Graph neural networks

Based on slides from Jure Leskovec's <u>CS244W</u>

Many types of data are graphs

Event Graphs

Image credit: <u>Wikipedia</u>

Food Webs

Image credit: SalientNetworks

Computer Networks

Image credit: Pinterest

Particle Networks

Disease Pathways

Image credit: visitlondon.com

Underground Networks

GNN motivation

Main question:

How to utilize relational structure for better prediction?

Today: Modern ML toolbox

Modern DL toolbox is designed for simple sequences & grids

Why is graph deep learning hard?

Networks are complex

• Arbitrary size and complex topological structure

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Different types of tasks

Figure by Leskovec

Prediction with graphs: Examples

Graph-level tasks:

E.g., for a molecule represented as a graph, could predict:

- What the molecule smells like
- Whether it will bind to a receptor implicated in a disease

Prediction with graphs: Examples

Node-level tasks:

E.g., political affiliations of users in a social network

Prediction with graphs: Examples

Edge-level tasks: E.g.:

- Suggesting new friends
- Recommendations on Amazon, Netflix, ...

Example: Polypharmacy side effects

Nodes:DrugsEdges:Interaction type

Figure by Zitnik et al. ['18]

Example: Traffic routing

E.g., Google maps

deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Example: Learning to simulate physics

Nodes: Particles

Edges: Interaction between particles

Goal: Predict how a graph will evolve over time

Example: Combinatorial optimization

Replace full algorithm or learn steps (e.g., branching decision)

Outline

1. Introduction

2. Feature engineering for graphs

- 3. GNN architecture
- 4. Training a GNN

Traditional ML pipeline

- Design features for nodes/links/graphs
- Obtain features for all training data

Traditional ML pipeline

Train an ML model:

• Logistic Regression, random forest, NN, etc.

Apply the model:

Given new node/link/graph, obtain features and make prediction

Using effective features is key to achieving good performance

Different types of features

Figure by Leskovec

Outline

1. Introduction

2. Feature engineering for graphs

- a. Node-level prediction
- b. Edge-level prediction
- 3. GNN architecture
- 4. Training a GNN

Node-level features

Goal: Characterize structure and position of a node in network Node degree, node centrality, clustering coefficient, graphlets

Node-level features: Degree

Degree k_v of node v = # neighboring nodes that the node has

Treats all neighboring nodes equally

Node centrality takes the node importance in a graph into account

Node-level features: Centrality

E.g., betweenness centrality:

Node is important if it's on many shortest paths between other nodes

Node-level features: Clustering coeff.

Captures topological properties of local neighborhood Measures how connected v's neighboring nodes are

Outline

- 1. Introduction
- 2. Feature engineering for graphs
 - a. Node-level prediction
 - **b. Edge-level prediction**
- 3. GNN architecture
- 4. Training a GNN

Edge-level features

E.g., local neighborhood overlap: Captures # neighboring nodes shared between nodes *u*, *v*

Common neighbors: $|N(v_1) \cap N(v_2)|$ E.g., $|N(A) \cap N(B)| = |\{C\}| = 1$

Jaccard's coefficient:
$$\frac{|N(v_1) \cap N(v_2)|}{|N(v_1) \cup N(v_2)|}$$

E.g.,
$$\frac{|N(A) \cap N(B)|}{|N(A) \cup N(B)|} = \frac{|\{C\}|}{|\{C,D\}|} = \frac{1}{2}$$

Outline

- 1. Introduction
- 2. Feature engineering for graphs
- 3. GNN architecture
- 4. Training a GNN

Setup

- *V* is the vertex set
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{|V| \times d}$ is a matrix of node features
- v: a node in V
- N(v): the set of neighbors of v
- Node features:
 - Social networks: User profile, user image
 - Biological networks: Gene expression profiles, gene functional info

1. Node embeddings

2. Graph embedding

Idea 1: fully connected NN?

Idea: Join adjacency matrix & features, give as input to NN

lssues:

- Huge input
- Doesn't generalize across graph size
- Sensitive to node ordering

Permutation invariance & equivariance

How to avoid sensitivity to node orderings?

