
Neural Execution of
Graph Algorithms

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, Charles Blundell

International Conference on Learning Representations (ICLR) 2020

Problem-solving approaches

+ Operate on raw inputs
+ Generalize on noisy conditions
+ Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability

+ Trivially strong generalization
+ Compositional (subroutines)
+ Guaranteed correctness
+ Interpretable operations
- Input must match spec
- Not robust to task variations

Slide by Veličković

Is it possible to get the best of both worlds?

Previous work

Previous work:
• Shortest path [Graves et al. ‘16; Xu et al., ‘19]
• Traveling salesman [Reed and De Freitas ‘15]
• Boolean satisfiability [Vinyals et al. ‘15; Bello et al., ‘16; …]
• Probabilistic inference [Yoon et al., ‘18]

Ground-truth solutions used to drive learning
Model has complete freedom mapping raw inputs to solutions

Neural graph algorithm execution

Key observation: Many algorithms share related subroutines
E.g. Bellman-Ford,BFS enumerate sets of edges adjacent to a node

Neural graph algorithm execution
• Learn several algorithms simultaneously
• Provide intermediate supervision signals

Driven by how a known classical algorithm would process the input

Outline

1. Introduction
2. Graph inputs
3. GNN structure and implementation
4. Graph algorithms
5. Experiments

Graph inputs

Algorithm (GNN or classical algorithm):
• Processes a sequence of 𝑇 graph-structured inputs
• Graph 𝐺 = (𝑉, 𝐸) remains constant but meta-data varies

For 𝑡 ∈ 𝑇 :
• Each node 𝑖 ∈ 𝑉 has features 𝒙!

(#) ∈ ℝ%!

• Each edge 𝑖, 𝑗 ∈ 𝐸 has features 𝒆!&
(#) ∈ ℝ%"

• Algorithm produces node-level output 𝒚!
(#) ∈ ℝ%#

• Parts of 𝒚!
(#) may be used as next input 𝒙!

(#%&)

Outline

1. Introduction
2. Graph inputs
3. GNN structure and implementation
4. Graph algorithms
5. Experiments

GNN structure: encode-process-decode
For each algorithm 𝐴:
• Encoder network 𝒇𝑨

• Input: Previous latent features 𝒉!
(#'&) (with 𝒉!

(() = 𝟎), input features 𝒙!
(#)

• Output: Encoded inputs 𝒛!
(#) = 𝒇𝑨 𝒉!

#'& , 𝒙!
#

• Processor network 𝑷
• Input: Encoded inputs 𝒁(#) = 𝒛!

#
!∈+

, edge features 𝑬(#) = 𝒆!,
#

-∈.
• Output: Latent node features 𝑯(#) = 𝒉!

#
!∈+

= 𝑃 𝒁 # , 𝑬 #

• Decoder network 𝒈𝑨
• Input: Encoded inputs 𝒛!

(#), latent features 𝒉!
#

• Output: 𝒚!
(#) = 𝑔/ 𝒛!

, 𝒉!
#

GNN structure: encode-process-decode

For each algorithm 𝐴:
• Termination network 𝑻𝑨

• Determines whether to terminate the algorithm
• Input: Latent node features 𝑯(#) = 𝒉!

#
!∈+

• Output: Probability of termination
• If terminated: return 𝒚!

(#)

• If not terminated:
• Rerun encode-process-decode, potentially reusing parts of 𝒚!

(#) for 𝒙!
(#%&)

• If not terminated after |𝑉| timesteps, terminate

Implementing encode-process-decode

Linear projections:
• Encoder network 𝑓(
• Decoder network 𝑔(
• Termination network 𝑇(

Implementing encode-process-decode

• Processor network 𝑷: Graph neural network
• Evaluate two approaches:
• Graph attention network (GAT, Veličković et al. ‘18)

𝒉!
(#) = ReLU <

!,& ∈+

𝑎 𝒛!
(#), 𝒛&

(#), 𝒆!&
(#) 𝑊𝒛&

(#)

Learnable
projection

matrix

Scalar coefficient
from attention

mechanism

Implementing encode-process-decode

• Processor network 𝑷: Graph neural network
• Evaluate two approaches:
• Graph attention network (GAT, Veličković et al. ‘18)

𝒉!
(#) = ReLU <

!,& ∈+

𝑎 𝒛!
(#), 𝒛&

(#), 𝒆!&
(#) 𝑊𝒛&

(#)

• Message-passing neural network (MPNN, Gilmer et al. ‘17)
𝒉!
(#) = 𝑈 𝒛!

,A
&,! ∈+

𝑀 𝒛!
, 𝒛&

, 𝒆!&
#

Neural networks producing vector messages
(this paper: linear projections)

Implementing encode-process-decode

• Processor network 𝑷: Graph neural network
• Evaluate two approaches:
• Graph attention network (GAT, Veličković et al. ‘18)

𝒉!
(#) = ReLU <

!,& ∈+

𝑎 𝒛!
(#), 𝒛&

(#), 𝒆!&
(#) 𝑊𝒛&

(#)

• Message-passing neural network (MPNN, Gilmer et al. ‘17)
𝒉!
(#) = 𝑈 𝒛!

