
Graph neural networks

Based on slides from Jure Leskovec’s CS244W

https://web.stanford.edu/class/cs224w/

Many types of data are graphs

Slide by Leskovec

GNN motivation

Main question:
How to utilize relational structure for better prediction?

Today: Modern ML toolbox

Modern DL toolbox is designed for simple sequences & grids

Figure by Leskovec

Why is graph deep learning hard?

Networks are complex
• Arbitrary size and complex topological structure

• No fixed node ordering or reference point
• Often dynamic and have multimodal features

Networks

versus

Images

Text

Figure by Leskovec

Different types of tasks

Graph-level prediction

Node level

Community (subgraph) level

Edge level

Figure by Leskovec

Prediction with graphs: Examples

Graph-level tasks:
E.g., for a molecule represented as a graph, could predict:
• What the molecule smells like
• Whether it will bind to a receptor implicated in a disease

Figure by Sanchez-Lengeling et al. [’21]

Prediction with graphs: Examples

Node-level tasks:
E.g., political affiliations of users in a social network

Figure by Sanchez-Lengeling et al. [’21]

Prediction with graphs: Examples

Edge-level tasks: E.g.:
• Suggesting new friends
• Recommendations on Amazon, Netflix, …

Figure by Ahmad et al. [’20]

Example: Polypharmacy side effects

Figure by Zitnik et al. [’18]

Drug 1

Drug 2

Combined

😀

😀

😫

Nodes: Drugs
Edges: Interaction type

Example: Traffic routing

E.g., Google maps
deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Example: Learning to simulate physics

Sanchez-Gonzalez et al. [‘20]

Nodes: Particles
Edges: Interaction between particles

Goal: Predict how a graph will evolve over time

Example: Combinatorial optimization

Replace full algorithm or learn steps (e.g., branching decision)

maximize 𝒄 " 𝒛
subject to 𝐴𝒛 ≤ 𝒃
 𝒛 ∈ ℤ!

Outline

1. Introduction
2. Feature engineering for graphs
3. GNN architecture
4. Training a GNN

Traditional ML pipeline

• Design features for nodes/links/graphs
• Obtain features for all training data

Figure by Leskovec

Traditional ML pipeline

Train an ML model:
• Logistic Regression, random forest, NN, etc.

Apply the model:
• Given new node/link/graph, obtain features and make prediction

Using effective features is key to achieving good performance
Figure by IBM

Different types of features

Graph-level features
(e.g., graph kernels)

Node-level features

Edge-level features

Figure by Leskovec

Outline

1. Introduction
2. Feature engineering for graphs

a. Node-level prediction
b. Edge-level prediction

3. GNN architecture
4. Training a GNN

Node-level features

Goal: Characterize structure and position of a node in network
Node degree, node centrality, clustering coefficient, graphlets

Node features

Figure by Leskovec

Node-level features: Degree

Degree 𝑘" of node 𝑣 = # neighboring nodes that the node has

Treats all neighboring nodes equally
Node centrality takes the node importance in a graph into account

Figure by Leskovec

Node-level features: Centrality

E.g., betweenness centrality:
Node is important if it’s on many shortest paths between other nodes

Centrality 𝑐! = 𝑐" = 𝑐# = 0

𝑐$ = 3
• A-C-B
• A-C-D
• A-C-D-E

𝑐% = 3
• A-C-D-E
• B-D-E
• C-D-E

Figure by Leskovec

Node-level features: Clustering coeff.

Captures topological properties of local neighborhood
Measures how connected 𝑣’s neighboring nodes are

𝑒" =
#(edges	among	neighboring	nodes)

#!
$

𝑒& = 1 𝑒& = 0.5 𝑒& = 0

𝑘&
2 =

4
2 = 6

Figure by Leskovec

Outline

1. Introduction
2. Feature engineering for graphs

a. Node-level prediction
b. Edge-level prediction

3. GNN architecture
4. Training a GNN

Edge-level features

E.g., local neighborhood overlap:
Captures # neighboring nodes shared between nodes 𝑢, 𝑣

Common neighbors: 𝑁 𝑣% ∩ 𝑁 𝑣$
E.g., 𝑁 𝐴 ∩ 𝑁 𝐵 = 𝐶 = 1

Jaccard’s coefficient: & "" ∩& "#
& "" ∪& "#

E.g., - . ∩- 0
- . ∪- 0

= 2
2,4

= 5
6

Figure by Leskovec

Outline

1. Introduction
2. Feature engineering for graphs
3. GNN architecture
4. Training a GNN

Setup

• 𝑉 is the vertex set
• 𝑨 is the adjacency matrix (assume binary)
• 𝑿 ∈ ℝ) ×+ is a matrix of node features
• 𝑣: a node in 𝑉
• 𝑁(𝑣): the set of neighbors of 𝑣
• Node features:
• Social networks: User profile, user image
• Biological networks: Gene expression profiles, gene functional info

Two goals

1. Node embeddings 2. Graph embedding

Figure by Jegelka

Idea 1: fully connected NN?
Idea: Join adjacency matrix & features, give as input to NN

Issues:
• Huge input
• Doesn’t generalize across graph size
• Sensitive to node ordering

Figure by Leskovec

Permutation invariance & equivariance

How to avoid sensitivity to node orderings?

