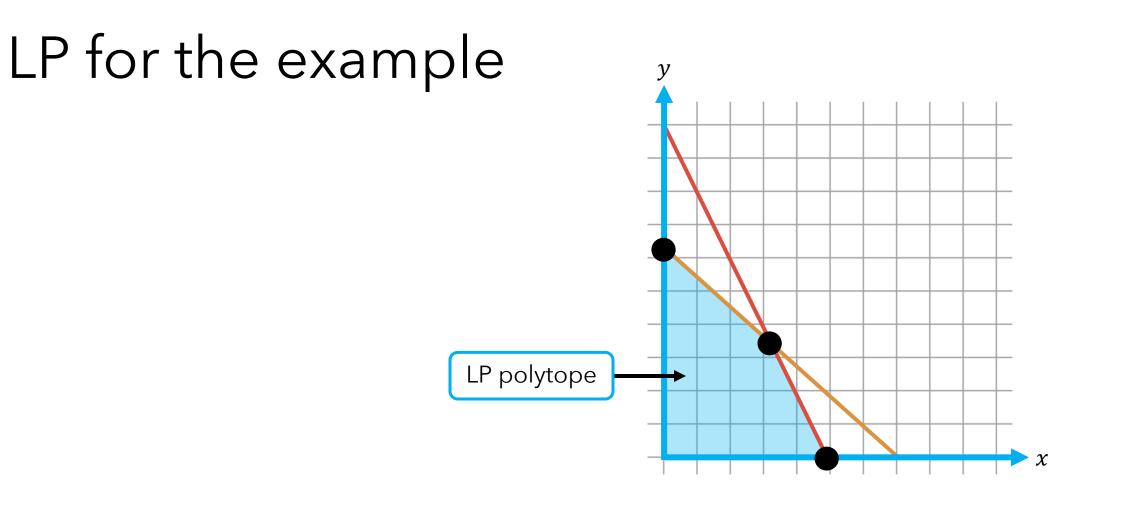
LP for the example

Here is the LP:

maximize 28x + 30ysubject to $50x + 24y \le 2400$ $30x + 33y \le 2100$ $x \ge 0$ and $y \ge 0$



Optimal solution: x = 30.97, y = 35.48



Fact: Optimal solution of an LP is always at a vertex

LP algorithms

Simplex algorithm: Practical algorithm for solving LPs

- May run in exponential time in the worst case
- Provable runs in polynomial time on "realistic" LPs
- Used by commercial solvers like CPLEX, Gurobi, ...

Ellipsoid method: Impractical but provably runs in poly-time

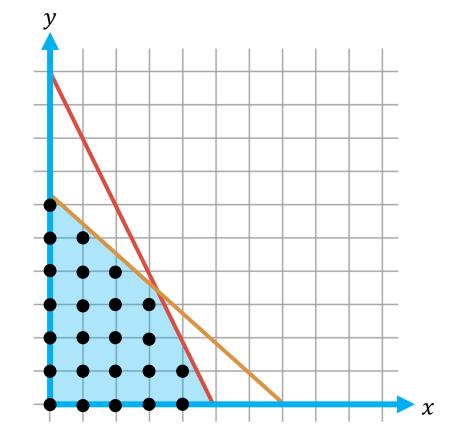
Outline

- 1. Linear programming
- 2. Integer programming
- 3. SAT solving
- 4. Next steps

Integer programming (IP)

What if the decision variables must be integral?

```
maximize 28x + 30y
subject to 50x + 24y \le 2400
30x + 33y \le 2100
x \ge 0 and y \ge 0
x, y \in \mathbb{Z}
```

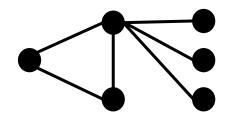


Integer programming is NP-complete

Example: vertex cover

Vertex cover of a graph:

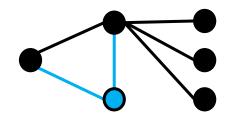
Set of vertices that includes ≥ 1 endpoint of every edge



Example: vertex cover

Vertex cover of a graph:

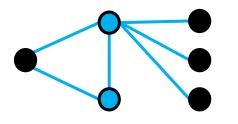
Set of vertices that includes ≥ 1 endpoint of every edge



Example: vertex cover

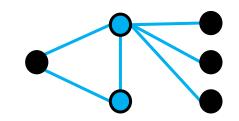
Vertex cover of a graph:

Set of vertices that includes ≥ 1 endpoint of every edge



Goal: Find a vertex cover of minimal size

Vertex cover IP

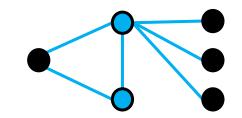


Input: Graph G = (V, E) with vertex set V, edge set E

- 1. Decision variables: For each vertex $v \in V$,
- $y_v = \begin{cases} 1 & \text{if } v \text{ in vertex cover} \\ 0 & \text{otherwise} \end{cases}$ 2. Objective function: minimize $\sum_{v \in V} y_v$
- 3. Constraints:

For every edge $(u, v) \in E$, need $y_u = 1$ and/or $y_v = 1$ In other words: $y_u + y_v \ge 1$

Vertex cover IP

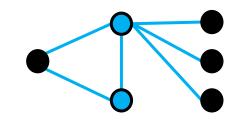


Input: Graph G = (V, E) with vertex set V, edge set E

 $\begin{array}{ll} \text{minimize} & \sum_{v \in V} y_v \\ \text{subject to} & y_u + y_v \geq 1 \text{ for all } (u,v) \in E \\ & y_v \in \{0,1\} \text{ for all } v \in V \end{array}$

Binary integer program

LP relaxations



Input: Graph G = (V, E) with vertex set V, edge set E

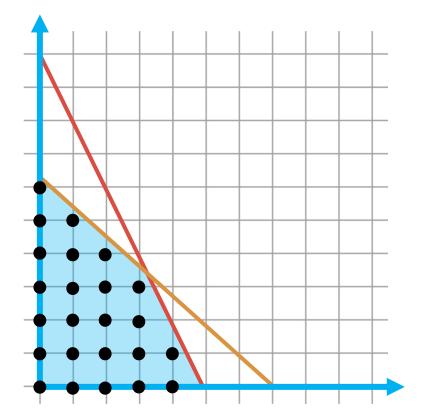
$$\begin{array}{ll} \text{minimize} & \sum_{v \in V} y_v \\ \text{subject to} & y_u + y_v \geq 1 \text{ for all } (u,v) \in E \\ & 0 \leq y_v \leq 1 \\ & \frac{y_v \in \{0,1\}}{2} \end{array}$$

If you remove the integrality constraints, you obtain the *LP relaxation* of the IP

LP relaxations

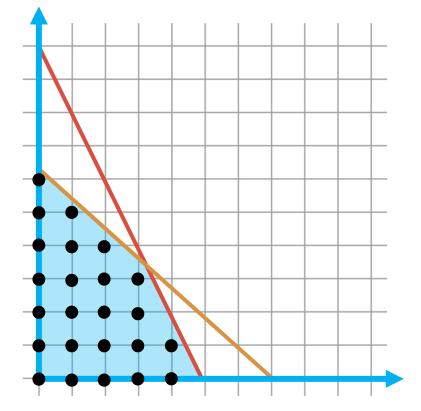
Integer program max $c \cdot x$ s.t. $Ax \leq b$ $x \in \mathbb{Z}^n$ LP relaxationmax $c \cdot x$ s.t. $Ax \leq b$ $x \in \mathbb{Z}^n$

 $x_{IP}^* = \text{optimal solution to IP}$ $x_{LP}^* = \text{optimal solution to LP relaxation}$ **Fact:** $c \cdot x_{IP}^* \leq c \cdot x_{LP}^*$



LP relaxations

Integer program min $c \cdot x$ s.t. $Ax \leq b$ $x \in \mathbb{Z}^n$ LP relaxationmin $c \cdot x$ s.t. $Ax \leq b$ $x \in \mathbb{Z}^n$



 $x_{IP}^* = \text{optimal solution to IP}$ $x_{LP}^* = \text{optimal solution to LP relaxation}$ Fact: $c \cdot x_{IP}^* \ge c \cdot x_{LP}^*$

