
Graph neural networks

Based on slides from Jure Leskovec’s CS244W

https://web.stanford.edu/class/cs224w/


Many types of data are graphs

Slide by Leskovec



GNN motivation

Main question:
How to utilize relational structure for better prediction?



Today: Modern ML toolbox

Modern DL toolbox is designed for simple sequences & grids

Figure by Leskovec



Why is graph deep learning hard?

Networks are complex
• Arbitrary size and complex topological structure

• No fixed node ordering or reference point
• Often dynamic and have multimodal features

Networks

versus

Images

Text

Figure by Leskovec



Different types of tasks

Graph-level prediction

Node level

Community (subgraph) level

Edge level

Figure by Leskovec



Prediction with graphs: Examples

Graph-level tasks:
E.g., for a molecule represented as a graph, could predict:
• What the molecule smells like
• Whether it will bind to a receptor implicated in a disease

Figure by Sanchez-Lengeling et al. [’21]



Prediction with graphs: Examples

Node-level tasks:
E.g., political affiliations of users in a social network

Figure by Sanchez-Lengeling et al. [’21]



Prediction with graphs: Examples

Edge-level tasks: E.g.:
• Suggesting new friends
• Recommendations on Amazon, Netflix, …

Figure by Ahmad et al. [’20]



Example: Polypharmacy side effects

Figure by Zitnik et al. [’18]

Drug 1  

Drug 2

Combined

😀

😀

😫

Nodes: Drugs
Edges: Interaction type



Example: Traffic routing

E.g., Google maps
deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks



Example: Learning to simulate physics

Sanchez-Gonzalez et al. [‘20]

Nodes: Particles
Edges: Interaction between particles

Goal: Predict how a graph will evolve over time



Example: Combinatorial optimization

Replace full algorithm or learn steps (e.g., branching decision)

maximize 𝒄 " 𝒛 
subject to 𝐴𝒛 ≤ 𝒃
  𝒛 ∈ ℤ!
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Traditional ML pipeline

• Design features for nodes/links/graphs
• Obtain features for all training data

Figure by Leskovec



Traditional ML pipeline

Train an ML model:
• Logistic Regression, random forest, NN, etc.

Apply the model:
• Given new node/link/graph, obtain features and make prediction

Using effective features is key to achieving good performance
Figure by IBM



Different types of features

Graph-level features
(e.g., graph kernels)

Node-level features

Edge-level features

Figure by Leskovec
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Node-level features

Goal: Characterize structure and position of a node in network
Node degree, node centrality, clustering coefficient, graphlets

Node features

Figure by Leskovec



Node-level features: Degree

Degree 𝑘" of node 𝑣 = # neighboring nodes that the node has

Treats all neighboring nodes equally
Node centrality takes the node importance in a graph into account

Figure by Leskovec



Node-level features: Centrality

E.g., betweenness centrality:
Node is important if it’s on many shortest paths between other nodes

Centrality 𝑐! = 𝑐" = 𝑐# = 0

𝑐$ = 3 
• A-C-B
• A-C-D
• A-C-D-E

𝑐% = 3 
• A-C-D-E
• B-D-E
• C-D-E

Figure by Leskovec



Node-level features: Clustering coeff.

Captures topological properties of local neighborhood
Measures how connected 𝑣’s neighboring nodes are

𝑒" =
#(edges	among	neighboring	nodes)

#!
$

𝑒& = 1 𝑒& = 0.5 𝑒& = 0

𝑘&
2 =

4
2 = 6

Figure by Leskovec
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Edge-level features

E.g., local neighborhood overlap:
Captures # neighboring nodes shared between nodes 𝑢, 𝑣

Common neighbors: 𝑁 𝑣% ∩ 𝑁 𝑣$
E.g., 𝑁 𝐴 ∩ 𝑁 𝐵 = 𝐶 = 1

Jaccard’s coefficient: & "" ∩& "#
& "" ∪& "#

E.g., - . ∩- 0
- . ∪- 0

= 2
2,4

= 5
6

Figure by Leskovec
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Setup

• 𝑉 is the vertex set
• 𝑨 is the adjacency matrix (assume binary)
• 𝑿 ∈ ℝ ) ×+  is a matrix of node features
• 𝑣: a node in 𝑉
• 𝑁(𝑣): the set of neighbors of 𝑣
• Node features:
• Social networks: User profile, user image
• Biological networks: Gene expression profiles, gene functional info



Two goals

1. Node embeddings 2. Graph embedding

Figure by Jegelka



Idea 1: fully connected NN?
Idea: Join adjacency matrix & features, give as input to NN

Issues:
• Huge input
• Doesn’t generalize across graph size
• Sensitive to node ordering

Figure by Leskovec



Permutation invariance & equivariance

How to avoid sensitivity to node orderings?