,A
&,! ∈+

𝑀 𝒛!
, 𝒛&

, 𝒆!&
#

Element-wise aggregator, e.g.:
Maximization, summation, averaging

Implementing encode-process-decode

• Processor network 𝑷: Graph neural network

• Key idea: 𝑃 is algorithm-agnostic
Can be used to execute multiple algorithms

Outline

1. Introduction
2. Graph inputs
3. GNN structure and implementation
4. Graph algorithms
5. Experiments

Breadth-first search

• Source node 𝑠

• Initial input 𝑥/
(1) = +1 if 𝑖 = 𝑠

0 if 𝑖 ≠ 𝑠
• Node is reachable from 𝑠 if any of its neighbors are reachable:

𝑥/
(341) =

1 if 𝑥/
(3) = 1.

1 if ∃𝑗 s. t. 𝑗, 𝑖 ∈ 𝐸 and 𝑥5
3 = 1

0 else

• Algorithm output at round 𝑡: 𝑦/
(3) = 𝑥/

341

Bellman-Ford (shortest path)

• Source node 𝑠

• Initial input 𝑥/
(1) = + 0 if 𝑖 = 𝑠

∞ if 𝑖 ≠ 𝑠
• Node is reachable from 𝑠 if any of its neighbors are reachable

Update distance to node as minimal way to reach its neighbors
𝑥!
(#,-) = min 𝑥!

, min
&,! ∈+

𝑥&
+ 𝑒&!

#

Bellman-Ford (shortest path)

• Source node 𝑠

• Initial input 𝑥/
(1) = + 0 if 𝑖 = 𝑠

∞ if 𝑖 ≠ 𝑠
• Also compute the predecessor node

𝑝/
(3) = A

𝑖 𝑖 = 𝑠
argmin
5: 5,/ ∈8

𝑥5
3 + 𝑒5/

3 𝑖 ≠ 𝑠

• Algorithm output at round 𝑡: 𝒚/
(3) = 𝑝/

3 , 𝑥/
341

Learning multiple algorithms

Learn to execute both BFS and Bellman-Ford simultaneously

At each step 𝑡, concatenate relevant 𝑥/
(3) and 𝒚/

(3) values

Minimum spanning tree

Also analyze Prim’s algorithm for minimum spanning tree

Outline

1. Introduction
2. Graph inputs
3. GNN structure and implementation
4. Graph algorithms
5. Experiments

Experimental setup

Variety of different graph structures
Ladder graphs, 2D grids, trees, Erdős–Rényi, Barabási-Albert, …

Edge weights are drawn uniformly from 0.2, 1

For each graph category:
• Training: 100 graphs with 20 nodes
• Validation: 5 graphs with 20 nodes
• Testing: 5 graphs with 20, 50, and 100 nodes

Experimental setup: Loss functions

Reachability: Binary cross-entropy
− 𝑥/

3 log K𝑥/
3 + 1 − 𝑥/

3 log 1 − K𝑥/
3

Distance: Mean-squared error 𝑥/
3 − K𝑥/

3 9

Termination: Binary cross-entropy

Experimental setup: Loss functions

Predecessor of 𝒊 𝒑𝒊
𝒕 :

• For every neighbor 𝑗, use a NN to calculate a score
• Input to NN is 𝒉!

, 𝒉&
, 𝒆!&

#

• Make prediction 𝑝̂/5
3 using a softmax of the scores

• Categorical cross-entropy loss:
If 𝑗 = 𝑝/

3 , equal to − log 𝑝̂/5
3

Comparisons
(curriculum, Bengio et al., ‘09):
• BFS learnt in isolation to perfect validation accuracy
• Fine-tune on Bellman-Ford

(no-reach): Learn Bellman-Ford alone
• Doesn’t simultaneously learn reachability

(no-algo):
• Don’t supervise intermediate steps
• Learn predecessors directly from input 𝑥/

(1)

Shortest-path predecessor prediction

Improvement of max-aggregator increases with size

Shortest-path predecessor prediction

• (no-reach) results: positive knowledge transfer
• (no-algo) results: benefit of supervising intermediate steps

Shortest-path predecessor prediction

MPNN-max generalizes to much larger graphs

Learning across graph structures

Locally
regular

More
variable

• MPNN-max biased to structural regularities of input graph
• Still generalizes to other types of graphs

Overview

Introduced neural graph algorithm execution
• Train GNN to imitate intermediate steps of graph algorithms
• Learn multiple algorithms simultaneously

Applications to reachability, shortest paths, and MSTs

Experiments demonstrate benefits of:
• Maximization-based message passing NNs
• Multi-task learning and positive knowledge transfer