Integer programming solvers

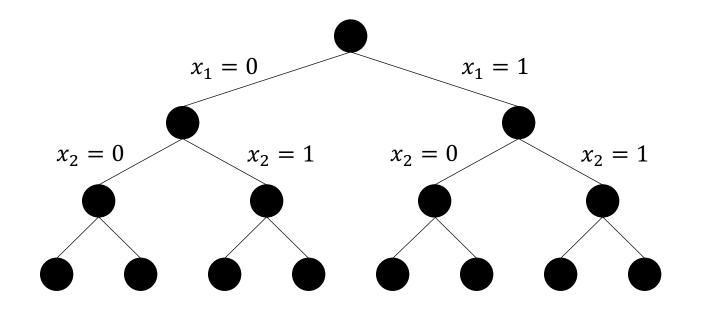
Most popular tool for solving combinatorial problems

maximize $15x_1 + 12x_2 + 4x_3 + 2x_4$ subject to $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

maximize subject to

 $15x_1 + 12x_2 + 4x_3 + 2x_4$ $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

- Enumeration tree: enumerates all possible solutions of an IP
- At each node, *branch* on an integer variable
 - On each branch, integer variable is restricted to take certain values



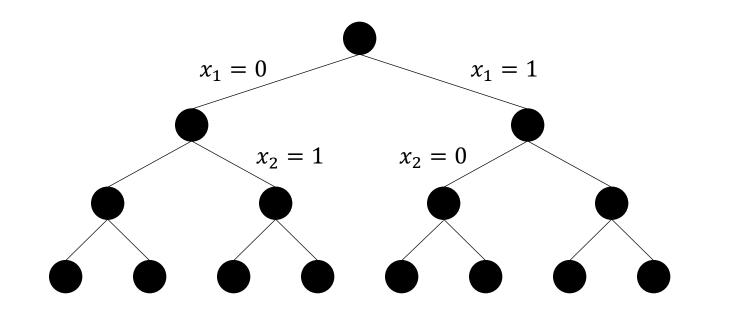
maximize subject to $\begin{array}{l} 15x_1 + 12x_2 + 4x_3 + 2x_4 \\ 8x_1 + 5x_2 + 3x_3 + 2x_4 \leq 10 \\ x_1, x_2, x_3, x_4 \in \{0, 1\} \end{array}$

- Enumeration tree: enumerates all possible solutions of an IP
- If we can enumerate all solutions with the tree, why not compute objective for each solution and pick the best one?
- Would work, but # possible solutions explodes exponentially

maximize subject to $15x_1 + 12x_2 + 4x_3 + 2x_4$ $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

Key idea of branch-and-bound (B&B):

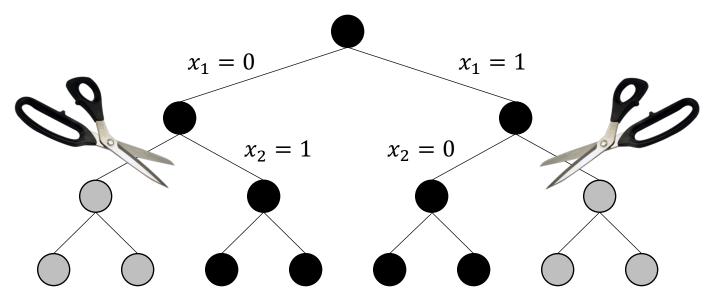
• Using **LP relaxations**, bound the optimal integer solutions in **subtrees** of the enumeration tree



maximize subject to $15x_1 + 12x_2 + 4x_3 + 2x_4$ $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

Key idea of branch-and-bound (B&B):

- Using **LP relaxations**, bound the optimal integer solutions in **subtrees** of the enumeration tree
- Allows us to eliminate a lot of the enumeration tree



maximize subject to $15x_1 + 12x_2 + 4x_3 + 2x_4$ $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

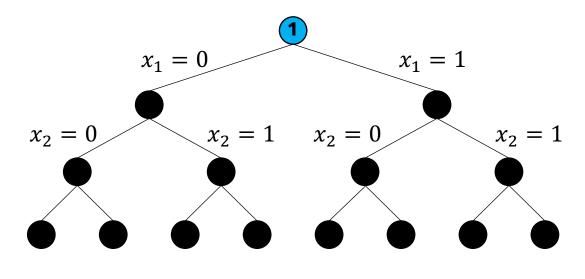
To start, we assume we have a feasible solution \pmb{x}^*

• E.g., **x**^{*} = (0,0,0,0)

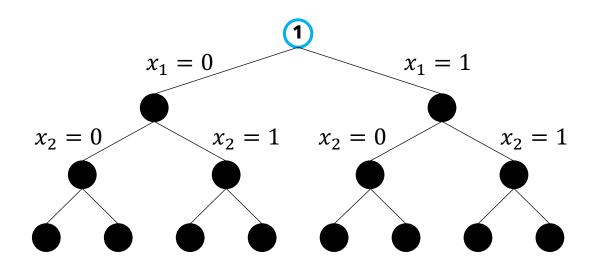
At each iteration of B&B:

- **x**^{*} is the *incumbent* solution
- Its objective value z^* is the *incumbent objective*

Here, incumbent means "best so far"



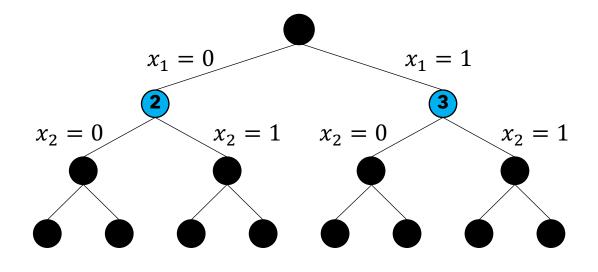
- 1. Mark the root node as active
- 2. While there remain active nodes:



- 1. Mark the root node as active
- 2. While there remain active nodes:
 - i. Select an active node *j* and mark it as inactive
 - ii. x(j) = optimal solution of LP relaxation of Problem(j)
 - iii. z(j) = objective value of x(j)
 - iv. Case 1: If $z^* < z(j)$ and x(j) isn't feasible for IP then

Mark the direct descendants of node *j* as active

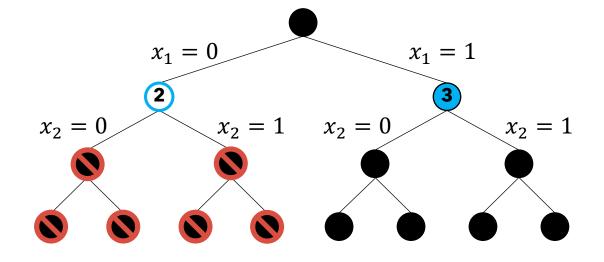
Possible to find a better incumbent solution among j's descendants



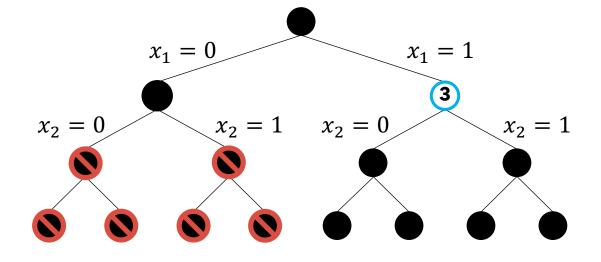
- 1. Mark the root node as active
- 2. While there remain active nodes:
 - i. Select an active node *j* and mark it as inactive
 - ii. x(j) = optimal solution of LP relaxation of Problem(j)
 - iii. z(j) = objective value of x(j)
 - iv. Case 1: If $z^* < z(j)$ and x(j) isn't feasible for IP then

Mark the direct descendants of node *j* as active

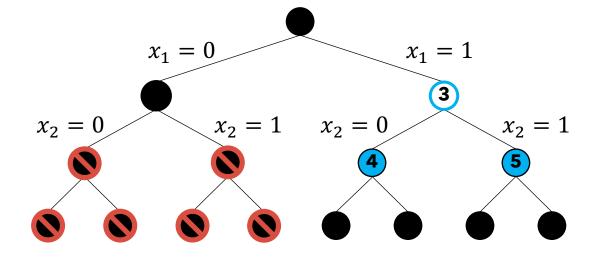
Possible to find a better incumbent solution among j's descendants



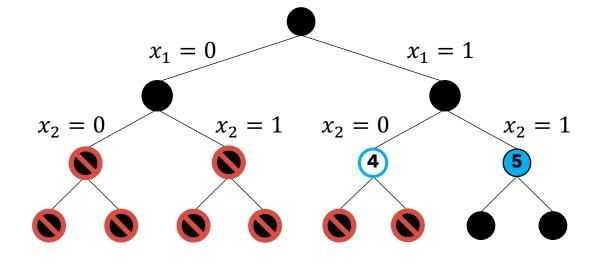
- 1. Mark the root node as active
- 2. While there remain active nodes:
 - i. Select an active node *j* and mark it as inactive
 - ii. x(j) = optimal solution of LP relaxation of Problem(j)
 - iii. z(j) = objective value of x(j)
 - iv. Case 1: If $z^* < z(j)$ and x(j) isn't feasible for IP then Mark the direct descendants of node j as active
 - v. Case 2: If $z^* < z(j)$ and x(j) is feasible for IP then Replace the incumbent by x(j) and prune node jCould be the optimal solution!



