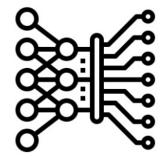
Neural Execution of Graph Algorithms

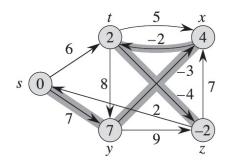
Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, Charles Blundell

International Conference on Learning Representations (ICLR) 2020

Problem-solving approaches



- + Operate on raw inputs
- + Generalize on noisy conditions
- + Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability



- + Trivially strong generalization
- + Compositional (subroutines)
- + Guaranteed correctness
- + Interpretable operations
- Input must match spec
- Not robust to task variations

Is it possible to get the best of both worlds?

Previous work

Previous work:

- Shortest path [Graves et al. '16; Xu et al., '19]
- Traveling salesman [Reed and De Freitas '15]
- Boolean satisfiability [Vinyals et al. '15; Bello et al., '16; ...]
- Probabilistic inference [Yoon et al., '18]

Ground-truth solutions used to drive learning Model has **complete freedom** mapping raw inputs to solutions

Neural graph algorithm execution

Key observation: Many algorithms share related **subroutines** E.g. Bellman-Ford,BFS enumerate sets of edges adjacent to a node

Neural graph algorithm execution

- Learn several algorithms **simultaneously**
- Provide intermediate supervision signals Driven by how a known classical algorithm would process the input

Outline

1. Introduction

2. Graph inputs

- 3. GNN structure and implementation
- 4. Graph algorithms
- 5. Experiments

Graph inputs

Algorithm (GNN or classical algorithm):

- Processes a sequence of T graph-structured inputs
- Graph G = (V, E) remains constant but meta-data varies

For $t \in [T]$:

- Each node $i \in V$ has features $\mathbf{x}_i^{(t)} \in \mathbb{R}^{N_x}$
- Each edge $(i, j) \in E$ has features $\boldsymbol{e}_{ij}^{(t)} \in \mathbb{R}^{N_e}$
- Algorithm produces node-level output $y_i^{(t)} \in \mathbb{R}^{N_y}$
 - Parts of $\boldsymbol{y}_i^{(t)}$ may be used as next input $\boldsymbol{x}_i^{(t+1)}$

Outline

- 1. Introduction
- 2. Graph inputs

3. GNN structure and implementation

- 4. Graph algorithms
- 5. Experiments

GNN structure: encode-process-decode

For each algorithm *A*:

- Encoder network f_A
 - Input: Previous latent features $h_i^{(t-1)}$ (with $h_i^{(0)} = 0$), input features $x_i^{(t)}$
 - Output: Encoded inputs $\mathbf{z}_i^{(t)} = f_A \left(\mathbf{h}_i^{(t-1)}, \mathbf{x}_i^{(t)} \right)$
- Processor network P
 - Input: Encoded inputs $\mathbf{Z}^{(t)} = \left\{ \mathbf{z}_{i}^{(t)} \right\}_{i \in V}$, edge features $\mathbf{E}^{(t)} = \left\{ \mathbf{e}_{ij}^{(t)} \right\}_{e \in E}$
 - **Output:** Latent node features $\boldsymbol{H}^{(t)} = \left\{ \boldsymbol{h}_i^{(t)} \right\}_{i \in V} = P(\boldsymbol{Z}^{(t)}, \boldsymbol{E}^{(t)})$
- Decoder network g_A
 - Input: Encoded inputs $m{z}_i^{(t)}$, latent features $m{h}_i^{(t)}$
 - **Output:** $y_i^{(t)} = g_A(z_i^{(t)}, h_i^{(t)})$

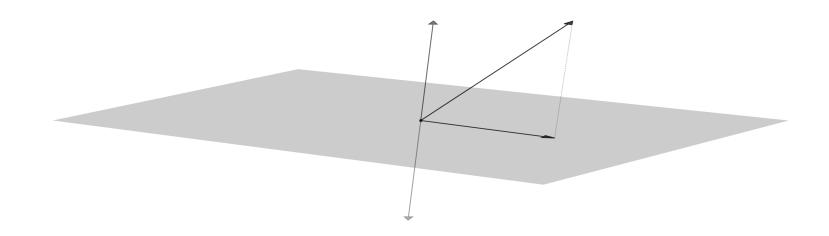
GNN structure: encode-process-decode

For each algorithm *A*:

- Termination network T_A
 - Determines whether to terminate the algorithm
 - Input: Latent node features $H^{(t)} = \left\{ h_i^{(t)} \right\}_{i \in V}$
 - **Output:** Probability of termination
- If terminated: return $y_i^{(t)}$
- If not terminated:
 - Rerun encode-process-decode, potentially reusing parts of $y_i^{(t)}$ for $x_i^{(t+1)}$
- If not terminated after |V| timesteps, terminate

Linear projections:

- Encoder network f_A
- Decoder network g_A
- Termination network T_A



- Processor network P: Graph neural network
- Evaluate two approaches:
 - Graph attention network (GAT, Veličković et al. '18)

$$h_{i}^{(t)} = \operatorname{ReLU}\left(\sum_{(i,j)\in E} a\left(\boldsymbol{z}_{i}^{(t)}, \boldsymbol{z}_{j}^{(t)}, \boldsymbol{e}_{ij}^{(t)}\right) W \boldsymbol{z}_{j}^{(t)}\right)$$

Scalar coefficient
from attention
mechanism

- Processor network P: Graph neural network
- Evaluate two approaches:
 - Graph attention network (GAT, Veličković et al. '18)

$$\boldsymbol{h}_{i}^{(t)} = \operatorname{ReLU}\left(\sum_{(i,j)\in E} a\left(\boldsymbol{z}_{i}^{(t)}, \boldsymbol{z}_{j}^{(t)}, \boldsymbol{e}_{ij}^{(t)}\right) W \boldsymbol{z}_{j}^{(t)}\right)$$

• Message-passing neural network (MPNN, Gilmer et al. '17)

$$\boldsymbol{h}_{i}^{(t)} = U\left(\boldsymbol{z}_{i}^{(t)}, \bigoplus_{(j,i)\in E} M\left(\boldsymbol{z}_{i}^{(t)}, \boldsymbol{z}_{j}^{(t)}, \boldsymbol{e}_{ij}^{(t)}\right)\right)$$

Neural networks producing vector messages (this paper: linear projections)

- Processor network P: Graph neural network
- Evaluate two approaches:
 - Graph attention network (GAT, Veličković et al. '18)

$$\boldsymbol{h}_{i}^{(t)} = \operatorname{ReLU}\left(\sum_{(i,j)\in E} a\left(\boldsymbol{z}_{i}^{(t)}, \boldsymbol{z}_{j}^{(t)}, \boldsymbol{e}_{ij}^{(t)}\right) W \boldsymbol{z}_{j}^{(t)}\right)$$

• Message-passing neural network (MPNN, Gilmer et al. '17)

$$\boldsymbol{h}_{i}^{(t)} = U\left(\boldsymbol{z}_{i}^{(t)}, \bigoplus_{(j,i)\in E} M\left(\boldsymbol{z}_{i}^{(t)}, \boldsymbol{z}_{j}^{(t)}, \boldsymbol{e}_{ij}^{(t)}\right)\right)$$

Element-wise aggregator, e.g.:
Maximization, summation, averaging

- Processor network P: Graph neural network
- **Key idea:** *P* is algorithm-agnostic Can be used to execute **multiple** algorithms

Outline

- 1. Introduction
- 2. Graph inputs
- 3. GNN structure and implementation
- 4. Graph algorithms
- 5. Experiments

Breadth-first search

• Source node *s*

• Initial input
$$x_i^{(1)} = \begin{cases} 1 & \text{if } i = s \\ 0 & \text{if } i \neq s \end{cases}$$

• Node is reachable from *s* if any of its neighbors are reachable:

$$x_{i}^{(t+1)} = \begin{cases} 1 & \text{if } x_{i}^{(t)} = 1 \\ 1 & \text{if } \exists j \text{ s.t. } (j,i) \in E \text{ and } x_{j}^{(t)} = 1 \\ 0 & \text{else} \end{cases}$$

• Algorithm output at round $t: y_i^{(t)} = x_i^{(t+1)}$

Bellman-Ford (shortest path)

• Source node *s*

• Initial input
$$x_i^{(1)} = \begin{cases} 0 & \text{if } i = s \\ \infty & \text{if } i \neq s \end{cases}$$