 $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$ Permutation $P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ $PAP^{T} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

We want either:

Permutation invariance

- Graph embedding
- Output: single vector
- $f(PAP^T, PX) = f(A, X)$
- Permutation equivariance
 - Node embedding
 - Output: vector per node
 - $f(PAP^T, PX) = Pf(A, X)$

Permutation invariance & equivariance

GNNs consist of permutation equivariant/invariant functions

Permutation invariance & equivariance

Are other NN architectures permutation invariant / equivariant? E.g., MLP

Explains why naïve MLP approach fails for graphs

Graph neural networks

Idea:

- 1. Encode each node (node's neighborhood) with embedding
- 2. Aggregate set of node embeddings into graph embedding

Encoding neighborhoods: General form

 $h_u^{(0)} = x_u$ (feature representation for node u)

In each round $k \in [K]$, for each node v:

1. **Aggregate** over neighbors
$$m_{N(v)}^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ h_u^{(k-1)} : u \in N(v) \right\} \right)$$
Neighborhood of v

Encoding neighborhoods: General form

 $h_u^{(0)} = x_u$ (feature representation for node u)

In each round $k \in [K]$, for each node v:

1. Aggregate over neighbors

$$\boldsymbol{n}_{N(v)}^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ \boldsymbol{h}_{u}^{(k-1)} : u \in N(v) \right\} \right)$$

2. **Update** current node representation

$$\boldsymbol{h}_{v}^{(k)} = \text{COMBINE}^{(k)} \left(\boldsymbol{h}_{v}^{(k-1)}, \boldsymbol{m}_{N(v)}^{(k)} \right)$$

The basic GNN

[Merkwirth and Lengauer '05; Scarselli et al. '09]

$$\boldsymbol{m}_{N(v)} = \text{AGGREGATE}(\{\boldsymbol{h}_u : u \in N(v)\}) = \sum_{u \in N(v)} \boldsymbol{h}_u$$

$$COMBINE(\boldsymbol{h}_{v}, \boldsymbol{m}_{N(v)}) = \sigma(W_{self}\boldsymbol{h}_{v} + W_{neigh}\boldsymbol{m}_{N(v)} + \boldsymbol{b})$$
Trainable parameters
Non-linearity (e.g., tanh or ReLU)

- $m_{N(v)} = \frac{1}{|N(v)|} \sum_{u \in N(v)} h_u$ [Merkwirth & Lengauer '05, Scarselli et al. '09] $m_{N(v)} = \sum_{u \in N(v)} \frac{1}{\sqrt{|N(u)||N(v)|}} h_u$ [Kipf & Welling '16, Hamilton et al. '17]

Can we do more to improve?

Should be a permutation invariant, multi-set function

Aggregation functions

$$\boldsymbol{m}_{N(v)} = \operatorname{AGGREGATE}(\{\boldsymbol{h}_{u} : u \in N(v)\})$$
$$= \operatorname{MLP}_{2}\left(\sum_{u \in N(v)} \operatorname{MLP}_{1}(\boldsymbol{h}_{u}, \boldsymbol{h}_{v})\right)$$

Universal approximation of multi-set functions

[Zaheer et al. '17, Qi et al. '17, Xu et al. '19]

$$COMBINE(\boldsymbol{h}_{v}, \boldsymbol{m}_{N(v)}) = \sigma(W_{self}\boldsymbol{h}_{v} + W_{neigh}\boldsymbol{m}_{N(v)} + \boldsymbol{b})$$

Generalizations

- Use edge attributes/features in aggregation $m_{N(v)} = \text{AGGREGATE}(\{\boldsymbol{h}_u : u \in N(v)\}) = \sum_{u \in N(v)} \text{MLP}(\boldsymbol{h}_u, \boldsymbol{h}_v, w_{uv})$
- Different aggregations for different types of edges

E.g., Zitnik et al. ['18]

Generalizations

Attention [Velickovic et al. '18]:

$$m_{N(v)} = \text{AGGREGATE}(\{\boldsymbol{h}_u : u \in N(v)\}) = \sum_{u \in N(v)} \alpha_{v,u} \boldsymbol{h}_u$$

- Useful when some neighbors might be more/less informative
- E.g., classifying papers by topic based on citation networks
 - Some papers that span topical boundaries, highly-cited across fields
 - GNN should learn to ignore uninformative neighbors

Node embeddings unrolled

Grey boxes: aggregation functions that we learn

Figures by Leskovec

Node embeddings unrolled

Grey boxes: aggregation functions that we learn

Figures by Leskovec

Node embeddings unrolled

Weight sharing

Use the same aggregation functions for all nodes

Can generate encodings for previously unseen nodes & graphs!