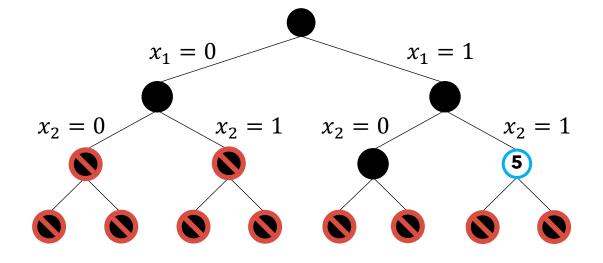
- 1. Mark the root node as active
- 2. While there remain active nodes:
 - i. Select an active node *j* and mark it as inactive
 - ii. x(j) = optimal solution of LP relaxation of Problem(j)
 - iii. z(j) = objective value of x(j)
 - iv. Case 1: If $z^* < z(j)$ and x(j) isn't feasible for IP then Mark the direct descendants of node j as active
 - v. Case 2: If $z^* < z(j)$ and x(j) is feasible for IP then Replace the incumbent by x(j) and prune node j



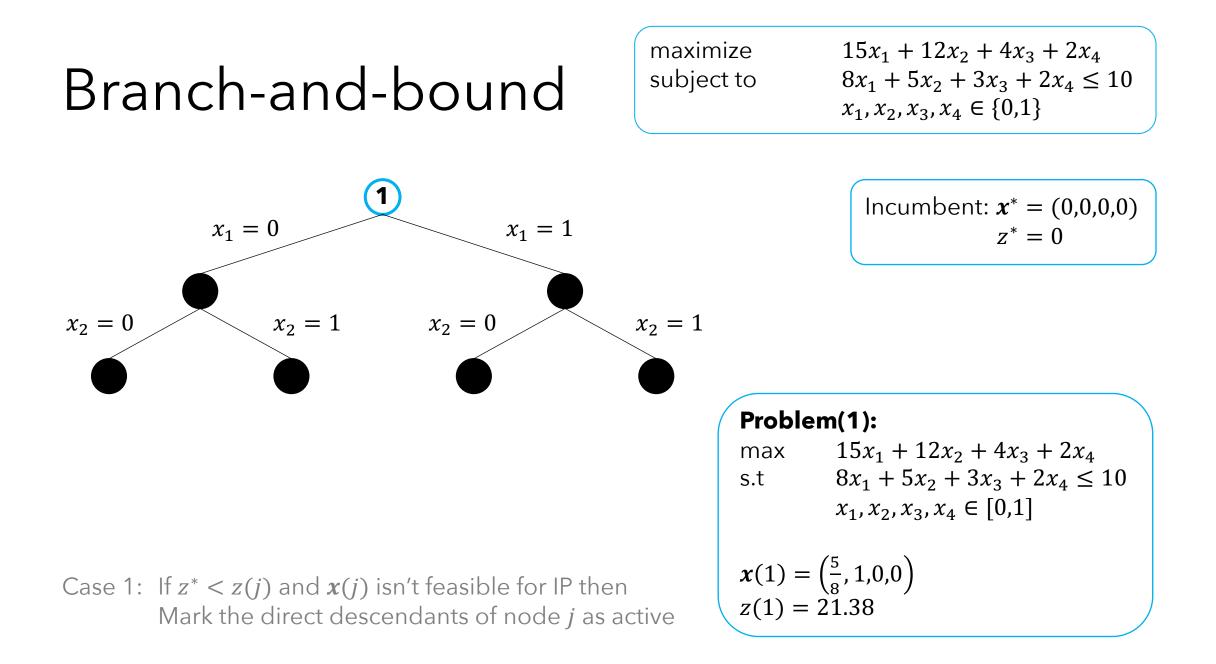
- 1. Mark the root node as active
- 2. While there remain active nodes:
 - i. Select an active node *j* and mark it as inactive
 - ii. x(j) = optimal solution of LP relaxation of Problem(j)
 - iii. z(j) = objective value of x(j)
 - iv. Case 1: If $z^* < z(j)$ and x(j) isn't feasible for IP then Mark the direct descendants of node j as active
 - v. Case 2: If $z^* < z(j)$ and x(j) is feasible for IP then Replace the incumbent by x(j) and prune node j