𝐴 =
0 1
1 0

0 1
0 1

0 0
1 1

0 1
1 0

a b

c d

𝑃 =
1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

a b

d c

𝑃𝐴𝑃' =
0 1
1 0

1 0
1 0

1 1
0 0

0 1
1 0

Permutation
matrix

We want either:
• Permutation invariance
• Graph embedding
• Output: single vector
• 𝑓 𝑃𝐴𝑃9, 𝑃𝑋 = 𝑓(𝐴, 𝑋)

• Permutation equivariance
• Node embedding
• Output: vector per node
• 𝑓 𝑃𝐴𝑃9, 𝑃𝑋 = 𝑃𝑓(𝐴, 𝑋)

Permutation invariance & equivariance

GNNs consist of permutation equivariant/invariant functions

Figure by Bronstein, ICLR 2021 keynote

Permutation invariance & equivariance

Are other NN architectures permutation invariant / equivariant?
E.g., MLP

No.

Explains why naïve MLP approach fails for graphs

Graph neural networks

Idea:
1. Encode each node (node’s neighborhood) with embedding
2. Aggregate set of node embeddings into graph embedding

Figure by Jegelka

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

Encoding neighborhoods: General form

𝒉,
- = 𝒙, (feature representation for node 𝑢)

In each round 𝑘 ∈ [𝐾], for each node 𝑣:
1. Aggregate over neighbors

𝒎- :
; = AGGREGATE ; 𝒉<

;=5 : 𝑢 ∈ 𝑁 𝑣

Neighborhood of 𝑣

Figure by Jegelka

Encoding neighborhoods: General form

𝒉,
- = 𝒙, (feature representation for node 𝑢)

In each round 𝑘 ∈ 𝐾 , for each node 𝑣:
1. Aggregate over neighbors

𝒎- :
; = AGGREGATE ; 𝒉<

;=5 : 𝑢 ∈ 𝑁 𝑣
2. Update current node representation

𝒉:
; = COMBINE ; 𝒉:

;=5 ,𝒎- :
;

Figure by Jegelka

The basic GNN
[Merkwirth and Lengauer ‘05; Scarselli et al. ‘09]

𝒎& " = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q
,∈&(")

𝒉,

COMBINE 𝒉" ,𝒎&(") = 𝜎 𝑊1234𝒉" +𝑊52678𝒎& " + 𝒃

Trainable parameters

Non-linearity (e.g.,
tanh or ReLU)

Figure by Jegelka

Aggregation functions

𝒎& " = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q
,∈&(")

𝒉,

Instead, take averages, e.g.:
• 𝒎- : = 5

|- : |
∑<∈-(:)𝒉< [Merkwirth & Lengauer ‘05, Scarselli et al. ‘09]

• 𝒎- : = ∑<∈-(:)
5

|- < ||- : |
𝒉< [Kipf & Welling ‘16, Hamilton et al. ‘17]

Can we do more to improve?

Unstable, highly sensitive to node degrees

Figure by Jegelka

Aggregation functions

𝒎& " = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q
,∈&(")

𝒉,

Should be a permutation invariant, multi-set function

Unstable, highly sensitive to node degrees

Figure by Jegelka

Aggregation functions

= MLP$ Q
,∈& "

MLP% 𝒉, , 𝒉"

𝒎& " = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣

Universal approximation of multi-set functions
 [Zaheer et al. ‘17, Qi et al. ‘17, Xu et al. ‘19]

COMBINE 𝒉" ,𝒎&(") = 𝜎 𝑊1234𝒉" +𝑊52678𝒎& " + 𝒃

Figure by Jegelka

Generalizations

• Use edge attributes/features in aggregation
𝑚&(") = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q

,∈& "

MLP 𝒉, , 𝒉" , 𝑤,"

• Different aggregations for different types of edges
E.g., Zitnik et al. [’18]

Generalizations

Attention [Velickovic et al. ‘18]:
𝑚&(") = AGGREGATE 𝒉,: 𝑢 ∈ 𝑁 𝑣 = Q

,∈& "

α",,𝒉,

• Useful when some neighbors might be more/less informative
• E.g., classifying papers by topic based on citation networks

• Some papers that span topical boundaries, highly-cited across fields
• GNN should learn to ignore uninformative neighbors

Node embeddings unrolled

Figures by Leskovec

Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Grey boxes: aggregation functions that we learn
Figures by Leskovec

Grey boxes: aggregation functions that we learn

Node embeddings unrolled

Figures by Leskovec

Weight sharing

Use the same aggregation functions for all nodes

Can generate encodings for
previously unseen nodes & graphs!