Outline

- 1. Introduction
- 2. Feature engineering for graphs
 - a. Node-level prediction
 - b. Edge-level prediction
- 3. GNN architecture

4. Training a GNN

- a. GNN pipeline
- b. Train/validation/test splits
- c. Skip connections
- d. Graph manipulations

GNN Pipeline

Prediction heads

Figure by Leskovec

Prediction heads

Different task levels require different prediction heads

Prediction heads: Node-level

After GNN computation, we have node embeddings $\left\{ \boldsymbol{h}_{v}^{(K)} \in \mathbb{R}^{d}, \forall v \in V \right\}$

Suppose we want to make *k*-way predictions

- Classification: classify among k categories
- Regression: regress on k targets

$$\widehat{\boldsymbol{y}}_{v} = \operatorname{Head}_{\operatorname{node}}\left(\boldsymbol{h}_{v}^{(K)}\right) = W^{(H)}\boldsymbol{h}_{v}^{(K)}$$

• $W^{(H)} \in \mathbb{R}^{d \times k} \text{ so } \widehat{\boldsymbol{y}}_{v} \in \mathbb{R}^{k}$

Prediction heads: Edge-level

Suppose we want to make k-way predictions $\hat{y}_{uv} = \text{Head}_{edge} \left(h_u^{(K)}, h_v^{(K)} \right)$

$$\widehat{y}_{uv} = \text{Linear}\left(\text{Concatenate}\left(\boldsymbol{h}_{u}^{(K)}, \boldsymbol{h}_{v}^{(K)}\right)\right)$$

Linear maps 2d-dimensional embedding to k-way embedding

Similar to multi-head attention:

$$\widehat{\boldsymbol{y}}_{uv}[1] = \boldsymbol{h}_{u}^{(K)} W^{(1)} \boldsymbol{h}_{v}^{(K)}$$
$$\vdots$$
$$\widehat{\boldsymbol{y}}_{uv}[k] = \boldsymbol{h}_{u}^{(K)} W^{(k)} \boldsymbol{h}_{v}^{(K)}$$

Prediction heads: Graph-level

Graph-level prediction:

Make prediction using all node embeddings

$$\widehat{\boldsymbol{y}}_{G} = \operatorname{HEAD}_{\operatorname{graph}}\left(\left\{\boldsymbol{h}_{v}^{(L)} \in \mathbb{R}^{d}, \forall v \in G\right\}\right)$$

Prediction heads: Graph-level

Options for $\operatorname{HEAD}_{\operatorname{graph}}\left(\left\{\boldsymbol{h}_{v}^{(L)} \in \mathbb{R}^{d}, \forall v \in G\right\}\right)$:

- Global mean pooling $\widehat{y}_G = Mean\left(\left\{h_v^{(L)} \in \mathbb{R}^d, \forall v \in G\right\}\right)$
- Global max pooling $\widehat{y}_G = Max(\{h_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$
- Global sum pooling $\widehat{y}_G = \operatorname{Sum}\left(\left\{h_v^{(L)} \in \mathbb{R}^d, \forall v \in G\right\}\right)$

Work well for **small** graphs What about large graphs?

Issue of global pooling

Issue: Global pooling over a (large) graph will lose information

Toy example with 1-dim node embeddings:

- Node embeddings for G_1 : {-1, -2, 0, 1, 2}
- Node embeddings for G_2 : {-10, -20, 0, 10, 20}
- If we do global sum pooling:
 - Prediction for $G_1: \hat{y}_{G_1} = \text{Sum}(\{-1, -2, 0, 1, 2\}) = 0$
 - Prediction for G_2 : $\hat{y}_{G_2} = \text{Sum}(\{-10, -20, 0, 10, 20\}) = 0$
 - Cannot differentiate between G₁ and G₂!

