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Guide to reading

Overview of current research in neural algorithm reasoning

Don’t worry about understanding each and every direction &
The goal should be to get a broad sense of the field



Neural-algorithmic alignment

Many ways to attack combinatorial optimization with DL:
Why GNNS?

GNNSs can execute poly-time dynamic programming algs

E.g. "Graph Neural Networks are Dynamic Programmers,” Dudzik and Veli¢kovi¢, NeurlPS'22

Paradigm from which many poly-time algs can be constructed



Extrapolation

(G)NNs are traditionally powerful at interpolation
* i.e., strong performance when test distribution = training distribution

(G)NNs typically struggle at extrapolation

e i.e., evaluated out of distribution
 E.g., increasing number of nodes in input graph

Neural algorithmic alignment:
How to construct algorithmic reasoners that extrapolate?



Extrapolation

Key aspects of Velickovic¢ et al. [|CLR'20] enabling extrapolation:
1. Using the encode-process-decode framework
2. Favoring the max-aggregation function
3. Supervising with ground-truth alg’'s execution traces

4. Executing multiple related algorithms



Executing multiple related algorithms

The CLRS Algorithmic Reasoning Benchmark

Petar Velickovi¢' Adria Puigdoménech Badia' David Budden '
Razvan Pascanu' Andrea Banino' Misha Dashevskiy' Raia Hadsell! Charles Blundell

Includes:
 Sorting
 Searching
* Dynamic programming
« Graph algorithms
* String algorithms
« Geometric algorithms



Outline

1. Introduction
2. Understanding max-aggregation
3. Reasoning on natural inputs



Extrapolation error

[Xu et al., ICLR'21]

e f: X - Risamodeltrained on {(x;,y;))}iL; €D

y; = g(x;) for some ground-truth function g
* P is a distribution over X \ D

e /:RXR — Ris a loss function
- Extrapolation error: E,_»[2(f (x), g(x))| f(x)

g(x)

Training data

Figure by Xu et al., ICLR'21



Aggregation functions
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Figure by Hamilton



ReLU MLP extrapolate linearly

Theorem [Xu et al., ICLR'21, informal]:
* Let f be a 2-layer ReLU MLP trained with gradient descent
- Along any direction v € R?, f approaches a linear function

e le.,letx =tv. Then f(x + hv) — f(x) = f,h atarate O (%)

. Neural network
i

Neural
network

Training data

Figures by Xu et al., ICLR'21



Implications for GNNs

Shortest path: xl.(t) mml{ (&= )wx( Die (t 1)}
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MLP must learn a non-linearity




Implications for GNNs

Shortest path: xl.(t) = mm{ D min xY +e (t 1)}
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0.62 |

Predicting shortest

path predecessor:
[Velickovié et al. ICLR'20]

error
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Key question

Key question in neural algorithmic alignment:

If we're just teaching a NN to imitate a classical algorithm...
Why not just run that algorithm?



Why use GNNs for algorithm design?

Classical algorithms are designed with abstraction in mind
Enforce their inputs to conform to stringent preconditions

However, we design algorithms to solve real-world problems!

Our goals can be at odds with our methods
Example: Harris and Ross’s ['55] study of the max flow problem

Slide inspired by Petar Velickovi¢



Original max flow study
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Slide by Velickovi¢



The Warsaw Pact railway network

Goal: Find the "bottleneck”
l.e., the minimum cut

Equivalent to max flow

Slide by Velickovi¢



Abstractification = information loss

II. THE ESTIMATING OF RAILVWAY CAPACITIES

The evaluation of both railway syetem and individual track
capacities 18, tc a concldsrable extent; an art., The authors know
of no tested mathematical model or formmla that includes all of the
variations and imponderables that must be weighed.,* Even when the
individual has been closely aesociated with the particular terri-
tory he is evaluating, the final answer, however accurate, is

largely one of judgment and experience,

Slide by Velickovi¢



Abstractification = information loss

* Attaches a single, scalar capacity to an entire railway system
* Ignores a wealth of information from the underlying system




Amazon Last Mile Routing Challenge

“Important gap between theoretical route planning and real-
life route execution”

..."In real-life operations, the quality of a route is not exclusively
defined by its theoretical length, duration, or cost”

Many factors affect whether a driver “can effectively, safely
and conveniently execute the planned route under real-lite
conditions.”



Abstractitying the core problem

* Assume we have real-world inputs
...but algorithm only admits abstract inputs

* Could try manually converting from one input to another
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Natural inputs > Abstract inputs » Abstract outputs

Slide by Velickovi¢



Attacking the core problem

* Alternatively, replace human feature extractor with NN
« Still apply same combinatorial algorithm

* Issue: algorithms typically perform discrete optimization
* Doesn't play nicely with gradient-based optimization of NNs
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Natural inputs > Abstract inputs » Abstract outputs

Slide by Velickovi¢



Algorithmic bottleneck

Second (more fundamental) issue: data efficiency
» Real-world data is often incredibly rich
« We still have to compress it down to scalar values

The algorithmic solver commits to using this scalar
Assumes it is perfect!

If there's insufficient training data to estimate the scalars:
 Alg will give a perfect solution
e ...butin a suboptimal environment

Slide by Velickovi¢



Neural algorithmic pipeline
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1. On abstract inputs, learn encode-process-decode functions

Figure by Cappart et al.



Neural algorithmic pipeline
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1. Is aligned with computations of target algorithm
2. Admits useful gradients

3. Operates over high-dim latent space (better use of data)

Figure by Cappart et al.



Neural algorithmic pipeline
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2. Set up encode-decode functions for natural inputs/outputs

Figure by Cappart et al.



Neural algorithmic pipeline
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3. Learn parameters using loss that compares § (P (f(x))) toy

Figure by Cappart et al.



Neural algorithmic pipeline
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Note: Keep P frozen while learning f and §

Figure by Cappart et al.



Overview

Survey: broad overview of neural algorithmic reasoning

Among other topics, covers:

« Why max-aggregation allows for extrapolation
« MLPs extrapolate linearly
* Must hard-code algorithmic non-linearities

* The neural algorithmic pipeline
* Allows us to solve natural, real-world instances