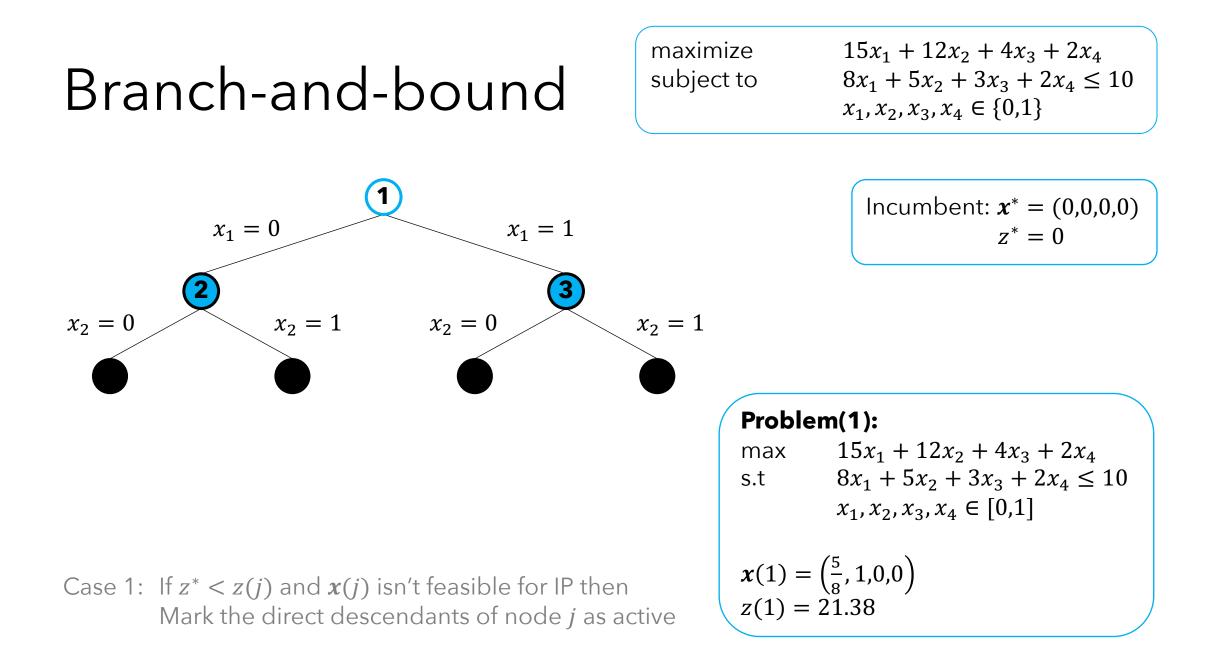


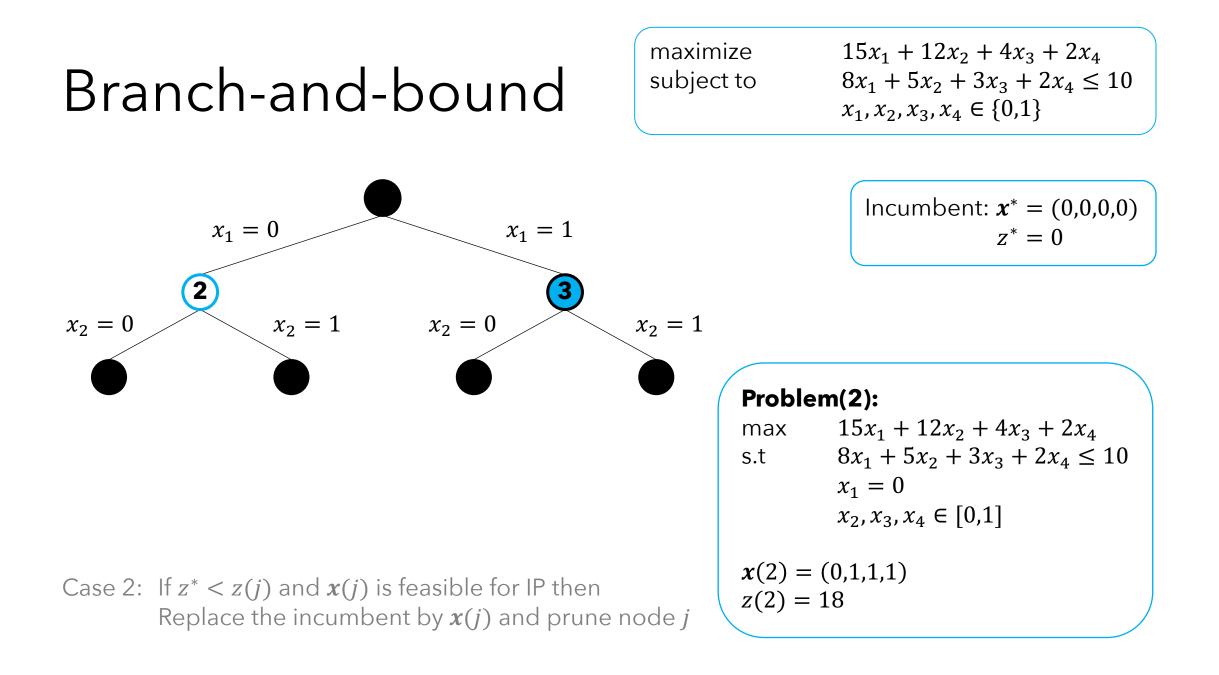
- 1. Mark the root node as active
- 2. While there remain active nodes:
 - i. Select an active node *j* and mark it as inactive
 - ii. x(j) = optimal solution of LP relaxation of Problem(j)
 - iii. $z(j) = \text{objective value of } \mathbf{x}(j)$
 - iv. Case 1: If $z^* < z(j)$ and x(j) isn't feasible for IP then Mark the direct descendants of node j as active
 - v. Case 2: If $z^* < z(j)$ and x(j) is feasible for IP then Replace the incumbent by x(j) and prune node j
 - vi. Case 3: If LP is infeasible or $z^* \ge z(j)$ then prune node j

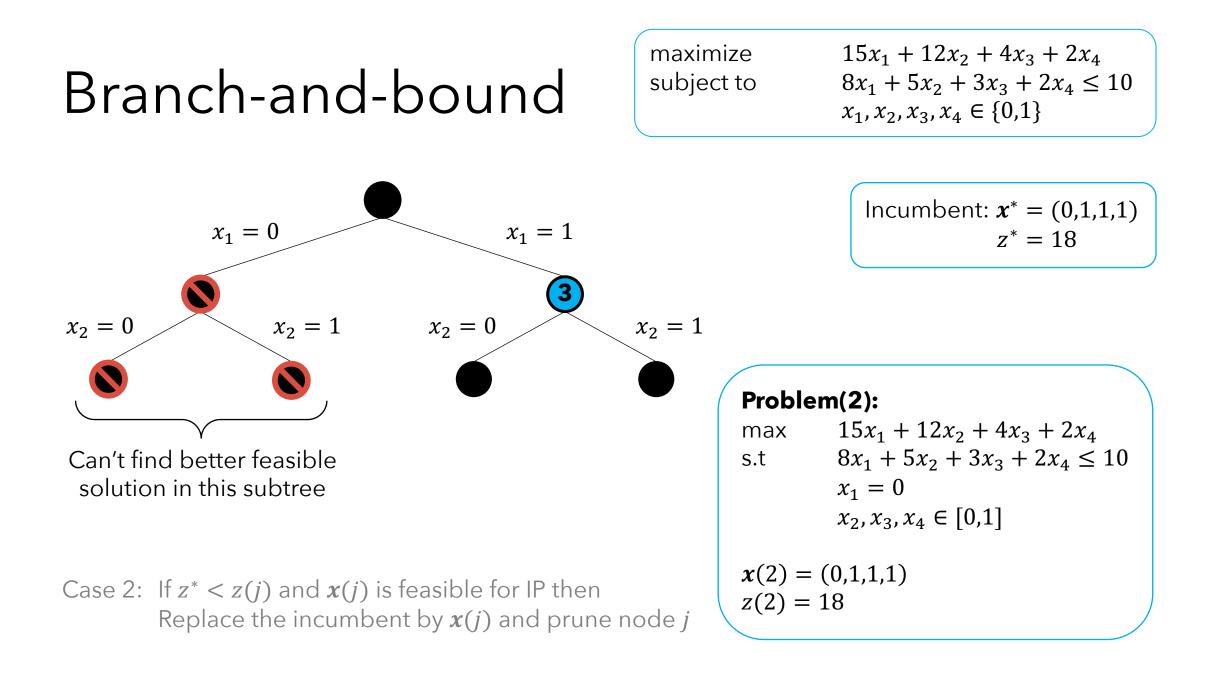


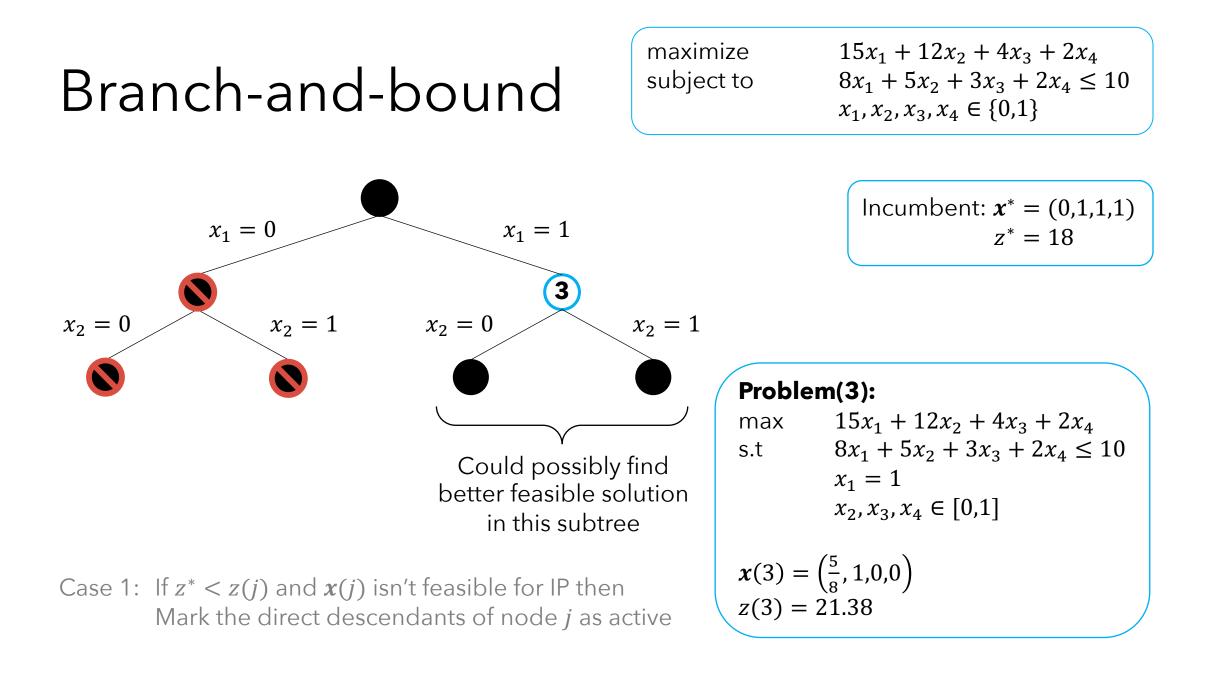
- 1. Mark the root node as active
- 2. While there remain active nodes:
 - i. Select an active node *j* and mark it as inactive
 - ii. x(j) = optimal solution of LP relaxation of Problem(j)
 - iii. z(j) = objective value of x(j)
 - iv. Case 1: If $z^* < z(j)$ and x(j) isn't feasible for IP then Mark the direct descendants of node j as active
 - v. Case 2: If $z^* < z(j)$ and x(j) is feasible for IP then Replace the incumbent by x(j) and prune node j
 - vi. Case 3: If LP is infeasible or $z^* \ge z(j)$ then prune node j