Hierarchical global pooling

- A solution: Aggregate all node embeddings hierarchically
- Toy example: Aggregate via ReLU(Sum(\cdot))
 - First separately aggregate the first 2 nodes and the last 3 nodes
 - Then aggregate again to make final prediction
- G_1 node embeddings: {-1, -2, 0, 1, 2}
 - **Round 1**: $\hat{y}_a = \text{ReLU}(\text{Sum}(\{-1, -2\})) = 0,$ $\hat{y}_b = \text{ReLU}(\text{Sum}(\{0, 1, 2\})) = 3$
 - **Round 2**: $\hat{y}_{G_1} = \text{ReLU}(\text{Sum}(\{\hat{y}_a, \hat{y}_b\})) = 3$

Hierarchical global pooling

- A solution: Aggregate all node embeddings hierarchically
- Toy example: Aggregate via ReLU(Sum(\cdot))
 - First separately aggregate the first 2 nodes and the last 3 nodes
 - Then aggregate again to make final prediction
- G_1 node embeddings: {-1, -2, 0, 1, 2}, $\hat{y}_{G_1} = 3$
- G_2 node embeddings: {-10, -20, 0, 10, 20}
 - **Round 1**: $\hat{y}_a = \text{ReLU}(\text{Sum}(\{-10, -20\})) = 0$,

 $\hat{y}_b = \text{ReLU}(\text{Sum}(\{0, 10, 20\})) = 30$

• **Round 2**: $\hat{y}_{G_2} = \text{ReLU}(\text{Sum}(\{\hat{y}_a, \hat{y}_b\})) = 30$

Can differentiate between G_1 and G_2

Hierarchical pooling in practice

DiffPool idea: Hierarchically pool node embeddings

Hierarchical pooling in practice

Leverage 2 independent GNNs at each level

- GNN A: Compute node embeddings
- GNN B: Compute the cluster that a node belongs to

GNN Pipeline

Supervised vs unsupervised

Supervised learning on graphs

- Labels come from external sources
- E.g., predict drug likeness of a molecular graph

Unsupervised learning on graphs

- Signals come from graphs themselves
- E.g., link prediction: delete edges, predict if 2 nodes are connected

Sometimes the differences are blurry

- We still have "supervision" in unsupervised learning
- Alternative name for "unsupervised" is "**self-supervised**"

GNN pipeline

E.g., cross entropy for **classification**, MSE for **regression**

Loss functions

E.g., accuracy: $\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\{y_i \neq \hat{y}_i\}}$

Outline

- 1. Introduction
- 2. Feature engineering for graphs
 - a. Node-level prediction
 - b. Edge-level prediction
- 3. GNN architecture
- 4. Training a GNN
 - a. GNN pipeline
 - **b.** Train/validation/test splits
 - c. Skip connections
 - d. Graph manipulations

Training, validation, and test sets

Training set: used for optimizing GNN parameters

Validation set: develop model/hyperparameters

Test set: held out until we report final performance

Why graphs are special

Suppose we want to split an image dataset

- Each data point is an image
- Data points are independent
- Image 5 will not affect our prediction on image 1

Why graphs are special

Splitting a graph dataset is different

- Node classification: Each data point is a node
- Data points are NOT independent
 - Node 5 will affect our prediction on node 1 due to message passing

Transductive learning

Solution 1 (Transductive setting):

- Input graph can be observed in all the dataset splits
 - Training, validation and test set
- Only split the (node) labels
- Training: compute embeddings using entire graph
 - Train using node 1&2's labels
- Validation: compute embeddings using entire graph
 - Evaluate on node 3&4's labels

Inductive learning

Solution 2 (Inductive setting):

- Break the edges between splits to get multiple graphs
- 3 graphs are independent: node 5 won't affect prediction on node 1
- Training: compute embeddings using graph over node 1&2
 - Train using node 1&2's labels
- Validation: compute embeddings using the graph over node 3&4
 - Evaluate on node 3&4's labels

Transductive vs inductive

Transductive setting:

- Training / validation / test sets are on the same graph
- Dataset consists of one graph
- Entire graph can be observed in all dataset splits: only split labels
- Only applicable to node / edge prediction tasks

Inductive setting:

- Training / validation / test sets are on different graphs
- Dataset consists of multiple graphs
- Each split can only observe the graph(s) within the split
- Successful model should generalize to unseen graphs
- Applicable to node / edge / graph tasks

Example: Node classification

Transductive setting:

- All splits can observe the entire graph structure
- Can only observe the labels of their respective nodes

Example: Node classification

Inductive setting:

- Suppose have a dataset of 3 graphs
- Each split contains a different graph

Example: Graph classification

Only the inductive setting is well defined for graph classification

- Have to test on unseen graphs
- Suppose we have a dataset of 5 graphs Each split will contain independent graph(s)