𝐴 =
0 1
1 0

0 1
0 1

0 0
1 1

0 1
1 0

a b

c d

𝑃 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

a b

d c

𝑃𝐴𝑃' =
0 1
1 0

1 0
1 0

1 1
0 0

0 1
1 0

Permutation 
matrix

We want either:
• Permutation invariance
• Graph embedding
• Output: single vector
• 𝑓 𝑃𝐴𝑃9, 𝑃𝑋 = 𝑓(𝐴, 𝑋)

• Permutation equivariance
• Node embedding
• Output: vector per node
• 𝑓 𝑃𝐴𝑃9, 𝑃𝑋 = 𝑃𝑓(𝐴, 𝑋)



Permutation invariance & equivariance

GNNs consist of permutation equivariant/invariant functions

Figure by Bronstein, ICLR 2021 keynote



Permutation invariance & equivariance

Are other NN architectures permutation invariant / equivariant?
E.g., MLP

No.

Explains why naïve MLP approach fails for graphs



Graph neural networks

Idea:
1. Encode each node (node’s neighborhood) with embedding
2. Aggregate set of node embeddings into graph embedding

Figure by Jegelka



https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks
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https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks



Encoding neighborhoods: General form

𝒉,
- = 𝒙, (feature representation for node 𝑢)

In each round 𝑘 ∈ [𝐾], for each node 𝑣:
1.  Aggregate over neighbors

𝒎- :
; = AGGREGATE ; 𝒉<

;=5 : 𝑢 ∈ 𝑁 𝑣

Neighborhood of 𝑣

Figure by Jegelka



Encoding neighborhoods: General form

𝒉,
- = 𝒙, (feature representation for node 𝑢)

In each round 𝑘 ∈ 𝐾 , for each node 𝑣:
1.  Aggregate over neighbors

𝒎- :
; = AGGREGATE ; 𝒉<

;=5 : 𝑢 ∈ 𝑁 𝑣
2.  Update current node representation

𝒉:
; = COMBINE ; 𝒉:

;=5 ,𝒎- :
;

Figure by Jegelka



The basic GNN
[Merkwirth and Lengauer ‘05; Scarselli et al. ‘09]

𝒎& " = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q
,∈&(")

𝒉,

COMBINE 𝒉" ,𝒎&(") = 𝜎 𝑊1234𝒉" +𝑊52678𝒎& " + 𝒃

Trainable parameters

Non-linearity (e.g., 
tanh or ReLU)

Figure by Jegelka



Aggregation functions

𝒎& " = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q
,∈&(")

𝒉,

Instead, take averages, e.g.:
• 𝒎- : = 5

|- : |
∑<∈-(:)𝒉< [Merkwirth & Lengauer ‘05, Scarselli et al. ‘09]

• 𝒎- : = ∑<∈-(:)
5

|- < ||- : |
𝒉< [Kipf & Welling ‘16, Hamilton et al. ‘17]

Can we do more to improve?

Unstable, highly sensitive to node degrees

Figure by Jegelka



Aggregation functions

𝒎& " = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q
,∈&(")

𝒉,

Should be a permutation invariant, multi-set function

Unstable, highly sensitive to node degrees

Figure by Jegelka



Aggregation functions

= MLP$ Q
,∈& "

MLP% 𝒉, , 𝒉"

𝒎& " = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣

Universal approximation of multi-set functions
 [Zaheer et al. ‘17, Qi et al. ‘17, Xu et al. ‘19]

COMBINE 𝒉" ,𝒎&(") = 𝜎 𝑊1234𝒉" +𝑊52678𝒎& " + 𝒃  

Figure by Jegelka



Generalizations

• Use edge attributes/features in aggregation
𝑚&(") = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q

,∈& "

MLP 𝒉, , 𝒉" , 𝑤,"

• Different aggregations for different types of edges
E.g., Zitnik et al. [’18]