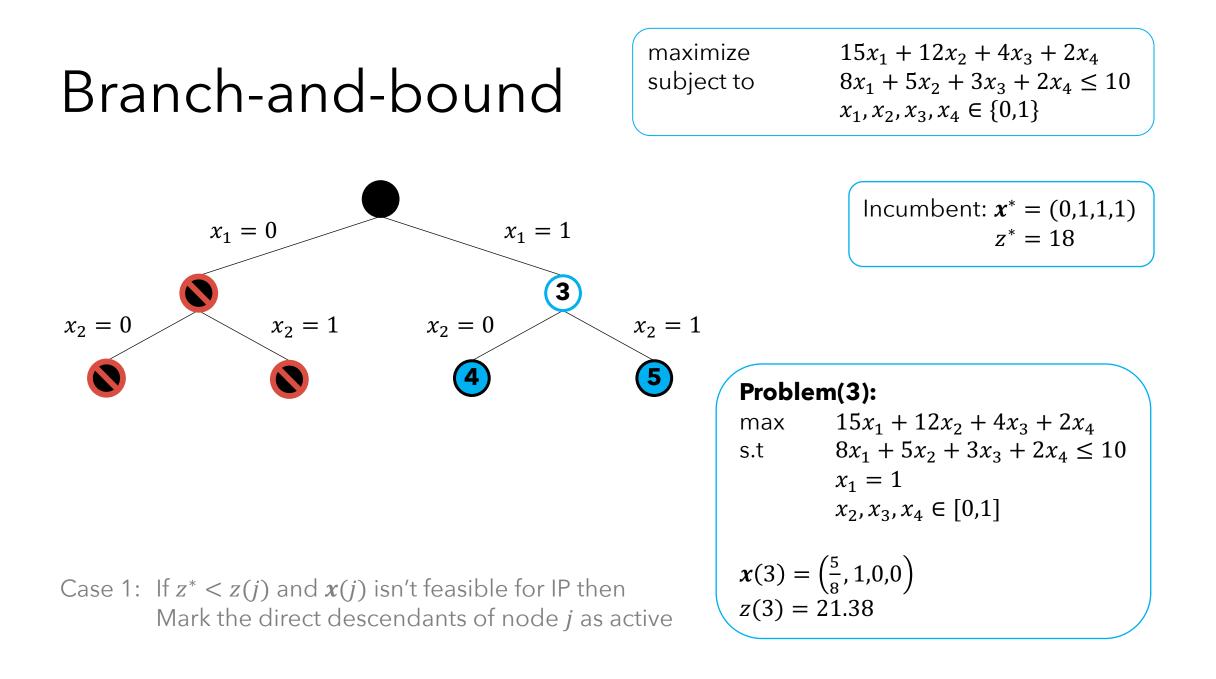


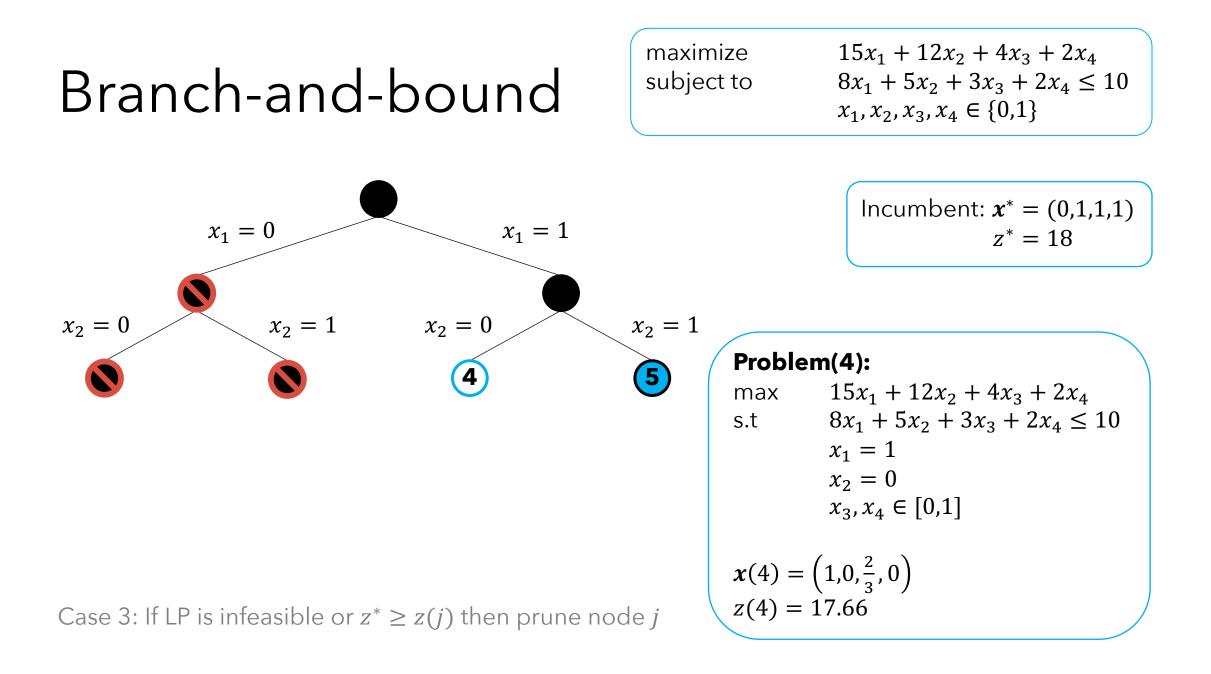


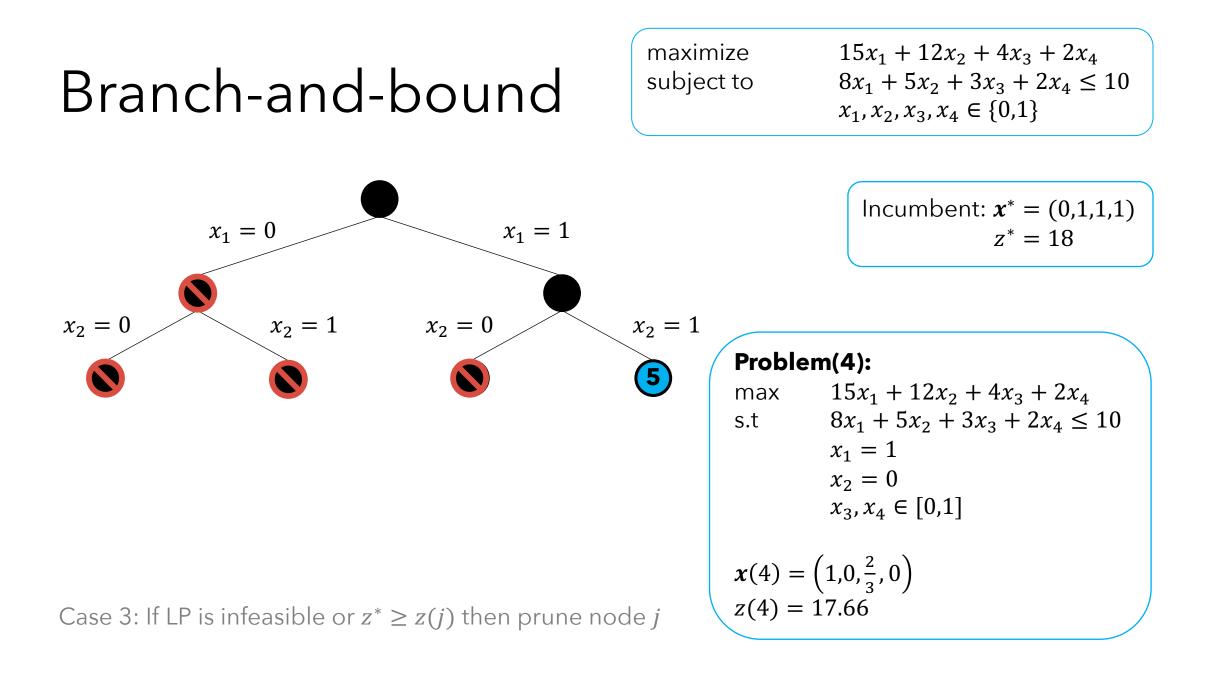


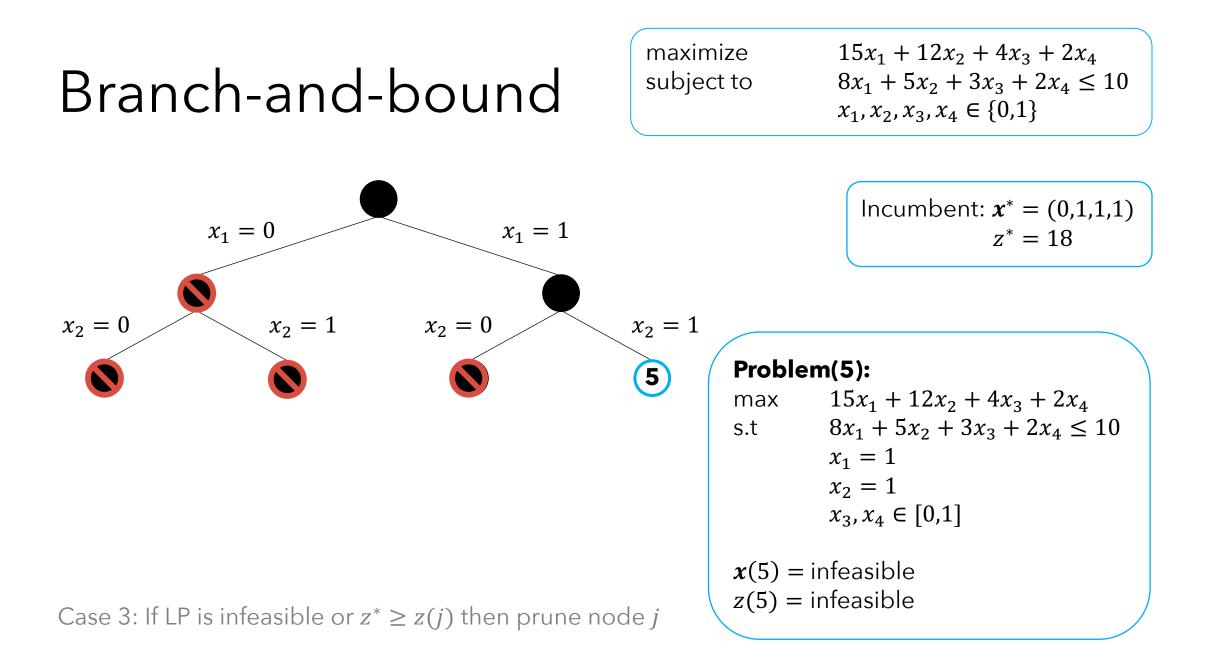


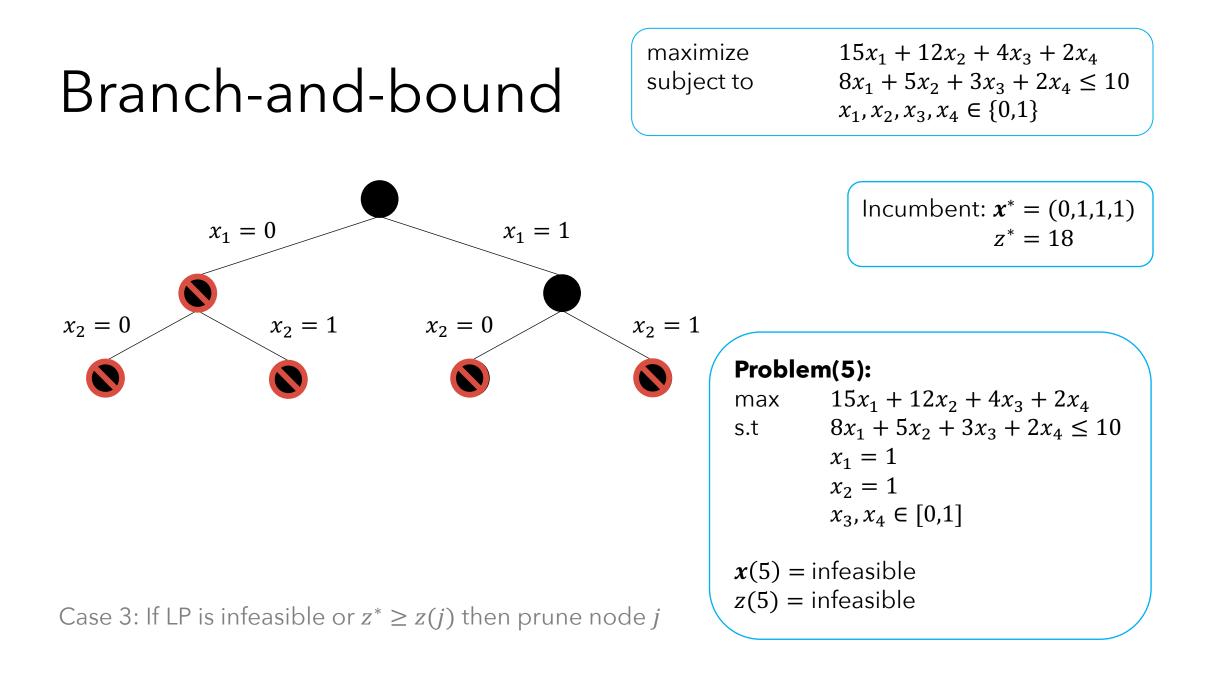












$15x_1 + 12x_2 + 4x_3 + 2x_4$ maximize Branch-and-bound subject to $8x_1 + 5x_2 + 3x_3 + 2x_4 \le 10$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$ Incumbent: $x^* = (0,1,1,1)$ $x_1 = 0$ $x_1 = 1$ $z^* = 18$ **Optimal solution** $x_2 = 0$

 $x_2 = 1$

 $x_2 = 1$