Figures by Leskovec

Outline
1. Introduction
2. Feature engineering for graphs

a. Node-level prediction
b. Edge-level prediction

3. GNN architecture
4. Training a GNN

a. GNN pipeline
b. Train/validation/test splits
c. Skip connections
d. Graph manipulations

GNN Pipeline

What we’ve covered so far

Figure by Leskovec

Prediction heads

Figure by Leskovec

Prediction heads

Different task levels require different prediction heads

Figure by Leskovec

Graph-level prediction

Node-level prediction

Edge-level prediction

Prediction heads: Node-level

After GNN computation, we have node embeddings
𝒉"
: ∈ ℝ+ , ∀𝑣 ∈ 𝑉

Suppose we want to make 𝑘-way predictions
• Classification: classify among 𝑘 categories
• Regression: regress on 𝑘 targets

a𝒚" = Head5;<2 𝒉"
: = 𝑊(=)𝒉"

:
• 𝑊(C) ∈ ℝD×; so C𝒚: ∈ ℝ;

Prediction heads: Edge-level
Suppose we want to make 𝑘-way predictions

C𝒚<: = HeadFGHF 𝒉<
I , 𝒉:

I

a𝒚," = Linear Concatenate 𝒉,
: , 𝒉"

:
Linear maps 2𝑑-dimensional embedding to 𝑘-way embedding

Similar to multi-head attention:
a𝒚," 1 = 𝒉,

: 𝑊 % 𝒉"
:

⋮
a𝒚," 𝑘 = 𝒉,

: 𝑊 # 𝒉"
:

𝒉(
)

𝒉&
)

Prediction heads: Graph-level

Graph-level prediction:
Make prediction using all node embeddings

a𝒚> = HEAD7?@A8 𝒉"
B ∈ ℝ+ , ∀𝑣 ∈ 𝐺

Graph-level prediction

Figure by Leskovec

Prediction heads: Graph-level

Options for HEAD7?@A8 𝒉"
B ∈ ℝ+ , ∀𝑣 ∈ 𝐺 :

• Global mean pooling C𝒚K = 𝐌𝐞𝐚𝐧 𝒉:
L ∈ ℝD, ∀𝑣 ∈ 𝐺

• Global max pooling C𝒚K = 𝐌𝐚𝐱 𝒉:
L ∈ ℝD, ∀𝑣 ∈ 𝐺

• Global sum pooling C𝒚K = 𝐒𝐮𝐦 𝒉:
L ∈ ℝD, ∀𝑣 ∈ 𝐺

Work well for small graphs
What about large graphs?

Issue of global pooling

Issue: Global pooling over a (large) graph will lose information

Toy example with 1-dim node embeddings:
• Node embeddings for 𝐺%: −1,−2, 0, 1, 2
• Node embeddings for 𝐺$: −10,−20, 0, 10, 20
• If we do global sum pooling:
• Prediction for 𝐺5: Y𝑦K! = Sum −1,−2, 0, 1, 2 = 0
• Prediction for 𝐺6: Y𝑦K" = Sum −10,−20, 0, 10, 20 = 0
• Cannot differentiate between 𝑮𝟏 and 𝑮𝟐!

Hierarchical global pooling

• A solution: Aggregate all node embeddings hierarchically
• Toy example: Aggregate via ReLU(Sum(·))
• First separately aggregate the first 2 nodes and the last 3 nodes
• Then aggregate again to make final prediction

• 𝐺% node embeddings: −1,−2, 0, 1, 2
• Round 1: Y𝑦O = ReLU Sum −1,−2 = 0,
 Y𝑦P = ReLU Sum 0, 1, 2 = 3
• Round 2: Y𝑦K! = ReLU Sum Y𝑦O, Y𝑦P = 3

Hierarchical global pooling

• A solution: Aggregate all node embeddings hierarchically
• Toy example: Aggregate via ReLU(Sum(·))
• First separately aggregate the first 2 nodes and the last 3 nodes
• Then aggregate again to make final prediction