Generalizations

Attention [Velickovic et al. ‘18]:
𝑚&(") = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q

,∈& "

α",,𝒉,

• Useful when some neighbors might be more/less informative
• E.g., classifying papers by topic based on citation networks

• Some papers that span topical boundaries, highly-cited across fields
• GNN should learn to ignore uninformative neighbors



Node embeddings unrolled

Figures by Leskovec

Grey boxes: aggregation functions that we learn



Node embeddings unrolled

Grey boxes: aggregation functions that we learn
Figures by Leskovec



Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Figures by Leskovec



Weight sharing

Use the same aggregation functions for all nodes

Can generate encodings for
previously unseen nodes & graphs!

Figures by Leskovec
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GNN Pipeline

What we’ve covered so far

Figure by Leskovec



Prediction heads

Figure by Leskovec



Prediction heads

Different task levels require different prediction heads

Figure by Leskovec

Graph-level prediction

Node-level prediction

Edge-level prediction



Prediction heads: Node-level

After GNN computation, we have node embeddings
𝒉"
: ∈ ℝ+ , ∀𝑣 ∈ 𝑉

Suppose we want to make 𝑘-way predictions
• Classification: classify among 𝑘 categories
• Regression: regress on 𝑘 targets

a𝒚" = Head5;<2 𝒉"
: = 𝑊(=)𝒉"

:  
• 𝑊(C) ∈ ℝD×; so C𝒚: ∈ ℝ;



Prediction heads: Edge-level
Suppose we want to make 𝑘-way predictions

C𝒚<: = HeadFGHF 𝒉<
I , 𝒉:

I

a𝒚," = Linear Concatenate 𝒉,
: , 𝒉"

:  
Linear maps 2𝑑-dimensional embedding to 𝑘-way embedding

Similar to multi-head attention:
a𝒚," 1 = 𝒉,

: 𝑊 % 𝒉"
:

⋮
a𝒚," 𝑘 = 𝒉,

: 𝑊 # 𝒉"
:

𝒉(
)

𝒉&
)



Prediction heads: Graph-level

Graph-level prediction:
Make prediction using all node embeddings

a𝒚> = HEAD7?@A8 𝒉"
B ∈ ℝ+ , ∀𝑣 ∈ 𝐺

Graph-level prediction

Figure by Leskovec



Prediction heads: Graph-level

Options for HEAD7?@A8 𝒉"
B ∈ ℝ+ , ∀𝑣 ∈ 𝐺 :

• Global mean pooling C𝒚K = 𝐌𝐞𝐚𝐧 𝒉:
L ∈ ℝD, ∀𝑣 ∈ 𝐺

• Global max pooling C𝒚K = 𝐌𝐚𝐱 𝒉:
L ∈ ℝD, ∀𝑣 ∈ 𝐺

• Global sum pooling C𝒚K = 𝐒𝐮𝐦 𝒉:
L ∈ ℝD, ∀𝑣 ∈ 𝐺

Work well for small graphs
What about large graphs?



Issue of global pooling

Issue: Global pooling over a (large) graph will lose information

Toy example with 1-dim node embeddings:
• Node embeddings for 𝐺%: −1,−2, 0, 1, 2
• Node embeddings for 𝐺$: −10,−20, 0, 10, 20
• If we do global sum pooling:
• Prediction for 𝐺5: Y𝑦K! = Sum −1,−2, 0, 1, 2 = 0
• Prediction for 𝐺6: Y𝑦K" = Sum −10,−20, 0, 10, 20 = 0
• Cannot differentiate between 𝑮𝟏 and 𝑮𝟐!



Hierarchical global pooling

• A solution: Aggregate all node embeddings hierarchically
• Toy example: Aggregate via ReLU(Sum(·))
• First separately aggregate the first 2 nodes and the last 3 nodes
• Then aggregate again to make final prediction

• 𝐺% node embeddings: −1,−2, 0, 1, 2
• Round 1: Y𝑦O = ReLU Sum −1,−2 = 0,
   Y𝑦P = ReLU Sum 0, 1, 2 = 3
• Round 2: Y𝑦K! = ReLU Sum Y𝑦O, Y𝑦P = 3



Hierarchical global pooling

• A solution: Aggregate all node embeddings hierarchically
• Toy example: Aggregate via ReLU(Sum(·))
• First separately aggregate the first 2 nodes and the last 3 nodes
• Then aggregate again to make final prediction