Training Validation Test

Example: Link prediction

- Goal: predict missing edges
- Link prediction is an unsupervised / self-supervised task
- Need to hide some edges from the GNN
 - Let the GNN predict if the edges exist

- For link prediction, we'll **split edges twice**
- Step 1: Assign two types of edges in the original graph
 - Message edges: Used for GNN message passing
 - Supervision edges: Use for computing objectives
- After step 1:
 - Only message edges will remain in the graph
 - Supervision edges used as supervision for model's predictions Will not be fed into GNN!
 Supervision edges

- Step 2: Split edges into train / validation / test
- Option 1: Inductive link prediction split
 - Suppose we have a dataset of 3 graphs
 - Each inductive split will contain an independent graph

- Step 2: Split edges into train / validation / test
- Option 1: Inductive link prediction split
 - Suppose we have a dataset of 3 graphs
 - Each inductive split will contain an independent graph
 - In train/val/test set, each graph will have 2 types of edges:
 - Message edges
 - Supervision edges (not the input to GNN)

Training Validation Test

Option 2: **Transductive** link prediction split:

- Default setting when people talk about link prediction
- Suppose we have a dataset of 1 graph

Option 2: **Transductive** link prediction split:

- Entire graph can be observed in all dataset splits
- Need to hold out validation / test edges
- To train, must hold out supervision edges for the training set

Option 2: Transductive link prediction split

Original graph

(1) At training time: Use training message edges to predict training supervision edges

(2) At validation time: Use training message + supervision edges to predict validation edges

(3) At test time: Use training message + supervision edges and validation edges to predict test edges

Outline

- 1. Introduction
- 2. Feature engineering for graphs
- 3. GNN architecture
- 4. Training a GNN
 - a. GNN pipeline
 - b. Train/validation/test splits
 - c. Skip connections
 - d. Graph manipulations

Over-smoothing problem

Receptive field of a GNN

• Receptive field:

Set of nodes that determine embedding of node of interest

• K-layer GNN: node's receptive field is its K-hop neighborhood

Receptive field of a GNN

Receptive field **overlap** for two nodes

Shared neighbors quickly grows when we increase # GNN layers

3-hop neighbor overlap Almost all the nodes!

Receptive field and oversmoothing

Can explain over-smoothing via **receptive fields**

Embedding of a node is determined by its receptive field

- Nodes have very overlapped receptive fields \Rightarrow similar embeddings
- Stack many GNN layers
 - → nodes will have highly-overlapped receptive fields
 - \rightarrow node embeddings will be highly similar
 - \rightarrow suffer from the over-smoothing problem

How to overcome over-smoothing problem?

Design GNN layer connectivity

Lesson: Be cautious when adding GNN layers Adding GNN layers doesn't always help, unlike NNs in other domains

Step 1: Analyze necessary receptive field to solve problem E.g., by computing graph's diameter

Step 2: Set # GNN layers to be a bit more than receptive field

Skip connections

What if my problem still requires many GNN layers?

Observation:

Embeddings in early layers can better differentiate nodes

Solution: add **shortcuts** in GNN (skip connections)

Skip connections

Figure by Leskovec

Outline

- 1. Introduction
- 2. Feature engineering for graphs
- 3. GNN architecture
- 4. Training a GNN
 - a. GNN pipeline
 - b. Train/validation/test splits
 - c. Skip connections
 - d. Graph manipulations

Node feature augmentation

Useful if, e.g., input graph does not have node features Common when we only have the adj. matrix

Standard approach: assign unique IDs to nodes

- High expressive power
- Can't generalize to new nodes
- High computational cost (many features)

Figure by Leskovec

Why do we need feature augmentation?

Certain structures are hard to learn by GNN E.g., cycle count

Nodes can't distinguish each other

Outline

- 1. Introduction
- 2. Feature engineering for graphs
 - a. Node-level prediction
 - b. Edge-level prediction
- 3. GNN architecture
- 4. Training a GNN
 - a. GNN pipeline
 - b. Train/validation/test splits
 - c. Skip connections
 - d. Graph manipulations

Papers we'll read

Veličković, Petar, et al. "Neural execution of graph algorithms." *ICLR*. 2020.

- GNNs don't work off-the-shelf for combinatorial tasks
- How to **align** GNN architectures to these tasks

Cappart, Quentin, et al. "Combinatorial optimization and reasoning with GNNs." *arXiv*.

• **Broad overview** of the field; current & future directions