• 𝐺% node embeddings: −1,−2, 0, 1, 2 , m𝑦>" = 3
• 𝐺$ node embeddings: −10,−20, 0, 10, 20
• Round 1: Y𝑦O = ReLU Sum −10,−20 = 0,
 Y𝑦P = ReLU Sum 0, 10, 20 = 30
• Round 2: Y𝑦K" = ReLU Sum Y𝑦O, Y𝑦P = 30

Can differentiate
between 𝑮𝟏 and 𝑮𝟐

Hierarchical pooling in practice

DiffPool idea: Hierarchically pool node embeddings

Original
network

Pooled
network:
Level 1

Pooled
network:
Level 2

Pooled
network:
Level 3

Graph
classification

Figure by Ying et al. NeurIPS’18

Hierarchical pooling in practice

Leverage 2 independent GNNs at each level
• GNN A: Compute node embeddings
• GNN B: Compute the cluster that a node belongs to

Original
network

Pooled
network:
Level 1

Pooled
network:
Level 2

Pooled
network:
Level 3

Graph
classification

Figure by Ying et al. NeurIPS’18

GNN Pipeline

Figure by Leskovec

Supervised vs unsupervised

Supervised learning on graphs
• Labels come from external sources
• E.g., predict drug likeness of a molecular graph

Unsupervised learning on graphs
• Signals come from graphs themselves
• E.g., link prediction: delete edges, predict if 2 nodes are connected

Sometimes the differences are blurry
• We still have “supervision” in unsupervised learning
• Alternative name for “unsupervised” is “self-supervised”

GNN pipeline

E.g., cross entropy for classification, MSE for regression
Figure by Leskovec

Loss functions

E.g., accuracy: !
"
∑#$!" 𝟏 %!&'%!

Outline
1. Introduction
2. Feature engineering for graphs

a. Node-level prediction
b. Edge-level prediction

3. GNN architecture
4. Training a GNN

a. GNN pipeline
b. Train/validation/test splits
c. Skip connections
d. Graph manipulations

Training, validation, and test sets

Training set: used for optimizing GNN parameters

Validation set: develop model/hyperparameters

Test set: held out until we report final performance

Why graphs are special

Suppose we want to split an image dataset
• Each data point is an image
• Data points are independent
• Image 5 will not affect our prediction on image 1

Training
Validation
Test

1

6

2 3

5
4

Why graphs are special

Splitting a graph dataset is different
• Node classification: Each data point is a node
• Data points are NOT independent

• Node 5 will affect our prediction on node 1 due to message passing

Training
Validation
Test

1

6

2 3

5
4

Transductive learning

Solution 1 (Transductive setting):
• Input graph can be observed in all the dataset splits

• Training, validation and test set
• Only split the (node) labels
• Training: compute embeddings using entire graph

• Train using node 1&2’s labels
• Validation: compute embeddings using entire graph

• Evaluate on node 3&4’s labels

Training
Validation
Test

1

6

2 3

5
4

Inductive learning

Solution 2 (Inductive setting):
• Break the edges between splits to get multiple graphs
• 3 graphs are independent: node 5 won’t affect prediction on node 1
• Training: compute embeddings using graph over node 1&2

• Train using node 1&2’s labels
• Validation: compute embeddings using the graph over node 3&4

• Evaluate on node 3&4’s labels

Training
Validation
Test

1

6

2 3

5
4

Transductive vs inductive
Transductive setting:
• Training / validation / test sets are on the same graph
• Dataset consists of one graph
• Entire graph can be observed in all dataset splits: only split labels
• Only applicable to node / edge prediction tasks

Inductive setting:
• Training / validation / test sets are on different graphs
• Dataset consists of multiple graphs
• Each split can only observe the graph(s) within the split
• Successful model should generalize to unseen graphs
• Applicable to node / edge / graph tasks

Example: Node classification

Transductive setting:
• All splits can observe the entire graph structure
• Can only observe the labels of their respective nodes

Training
Validation
Test

1

6

2 3

5
4

Example: Node classification

Inductive setting:
• Suppose have a dataset of 3 graphs
• Each split contains a different graph Training

Validation
Test

Example: Graph classification

Only the inductive setting is well defined for graph classification
• Have to test on unseen graphs
• Suppose we have a dataset of 5 graphs

Each split will contain independent graph(s) Training
Validation
Test

Example: Link prediction

• Goal: predict missing edges
• Link prediction is an unsupervised / self-supervised task
• Need to hide some edges from the GNN
• Let the GNN predict if the edges exist