 $x_2 = 0$

Major challenge of using B&B

Many different ways to configure/optimize this algorithm, e.g.:

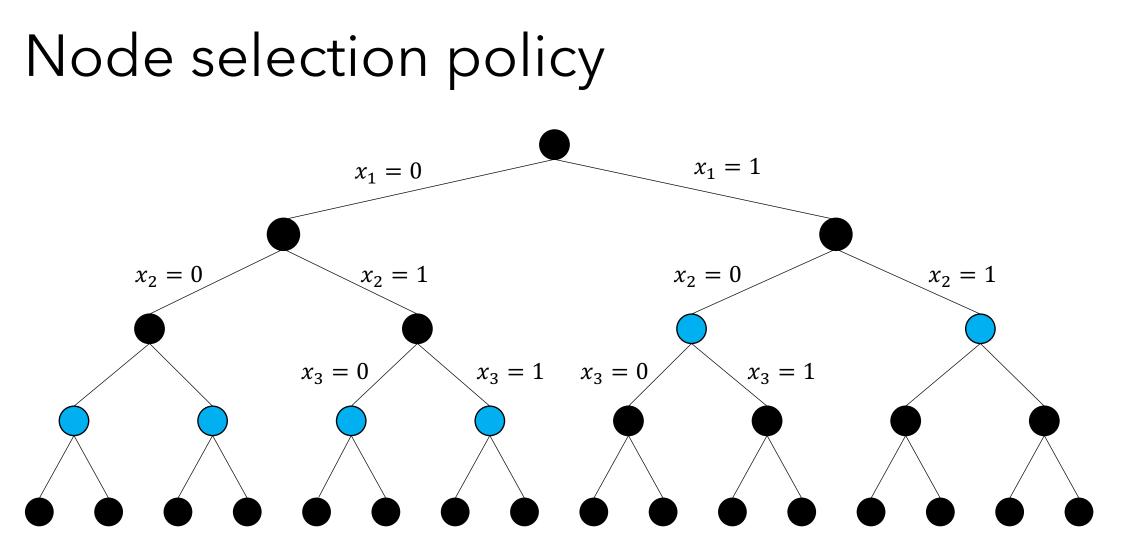
- Node selection policy
- Variable selection policy

What's the best **configuration** for the application at hand?

•

. . .

Best configuration for **routing** problems likely not suited for **scheduling**

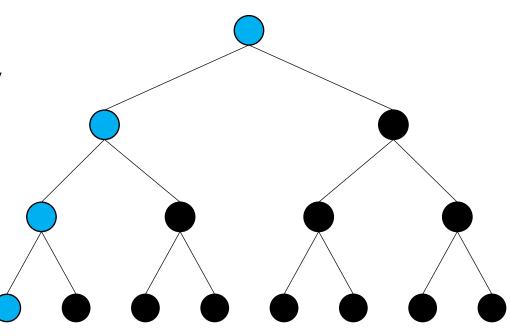


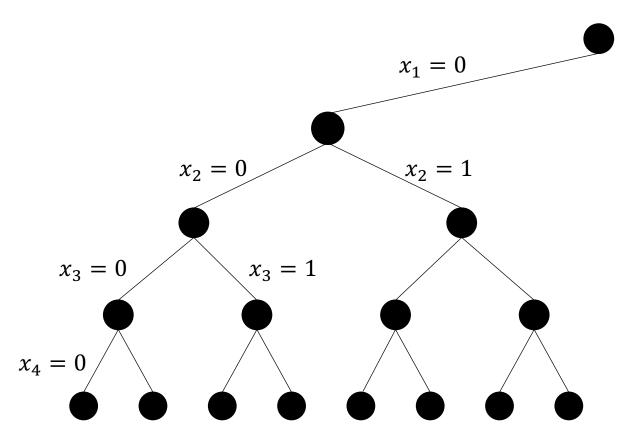
Among many active nodes, which to explore next?