• Node is reachable from *s* if any of its neighbors are reachable Update distance to node as minimal way to reach its neighbors $x_i^{(t+1)} = \min \left\{ x_i^{(t)}, \min_{(i,j) \in E} x_j^{(t)} + e_{ji}^{(t)} \right\}$

Bellman-Ford (shortest path)

• Source node *s*

• Initial input
$$x_i^{(1)} = \begin{cases} 0 & \text{if } i = s \\ \infty & \text{if } i \neq s \end{cases}$$

• Also compute the predecessor node

$$p_i^{(t)} = \begin{cases} i & i = s \\ \operatorname*{argmin}_{j:(j,i)\in E} x_j^{(t)} + e_{ji}^{(t)} & i \neq s \end{cases}$$

• Algorithm output at round $t: \mathbf{y}_i^{(t)} = \left(p_i^{(t)}, x_i^{(t+1)}\right)$

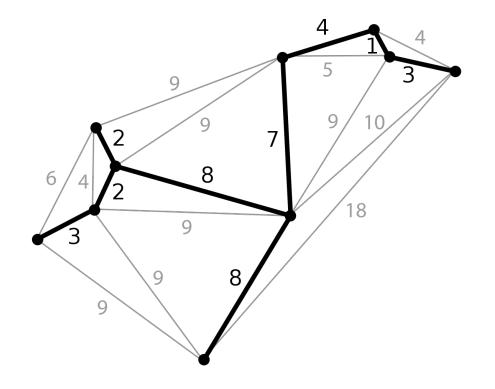
Learning multiple algorithms

Learn to execute both BFS and Bellman-Ford **simultaneously**

At each step *t*, concatenate relevant $x_i^{(t)}$ and $y_i^{(t)}$ values

Minimum spanning tree

Also analyze Prim's algorithm for minimum spanning tree



Outline

- 1. Introduction
- 2. Graph inputs
- 3. GNN structure and implementation
- 4. Graph algorithms

5. Experiments

Experimental setup

Variety of different **graph structures**

Ladder graphs, 2D grids, trees, Erdős-Rényi, Barabási-Albert, ...

Edge weights are drawn uniformly from [0.2, 1]

For each graph category:

- **Training:** 100 graphs with 20 nodes
- Validation: 5 graphs with 20 nodes
- **Testing:** 5 graphs with 20, 50, and 100 nodes

Experimental setup: Loss functions

Reachability: Binary cross-entropy
$$-\left(x_{i}^{(t)}\log\hat{x}_{i}^{(t)} + \left(1 - x_{i}^{(t)}\right)\log\left(1 - \hat{x}_{i}^{(t)}\right)\right)$$

Distance: Mean-squared error
$$\left\|x_i^{(t)} - \hat{x}_i^{(t)}\right\|^2$$

Termination: Binary cross-entropy

Experimental setup: Loss functions

Predecessor of $i(p_i^{(t)})$:

- For every neighbor *j*, use a NN to calculate a score
 - Input to NN is $(\boldsymbol{h}_i^{(t)}, \boldsymbol{h}_j^{(t)}, \boldsymbol{e}_{ij}^{(t)})$
- Make prediction $\hat{p}_{ij}^{(t)}$ using a softmax of the scores
- Categorical cross-entropy loss:

If
$$j = p_i^{(t)}$$
, equal to $-\log \hat{p}_{ij}^{(t)}$

Comparisons

(curriculum, Bengio et al., '09):

- BFS learnt in isolation to perfect validation accuracy
- Fine-tune on Bellman-Ford

(no-reach): Learn Bellman-Ford alone

• Doesn't simultaneously learn reachability

(no-algo):

- Don't supervise intermediate steps
- Learn predecessors directly from input $x_i^{(1)}$