Original graph Input to GNN Predictions made by
GNN

Setting up link prediction

• For link prediction, we’ll split edges twice
• Step 1: Assign two types of edges in the original graph
• Message edges: Used for GNN message passing
• Supervision edges: Use for computing objectives

• After step 1:
• Only message edges will remain in the graph
• Supervision edges used as supervision for model’s predictions

Will not be fed into GNN! Supervision edges

Message edges

Setting up link prediction

• Step 2: Split edges into train / validation / test
• Option 1: Inductive link prediction split
• Suppose we have a dataset of 3 graphs
• Each inductive split will contain an independent graph

Training
Validation
Test

Setting up link prediction

• Step 2: Split edges into train / validation / test
• Option 1: Inductive link prediction split
• Suppose we have a dataset of 3 graphs
• Each inductive split will contain an independent graph
• In train/val/test set, each graph will have 2 types of edges:

• Message edges
• Supervision edges (not the input to GNN)

Training
Validation
Test

Setting up link prediction

Option 2: Transductive link prediction split:
• Default setting when people talk about link prediction
• Suppose we have a dataset of 1 graph

Setting up link prediction

Option 2: Transductive link prediction split:
• Entire graph can be observed in all dataset splits
• Need to hold out validation / test edges
• To train, must hold out supervision edges for the training set

Setting up link prediction

Option 2: Transductive link prediction split

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message +
supervision edges to
predict validation edges

(3) At test time:
Use training message +
supervision edges and
validation edges to predict
test edges

Original graph

Outline

1. Introduction
2. Feature engineering for graphs
3. GNN architecture
4. Training a GNN

a. GNN pipeline
b. Train/validation/test splits
c. Skip connections
d. Graph manipulations

Over-smoothing problem
Issue with stacking many GNN layers:

GNN suffers from the over-smoothing problem

The over-smoothing problem:
All node embeddings converge to same value

Bad bc want to use embeddings to differentiate nodes

Why does the over-smoothing problem happen?

GNN layer

GNN layer

GNN layer

GNN layer

𝒉(
* = 𝒙(

𝒉(
+

𝒉(
,

𝒉(
-

𝒉(
.

Receptive field of a GNN

• Receptive field:
Set of nodes that determine embedding of node of interest

• 𝐾-layer GNN: node’s receptive field is its 𝐾-hop neighborhood

Figure by Leskovec

Receptive field of a GNN

Receptive field overlap for two nodes
Shared neighbors quickly grows when we increase # GNN layers

Figure by Leskovec

Receptive field and oversmoothing
Can explain over-smoothing via receptive fields

Embedding of a node is determined by its receptive field
• Nodes have very overlapped receptive fields ⇒ similar embeddings
• Stack many GNN layers
 → nodes will have highly-overlapped receptive fields
 → node embeddings will be highly similar
 → suffer from the over-smoothing problem

How to overcome over-smoothing problem?

Design GNN layer connectivity

Lesson: Be cautious when adding GNN layers
Adding GNN layers doesn’t always help, unlike NNs in other domains

Step 1: Analyze necessary receptive field to solve problem
E.g., by computing graph’s diameter

Step 2: Set # GNN layers to be a bit more than receptive field

Skip connections

What if my problem still requires many GNN layers?

Observation:
Embeddings in early layers can better differentiate nodes

Solution: add shortcuts in GNN (skip connections)

Skip connections

Figure by Leskovec

Outline

1. Introduction
2. Feature engineering for graphs
3. GNN architecture
4. Training a GNN

a. GNN pipeline
b. Train/validation/test splits
c. Skip connections
d. Graph manipulations

Node feature augmentation

Figure by Leskovec

Useful if, e.g., input graph does not have node features
Common when we only have the adj. matrix

Standard approach: assign unique IDs to nodes
👍 High expressive power
👎 Can’t generalize to new nodes
👎 High computational cost (many features)

Why do we need feature augmentation?

Certain structures are hard to learn by GNN
E.g., cycle count

https://andreasloukas.blog/2019/12/27/what-gnn-can-and-cannot-learn/

Nodes can distinguish each other Nodes can’t distinguish each other

Outline
1. Introduction
2. Feature engineering for graphs

a. Node-level prediction
b. Edge-level prediction

3. GNN architecture
4. Training a GNN

a. GNN pipeline
b. Train/validation/test splits
c. Skip connections
d. Graph manipulations

Papers we’ll read

Veličković, Petar, et al. "Neural execution of graph algorithms."
ICLR. 2020.
• GNNs don’t work off-the-shelf for combinatorial tasks
• How to align GNN architectures to these tasks

Cappart, Quentin, et al. "Combinatorial optimization and
reasoning with GNNs." arXiv.
• Broad overview of the field; current & future directions