Node selection policy

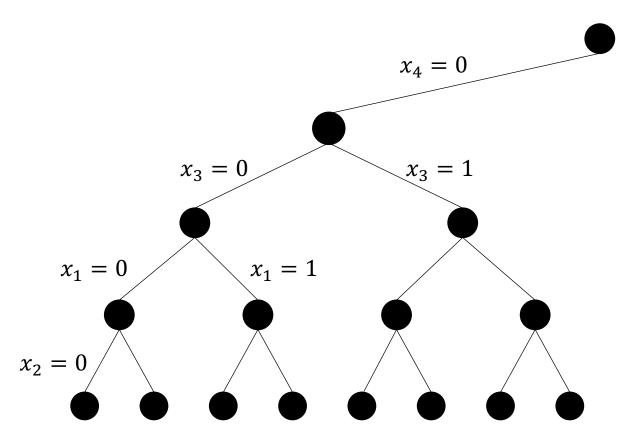
Among many active nodes, which to explore next?

- Depth-first search (DFS)
 - Finds incumbent solutions quickly
- Best-first search (BFS)
 - Explore node with highest LP objective value
 - The "most promising" nodes
- BFS with plunging
 - Mix of BFS and DFS



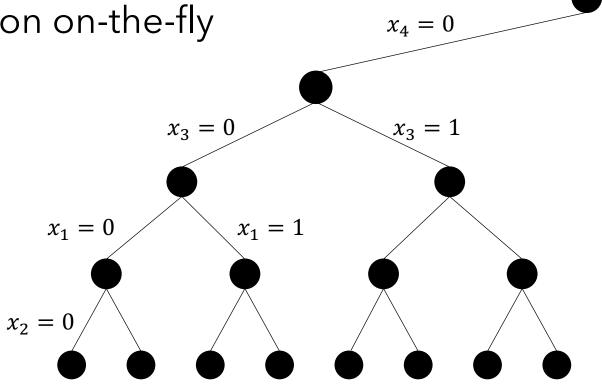


Better branching order than x_1, x_2, x_3, x_4 ?



Better branching order than x_1, x_2, x_3, x_4 ? E.g., x_4, x_3, x_1, x_2

Chooses variables to branch on on-the-fly Rather than pre-defined order



On Problem(j) with LP objective value z(j):

- Let $z_i^+(j)$ be the LP objective value after setting $x_i = 1$
- Let $z_i^-(j)$ be the LP objective value after setting $x_i = 0$
- Branch on the variable x_i that maximizes $\max\{z(j) - z_i^+(j), z(j) - z_i^-(j)\}$

Maximal change in objective value

On Problem(j) with LP objective value z(j):

- Let $z_i^+(j)$ be the LP objective value after setting $x_i = 1$
- Let $z_i^-(j)$ be the LP objective value after setting $x_i = 0$
- Branch on the variable x_i that maximizes $\min\{z(j) - z_i^+(j), z(j) - z_i^-(j)\}$

Minimal change in objective value

On Problem(j) with LP objective value z(j):

- Let $z_i^+(j)$ be the LP objective value after setting $x_i = 1$
- Let $z_i^-(j)$ be the LP objective value after setting $x_i = 0$
- Branch on the variable x_i that maximizes

 $\mu \cdot \min\{z(j) - z_i^+(j), z(j) - z_i^-(j)\} + (1 - \mu) \cdot \max\{z(j) - z_i^+(j), z(j) - z_i^-(j)\}$

For some IPs, it's better to choose μ closer to 0...

For others, it's better to choose μ closer to 1

Often,
$$\mu = \frac{5}{6}$$
 works well [Achterberg, '09]

On Problem(j) with LP objective value z(j):

- Let $z_i^+(j)$ be the LP objective value after setting $x_i = 1$
- Let $z_i^-(j)$ be the LP objective value after setting $x_i = 0$
- Branch on the variable x_i that maximizes

 $\mu \cdot \min\{z(j) - z_i^+(j), z(j) - z_i^-(j)\} + (1 - \mu) \cdot \max\{z(j) - z_i^+(j), z(j) - z_i^-(j)\}$

Challenge: Computing z_i⁻(j), z_i⁺(j) requires solving a lot of LPs Computing all of these LP relaxations referred to as "strong-branching" Pseudo-cost branching: only use estimates of these LP values

On Problem(j) with LP objective value z(j):

- Let $z_i^+(j)$ be the LP objective value after setting $x_i = 1$
- Let $z_i^-(j)$ be the LP objective value after setting $x_i = 0$
- Branch on the variable x_i that maximizes

 $\mu \cdot \min\{z(j) - z_i^+(j), z(j) - z_i^-(j)\} + (1 - \mu) \cdot \max\{z(j) - z_i^+(j), z(j) - z_i^-(j)\}$

Many other possible variable selection policies! See, e.g., [Achterberg, '09]

Major challenge of using B&B

How to choose the best {*node, variable, …*}-selection policy?

Little theory about which to use when

This course:

Use machine learning to optimize B&B's performance

Outline

- 1. Linear programming
- 2. Integer programming
- **3. SAT solving** (SAT solvers also use tree search)
- 4. Next steps

SAT refresher

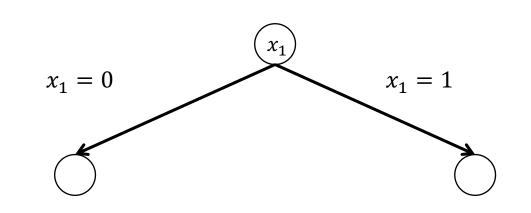
- $x_1, x_2, x_3, \dots \in \{0, 1\}$
- \bar{x}_1 means **Not** x_1
 - If $x_1 = 1$ then $\bar{x}_1 = 0$; if $x_1 = 0$ then $\bar{x}_1 = 1$
- V means **Or**
 - $x_1 \vee x_2$ evaluates to **True** if $x_1 = 1$ or $x_2 = 1$
 - $x_1 \vee \bar{x}_2$ evaluates to **True** if $x_1 = 1$ or $x_2 = 0$
- A means **And**
 - $x_1 \wedge x_2$ evaluates to **True** if $x_1 = 1$ and $x_2 = 1$
 - $x_1 \wedge \bar{x}_2$ evaluates to **True** if $x_1 = 1$ and $x_2 = 0$

• $(x_1 \lor x_2) \land (x_2 \lor \overline{x_3})$ evaluates to **True** for $(x_1, x_2, x_3) = (1,0,0)$

SAT refresher

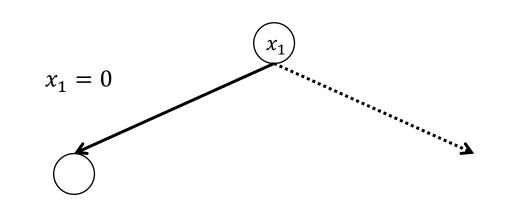
 $(x_1 \lor x_4)$ **SAT:** Is there an assignment of $x_1, \ldots, x_{12} \in \{0,1\}$ such that this formula evaluates to **True**? $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \lor x_8 \lor x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee x_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$

SAT tree search $(x_1 \lor x_4)$ $\wedge (x_1 \vee \bar{x}_3 \vee \bar{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee x_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$

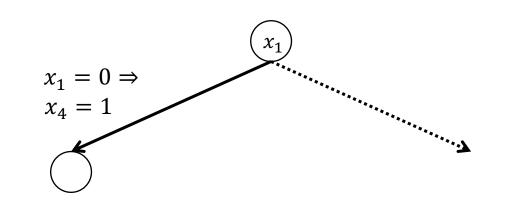


How to prune if there's no objective function?