• 𝐺% node embeddings: −1,−2, 0, 1, 2 , m𝑦>" = 3
• 𝐺$ node embeddings: −10,−20, 0, 10, 20
• Round 1: Y𝑦O = ReLU Sum −10,−20 = 0,
   Y𝑦P = ReLU Sum 0, 10, 20 = 30
• Round 2: Y𝑦K" = ReLU Sum Y𝑦O, Y𝑦P = 30

Can differentiate 
between 𝑮𝟏 and 𝑮𝟐 



Hierarchical pooling in practice

DiffPool idea: Hierarchically pool node embeddings

Original 
network

Pooled 
network: 
Level 1

Pooled 
network: 
Level 2

Pooled 
network: 
Level 3

Graph 
classification

Figure by Ying et al. NeurIPS’18



Hierarchical pooling in practice

Leverage 2 independent GNNs at each level
• GNN A: Compute node embeddings
• GNN B: Compute the cluster that a node belongs to

Original 
network

Pooled 
network: 
Level 1

Pooled 
network: 
Level 2

Pooled 
network: 
Level 3

Graph 
classification

Figure by Ying et al. NeurIPS’18



GNN Pipeline 

Figure by Leskovec



Supervised vs unsupervised

Supervised learning on graphs
• Labels come from external sources
• E.g., predict drug likeness of a molecular graph

Unsupervised learning on graphs
• Signals come from graphs themselves
• E.g., link prediction: delete edges, predict if 2 nodes are connected

Sometimes the differences are blurry
• We still have “supervision” in unsupervised learning
• Alternative name for “unsupervised” is “self-supervised”



GNN pipeline

E.g., cross entropy for classification, MSE for regression
Figure by Leskovec



Loss functions

E.g., accuracy: !
"
∑#$!" 𝟏 %!&'%!
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Training, validation, and test sets

Training set: used for optimizing GNN parameters

Validation set: develop model/hyperparameters

Test set: held out until we report final performance



Why graphs are special

Suppose we want to split an image dataset
• Each data point is an image
• Data points are independent
• Image 5 will not affect our prediction on image 1

Training
Validation
Test

1

6

2 3

5
4



Why graphs are special

Splitting a graph dataset is different
• Node classification: Each data point is a node
• Data points are NOT independent

• Node 5 will affect our prediction on node 1 due to message passing

Training
Validation
Test

1

6

2 3

5
4



Transductive learning

Solution 1 (Transductive setting):
• Input graph can be observed in all the dataset splits

• Training, validation and test set
• Only split the (node) labels
• Training: compute embeddings using entire graph

• Train using node 1&2’s labels
• Validation: compute embeddings using entire graph

• Evaluate on node 3&4’s labels

Training
Validation
Test

1

6

2 3

5
4



Inductive learning

Solution 2 (Inductive setting):
• Break the edges between splits to get multiple graphs
• 3 graphs are independent: node 5 won’t affect prediction on node 1
• Training: compute embeddings using graph over node 1&2

• Train using node 1&2’s labels
• Validation: compute embeddings using the graph over node 3&4

• Evaluate on node 3&4’s labels

Training
Validation
Test

1

6

2 3

5
4



Transductive vs inductive
Transductive setting:
• Training / validation / test sets are on the same graph
• Dataset consists of one graph
• Entire graph can be observed in all dataset splits: only split labels
• Only applicable to node / edge prediction tasks

Inductive setting:
• Training / validation / test sets are on different graphs
• Dataset consists of multiple graphs
• Each split can only observe the graph(s) within the split
• Successful model should generalize to unseen graphs
• Applicable to node / edge / graph tasks



Example: Node classification

Transductive setting:
• All splits can observe the entire graph structure
• Can only observe the labels of their respective nodes

Training
Validation
Test

1

6

2 3

5
4



Example: Node classification

Inductive setting:
• Suppose have a dataset of 3 graphs
• Each split contains a different graph Training

Validation
Test



Example: Graph classification

Only the inductive setting is well defined for graph classification
• Have to test on unseen graphs
• Suppose we have a dataset of 5 graphs

Each split will contain independent graph(s) Training
Validation
Test



Example: Link prediction

• Goal: predict missing edges
• Link prediction is an unsupervised / self-supervised task
• Need to hide some edges from the GNN
• Let the GNN predict if the edges exist

