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Guide to reading

Overview of current research in neural algorithm reasoning

Don’t worry about understanding each and every direction 😊
The goal should be to get a broad sense of the field



Neural-algorithmic alignment

Many ways to attack combinatorial optimization with DL:
Why GNNS?

GNNs can execute poly-time dynamic programming algs
E.g. “Graph Neural Networks are Dynamic Programmers,” Dudzik and Veličković, NeurIPS’22

Paradigm from which many poly-time algs can be constructed



Extrapolation

(G)NNs are traditionally powerful at interpolation
• i.e., strong performance when test distribution ≈ training distribution

(G)NNs typically struggle at extrapolation
• i.e., evaluated out of distribution
• E.g., increasing number of nodes in input graph

Neural algorithmic alignment:
How to construct algorithmic reasoners that extrapolate?



Extrapolation

Key aspects of Veličković et al. [ICLR’20] enabling extrapolation:

1. Using the encode-process-decode framework

2. Favoring the max-aggregation function

3. Supervising with ground-truth alg’s execution traces

4. Executing multiple related algorithms



Executing multiple related algorithms

Includes:
• Sorting
• Searching
• Dynamic programming
• Graph algorithms
• String algorithms
• Geometric algorithms



Outline

1. Introduction
2. Understanding max-aggregation
3. Reasoning on natural inputs



Extrapolation error
[Xu et al., ICLR’21]

• 𝑓:𝒳 → ℝ is a model trained on 𝑥! , 𝑦! !"#
$ ⊂ 𝒟

𝑦! = 𝑔(𝑥!) for some ground-truth function 𝑔
• 𝒫 is a distribution over 𝓧 ∖𝓓
• ℓ:ℝ×ℝ → ℝ is a loss function
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Aggregation functions
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ReLU MLP extrapolate linearly

Theorem [Xu et al., ICLR’21, informal]:
• Let 𝑓 be a 2-layer ReLU MLP trained with gradient descent
• Along any direction 𝒗 ∈ ℝ(, 𝑓 approaches a linear function
• I.e., let 𝒙 = 𝑡𝒗. Then 𝑓 𝒙 + ℎ𝒗 − 𝑓 𝒙 → 𝛽𝒗ℎ at a rate 𝑂 #

*
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Implications for GNNs

Shortest path: 𝑥!
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MLP must learn a non-linearity
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Key question

Key question in neural algorithmic alignment:

If we’re just teaching a NN to imitate a classical algorithm…
Why not just run that algorithm?



Why use GNNs for algorithm design?

Classical algorithms are designed with abstraction in mind
Enforce their inputs to conform to stringent preconditions

However, we design algorithms to solve real-world problems!

Our goals can be at odds with our methods
Example: Harris and Ross’s [‘55] study of the max flow problem

Slide inspired by Petar Veličković



Original max flow study

Slide by Veličković



The Warsaw Pact railway network

Goal: Find the “bottleneck”
I.e., the minimum cut

Equivalent to max flow

Slide by Veličković



Abstractification ⇒ information loss

Slide by Veličković



Abstractification ⇒ information loss

• Attaches a single, scalar capacity to an entire railway system
• Ignores a wealth of information from the underlying system



Amazon Last Mile Routing Challenge

“Important gap between theoretical route planning and real-
life route execution”

…“In real-life operations, the quality of a route is not exclusively 
defined by its theoretical length, duration, or cost”

Many factors affect whether a driver “can effectively, safely 
and conveniently execute the planned route under real-life 
conditions.”



Abstractifying the core problem

• Assume we have real-world inputs
…but algorithm only admits abstract inputs

• Could try manually converting from one input to another

👩💻

Slide by Veličković

Natural inputs Abstract inputs Abstract outputs



Attacking the core problem

• Alternatively, replace human feature extractor with NN
• Still apply same combinatorial algorithm

• Issue: algorithms typically perform discrete optimization
• Doesn’t play nicely with gradient-based optimization of NNs

Natural inputs Abstract inputs Abstract outputs

Slide by Veličković



Algorithmic bottleneck
Second (more fundamental) issue: data efficiency
• Real-world data is often incredibly rich
• We still have to compress it down to scalar values

The algorithmic solver commits to using this scalar
Assumes it is perfect!

If there’s insufficient training data to estimate the scalars:
• Alg will give a perfect solution
• …but in a suboptimal environment

Slide by Veličković



Neural algorithmic pipeline

1. On abstract inputs, learn encode-process-decode functions

Abstract outputs 
.𝑦 ≈ 𝑔 𝑃 𝑓 𝑥Abstract inputs 𝑥̅

Figure by Cappart et al.



Neural algorithmic pipeline

Abstract outputs 
.𝑦 ≈ 𝑔 𝑃 𝑓 𝑥Abstract inputs 𝑥̅

Processor 𝑃:
1. Is aligned with computations of target algorithm
2. Admits useful gradients
3. Operates over high-dim latent space (better use of data)

Figure by Cappart et al.



Neural algorithmic pipeline

2. Set up encode-decode functions for natural inputs/outputs

Abstract inputs 𝑥̅
Abstract outputs 
.𝑦 ≈ 𝑔 𝑃 𝑓 𝑥

Natural outputs 𝑦Natural inputs 𝑥

Figure by Cappart et al.



Neural algorithmic pipeline

3. Learn parameters using loss that compares I𝑔 𝑃 J𝑓 𝑥 to 𝑦

Abstract inputs 𝑥̅
Abstract outputs 
.𝑦 ≈ 𝑔 𝑃 𝑓 𝑥

Natural outputs 𝑦Natural inputs 𝑥

Figure by Cappart et al.



Neural algorithmic pipeline

Note: Keep 𝑃 frozen while learning J𝑓 and I𝑔

Abstract inputs 𝑥̅
Abstract outputs 
.𝑦 ≈ 𝑔 𝑃 𝑓 𝑥

Natural outputs 𝑦Natural inputs 𝑥

Figure by Cappart et al.



Overview

Survey: broad overview of neural algorithmic reasoning

Among other topics, covers:
• Why max-aggregation allows for extrapolation
• MLPs extrapolate linearly
• Must hard-code algorithmic non-linearities

• The neural algorithmic pipeline
• Allows us to solve natural, real-world instances