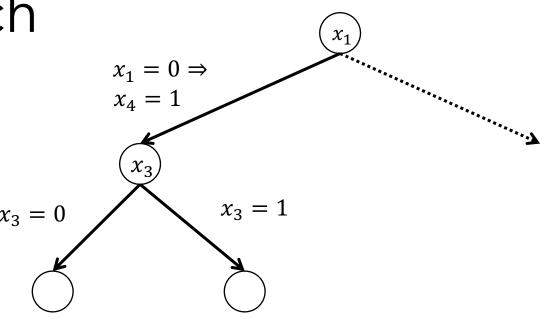
SAT tree search $(x_1 \lor x_4)$ $\wedge (x_1 \vee \bar{x}_3 \vee \bar{x}_8)$ $\wedge (x_1 \lor x_8 \lor x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \lor x_8 \lor \bar{x}_9)$ $\wedge (x_7 \lor x_8 \lor \bar{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



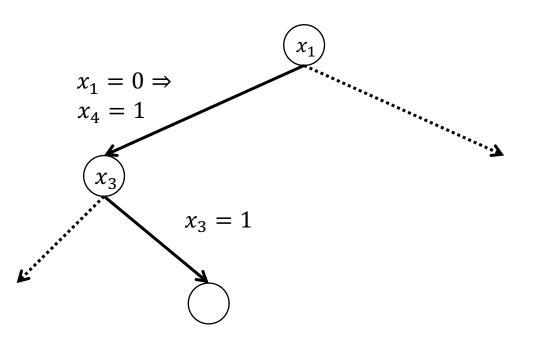
SAT tree search $(x_1 \vee x_4)$ $\wedge (x_1 \vee \bar{x}_3 \vee \bar{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \lor x_8 \lor \bar{x}_9)$ $\wedge (x_7 \lor x_8 \lor \bar{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



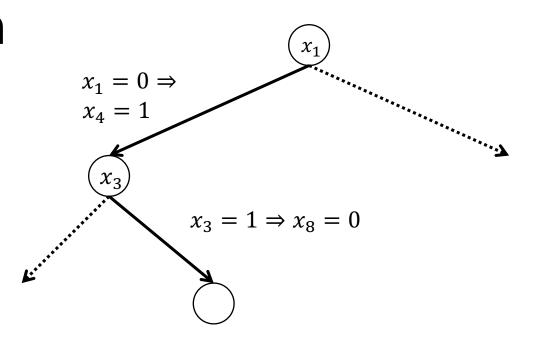
SAT tree search $(x_1 \vee x_4)$ $\wedge (x_1 \vee \bar{x}_3 \vee \bar{x}_8)$ $x_3 = 0$ $\wedge (x_1 \lor x_8 \lor x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \lor x_8 \lor \bar{x}_9)$ $\wedge (x_7 \lor x_8 \lor \bar{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



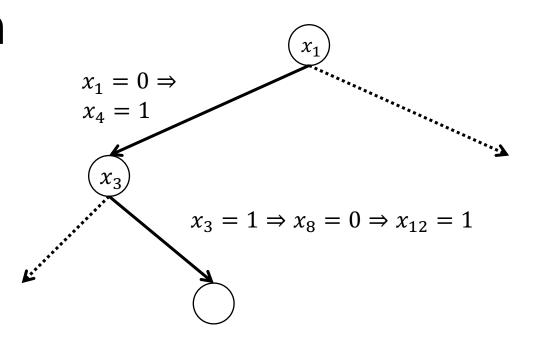
SAT tree search $(x_1 \vee x_4)$ $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \lor x_8 \lor x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \lor x_8 \lor \bar{x}_9)$ $\wedge (x_7 \lor x_8 \lor \bar{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



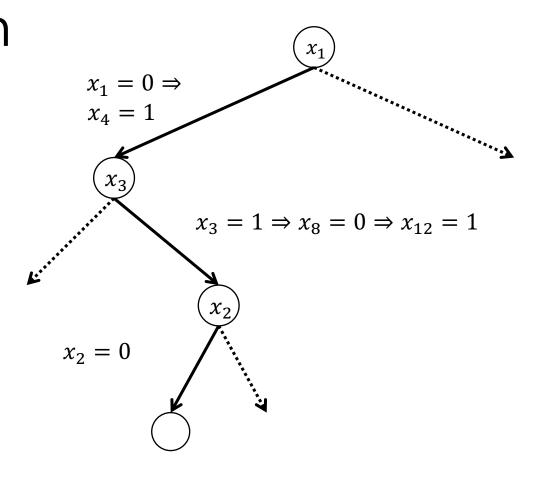
SAT tree search $(x_1 \vee x_4)$ $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee \underline{x}_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



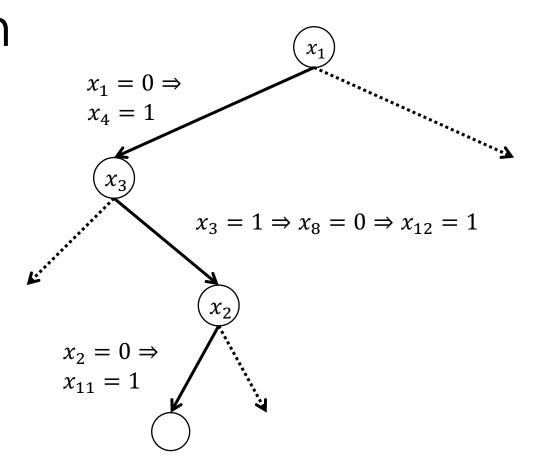
SAT tree search $(x_1 \lor x_4)$ $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee x_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



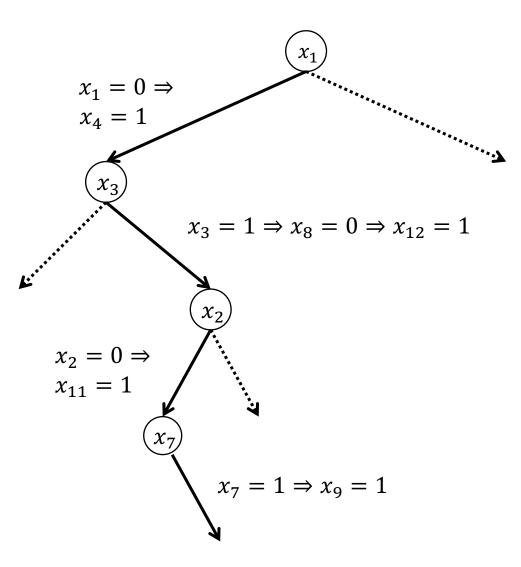
SAT tree search $(x_1 \vee x_4)$ $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee x_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



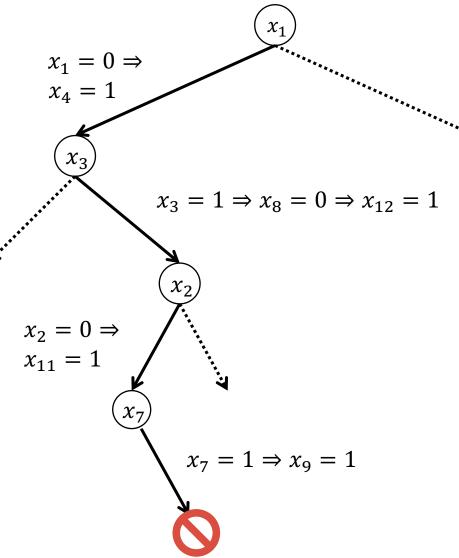
SAT tree search $(x_1 \lor x_4)$ $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee x_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



SAT tree search $(x_1 \vee x_4)$ $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \vee x_8 \vee \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



SAT tree search $(x_1 \vee x_4)$ $\wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_8)$ $\wedge (x_1 \vee x_8 \vee x_{12})$ $\wedge (x_2 \vee x_{11})$ $\wedge (\bar{x}_7 \vee \bar{x}_3 \vee x_9)$ $\wedge (\bar{x}_7 \lor x_8 \lor \bar{x}_9)$ $\wedge (x_7 \vee x_8 \vee \overline{x}_{10})$ $\wedge (x_7 \vee x_{10} \vee \overline{x}_{12})$



SAT tree search

Many similar design choices as IP tree search

Variable selection: branch on variable that leads to the **largest number of deductions** on other variables

Outline

- 1. Linear programming
- 2. Integer programming
- 3. SAT solving
- 4. Next steps

Next steps

- Today: Saw many ways solvers can be optimized & configured
- With a deft configuration: Can quickly solve extremely challenging real-world problems

• Future classes: How to use ML to optimize these solvers

Plan for the next few classes

This Thursday: GNNs overview

Tu 4/18, Th 4/20: GNN paper discussions

Tu 4/25, Th 4/27: IP/SAT paper discussions