Original graph Input to GNN Predictions made by 
GNN



Setting up link prediction

• For link prediction, we’ll split edges twice
• Step 1: Assign two types of edges in the original graph
• Message edges: Used for GNN message passing
• Supervision edges: Use for computing objectives

• After step 1:
• Only message edges will remain in the graph
• Supervision edges used as supervision for model’s predictions

Will not be fed into GNN! Supervision edges

Message edges



Setting up link prediction

• Step 2: Split edges into train / validation / test
• Option 1: Inductive link prediction split
• Suppose we have a dataset of 3 graphs
• Each inductive split will contain an independent graph

Training
Validation
Test



Setting up link prediction

• Step 2: Split edges into train / validation / test
• Option 1: Inductive link prediction split
• Suppose we have a dataset of 3 graphs
• Each inductive split will contain an independent graph
• In train/val/test set, each graph will have 2 types of edges:

• Message edges
• Supervision edges (not the input to GNN)

Training
Validation
Test



Setting up link prediction

Option 2: Transductive link prediction split:
• Default setting when people talk about link prediction
• Suppose we have a dataset of 1 graph



Setting up link prediction

Option 2: Transductive link prediction split:
• Entire graph can be observed in all dataset splits
• Need to hold out validation / test edges
• To train, must hold out supervision edges for the training set



Setting up link prediction

Option 2: Transductive link prediction split

(1) At training time:
Use training message 
edges to predict training 
supervision edges 

(2) At validation time:
Use training message + 
supervision edges to 
predict validation edges

(3) At test time:
Use training message + 
supervision edges and 
validation edges to predict 
test edges

Original graph
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Over-smoothing problem
Issue with stacking many GNN layers:

GNN suffers from the over-smoothing problem

The over-smoothing problem:
All node embeddings converge to same value

Bad bc want to use embeddings to differentiate nodes

Why does the over-smoothing problem happen?

GNN layer

GNN layer

GNN layer

GNN layer

𝒉(
* = 𝒙( 

𝒉(
+

𝒉(
,

𝒉(
-

𝒉(
.



Receptive field of a GNN

• Receptive field:
Set of nodes that determine embedding of node of interest

• 𝐾-layer GNN: node’s receptive field is its 𝐾-hop neighborhood

Figure by Leskovec



Receptive field of a GNN

Receptive field overlap for two nodes
Shared neighbors quickly grows when we increase # GNN layers

Figure by Leskovec



Receptive field and oversmoothing
Can explain over-smoothing via receptive fields

Embedding of a node is determined by its receptive field
• Nodes have very overlapped receptive fields ⇒ similar embeddings
• Stack many GNN layers
 → nodes will have highly-overlapped receptive fields
 → node embeddings will be highly similar
 → suffer from the over-smoothing problem

How to overcome over-smoothing problem?



Design GNN layer connectivity

Lesson: Be cautious when adding GNN layers
Adding GNN layers doesn’t always help, unlike NNs in other domains

Step 1: Analyze necessary receptive field to solve problem
E.g., by computing graph’s diameter

Step 2: Set # GNN layers to be a bit more than receptive field



Skip connections

What if my problem still requires many GNN layers?

Observation:
Embeddings in early layers can better differentiate nodes

Solution: add shortcuts in GNN (skip connections)



Skip connections

Figure by Leskovec
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Node feature augmentation

Figure by Leskovec

Useful if, e.g., input graph does not have node features
Common when we only have the adj. matrix

Standard approach: assign unique IDs to nodes
👍 High expressive power
👎 Can’t generalize to new nodes
👎 High computational cost (many features)



Why do we need feature augmentation?

Certain structures are hard to learn by GNN
E.g., cycle count

https://andreasloukas.blog/2019/12/27/what-gnn-can-and-cannot-learn/

Nodes can distinguish each other Nodes can’t distinguish each other
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Papers we’ll read

Veličković, Petar, et al. "Neural execution of graph algorithms." 
ICLR. 2020.
•  GNNs don’t work off-the-shelf for combinatorial tasks
•  How to align GNN architectures to these tasks

Cappart, Quentin, et al. "Combinatorial optimization and 
reasoning with GNNs." arXiv.
•  Broad overview of the field; current & future directions