Shortest-path predecessor prediction

	Predecessor (mean step accuracy / last-step accuracy)			
Model	20 nodes	50 nodes	100 nodes	
LSTM (Hochreiter & Schmidhuber, 1997)	47.20% / 47.04%	36.34% / 35.24%	27.59% / 27.31%	
GAT* (Veličković et al., 2018)	64.77% / 60.37%	52.20% / 49.71%	47.23% / 44.90%	
GAT-full* (Vaswani et al., 2017)	67.31% / 63.99%	50.54% / 48.51%	43.12% / 41.80%	
MPNN-mean (Gilmer et al., 2017)	93.83% / 93.20%	58.60% / 58.02%	44.24% / 43.93%	
MPNN-sum (Gilmer et al., 2017)	82.46% / 80.49%	54.78% / 52.06%	37.97% / 37.32%	
MPNN-max (Gilmer et al., 2017)	97.13% / 96.84%	94.71% / 93.88%	90.91% / 88.79%	
MPNN-max (curriculum)	95.88% / 95.54%	91.00% / 88.74%	84.18% / 83.16%	
MPNN-max (no-reach)	82.40% / 78.29%	78.79% / 77.53%	81.04% / 81.06%	
MPNN-max (no-algo)	78.97% / 95.56%	83.82% / 85.87%	79.77% / 78.84%	

Improvement of max-aggregator increases with size

Shortest-path predecessor prediction

	Predecessor (mean step accuracy / last-step accuracy)			
Model	20 nodes	50 nodes	100 nodes	
LSTM (Hochreiter & Schmidhuber, 1997)	47.20% / 47.04%	36.34% / 35.24%	27.59% / 27.31%	
GAT* (Veličković et al., 2018)	64.77% / 60.37%	52.20% / 49.71%	47.23% / 44.90%	
GAT-full* (Vaswani et al., 2017)	67.31% / 63.99%	50.54% / 48.51%	43.12% / 41.80%	
MPNN-mean (Gilmer et al., 2017)	93.83% / 93.20%	58.60% / 58.02%	44.24% / 43.93%	
MPNN-sum (Gilmer et al., 2017)	82.46% / 80.49%	54.78% / 52.06%	37.97% / 37.32%	
MPNN-max (Gilmer et al., 2017)	97.13% / 96.84%	94.71% / 93.88%	90.91% / 88.79%	
MPNN-max (curriculum)	95.88% / 95.54%	91.00% / 88.74%	84.18% / 83.16%	
MPNN-max (no-reach)	82.40% / 78.29%	78.79% / 77.53%	81.04% / 81.06%	
MPNN-max (no-algo)	78.97% / 95.56%	83.82% / 85.87%	79.77% / 78.84%	

- (no-reach) results: positive knowledge transfer
- (no-algo) results: benefit of supervising intermediate steps

Shortest-path predecessor prediction

	MPNN-max predecessor prediction					
Metric	20 nodes	50 nodes	100 nodes	500 nodes	1000 nodes	1500 nodes
Mean step accuracy Last-step accuracy	97.13% 96.84%	94.71% 93.88%	90.91% 88.79%	83.08% 76.46%	77.53% 72.74%	74.90% 67.66%

MPNN-max generalizes to much larger graphs

Learning across graph structures

		Reach	ability	Predecessor		
	Graph type	From Erdős-Rényi	From trees	From Erdős-Rényi	From trees	
Locally	Ladder	93.16% / 93.98%	99.93% / 99.67%	76.63% / 65.94%	94.99% / 92.55%	
•	2-D Grid	92.86% / 87.05%	99.85% / 99.32%	79.50% / 70.75%	94.06% / 91.39%	
regular	Tree	82.72% / 82.07%	99.92% / 99.62%	70.16% / 63.26%	98.44% / 97.33%	
	Erdős-Rényi	100.0% / 100.0%	100.0% / 100.0%	96.17% / 93.94%	91.11% / 85.94%	
More	Barabási-Albert	100.0% / 100.0%	100.0% / 100.0%	94.91% / 92.90%	83.90% / 75.79%	
variable	4-Community	100.0% / 100.0%	100.0% / 100.0%	90.01% / 86.38%	75.88% / 64.04%	
	4-Caveman	100.0% / 100.0%	100.0% / 100.0%	91.55% / 90.04%	80.02% / 72.06%	

- MPNN-max biased to structural regularities of input graph
- Still generalizes to other types of graphs

Overview

Introduced neural graph algorithm execution

- Train GNN to imitate **intermediate steps** of graph algorithms
- Learn **multiple algorithms** simultaneously

Applications to reachability, shortest paths, and MSTs

Experiments demonstrate benefits of:

- Maximization-based message passing NNs
- Multi-task learning and positive knowledge transfer