ParamILS: An Automatic Algorithm Configuration Framework

Hutter, Hoos, Leyton-Brown, Stützle

JAIR'09

Reading

Comprehensive journal paper on a seminal work

Check website for specific sections to read 👀

Feel free to read more at your own interest 😊

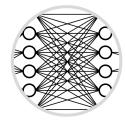
Integer programing and SAT

Integer program (IP) max $c \cdot z$ s.t. $Az \leq b$ $z \in \mathbb{Z}^n$

SAT

 $(x_1 \lor x_4) \land (x_1 \lor \bar{x}_3 \lor \bar{x}_8)$ $\land (x_1 \lor x_8 \lor x_{12}) \land (x_2 \lor x_{11})$

Tons of applications:



Robust ML

MAP estimation

Clustering

Routing

Scheduling

Algorithm configuration

Solvers come with tons of tunable parameters Tuning by hand is notoriously **slow**, **tedious**, and **error-prone** Can we **automatically** optimize parameters?

CPX PARAM NODEFILEIND 100 CPX_PARAM_NODELIM 101 CPX PARAM NODESEL 102 CPX_PARAM_NZREADLIM 103 CPX PARAM OBJDIF 104 CPX_PARAM_OBJLLIM 105 CPX_PARAM_OBJULIM 105 CPX_PARAM_PARALLELMODE 108 CPX_PARAM_PERIND 110 CPX PARAM PERLIM 111 CPX_PARAM_POLISHAFTERDETTIME 111CPXPARAM_Benders_Strategy 30 CPX_PARAM_POLISHAFTERINTSOL 114 CPXPARAM_Conflict_Algorithm 46 CPX_PARAM_POLISHAFTERNODE 115 CPXPARAM_CPUmask 48 CPX_PARAM_POLISHAFTERTIME 116 CPX_PARAM_POLISHTIME (deprecated) 116 CPX_PARAM_POPULATELIM 117 CPX PARAM PPRIIND 118 CPX_PARAM_PREDUAL 119 CPX_PARAM_PREIND 120 CPX_PARAM_PRELINEAR 120 CPX_PARAM_PREPASS 121 CPX_PARAM_PRESLVND 122 CPX PARAM PRICELIM 123 CPX_PARAM_PROBE 123 CPX_PARAM_PROBEDETTIME 124 CPX_PARAM_PROBETIME 124 CPX_PARAM_QPMAKEPSDIND 125 CPX_PARAM_QPMETHOD 138 CPX PARAM OPNZREADLIM 126

CPX PARAM TRELIM 160 CPX_PARAM_TUNINGDETTILIM 160 CPX PARAM TUNINGDISPLAY 162 CPX_PARAM_NUMERICALEMPHASIS_102CPX_PARAM_TUNINGMEASURE_163 CPX_PARAM_TUNINGREPEAT 164 CPX_PARAM_TUNINGTILIM 165 CPX_PARAM_VARSEL 166 CPX_PARAM_WORKDIR 167 CPX_PARAM_WORKMEM 168 CPX PARAM WRITELEVEL 169 CPX PARAM ZEROHALFCUTS 170 CPX_PARAM_POLISHAFTEREPAGAP 112 CPXPARAM_Benders_Tolerances_feasibilitycut 35 CPX_PARAM_POLISHAFTEREPGAP 113 CPXPARAM_Benders_Tolerances_optimalitycut 36 CPXPARAM_DistMIP_Rampup_Duration 128 CPXPARAM_LPMethod 136 CPXPARAM_MIP_Cuts_BQP 38 CPXPARAM_MIP_Cuts_LocalImplied 77 CPXPARAM_MIP_Cuts_RLT 136 CPXPARAM_MIP_Cuts_ZeroHalfCut 170 CPXPARAM_MIP_Limits_CutsFactor 52 CPXPARAM_MIP_Limits_RampupDetTimeLimit 127 deprecated: see CPXPARAM_MIP_Limits_RampupTimeLimit 128 CPXPARAM MIP_Limits_Solutions 79 CPXPARAM MIP Limits StrongCand 154 CPXPARAM_MIP_Limits_StrongIt 154 CPXPARAM_MIP_Limits_TreeMemory 160 CPXPARAM_MIP_OrderType 91 CPXPARAM_MIP_Pool_AbsGap 146 CPXPARAM_MIP_Pool_Capacity 147 CPXPARAM_MIP_Pool_Intensity 149

CPX_PARAM_RANDOMSEED 130 CPX PARAM REDUCE 131 CPX_PARAM_REINV 131 CPX PARAM RELAXPREIND 132 CPX_PARAM_RELOBJDIF 133 CPX PARAM REPAIRTRIES 133 CPX_PARAM_REPEATPRESOLVE 134 CPX PARAM RINSHEUR 135 CPX PARAM RLT 136 CPX_PARAM_ROWREADLIM 141 CPX_PARAM_SCAIND 142 CPX PARAM SCRIND 143 CPX_PARAM_SIFTALG 143 CPX PARAM SIFTDISPLAY 144 CPX_PARAM_SIFTITLIM 145 CPX PARAM SIMDISPLAY 145 CPX_PARAM_SINGLIM 146 CPX_PARAM_SOLNPOOLAGAP_146 CPX_PARAM_SOLNPOOLCAPACITY 147 CPXPARAM_Sifting_Display 144 CPX PARAM SOLNPOOLGAP 148 CPX_PARAM_SOLNPOOLINTENSITY 149 CPXPARAM_Simplex_Display 145 CPX PARAM SOLUTIONTARGET CPXPARAM_OptimalityTarget 106 CPX_PARAM_SOLUTIONTYPE 152 CPX_PARAM_STARTALG 139 CPX_PARAM_STRONGCANDLIM 154 CPX_PARAM_STRONGITLIM 154 CPX PARAM SUBALG 99 CPX_PARAM_SUBMIPNODELIMIT 155 CPX_PARAM_SYMMETRY 156 CPX PARAM THREADS 157 CPX_PARAM_TILIM 159

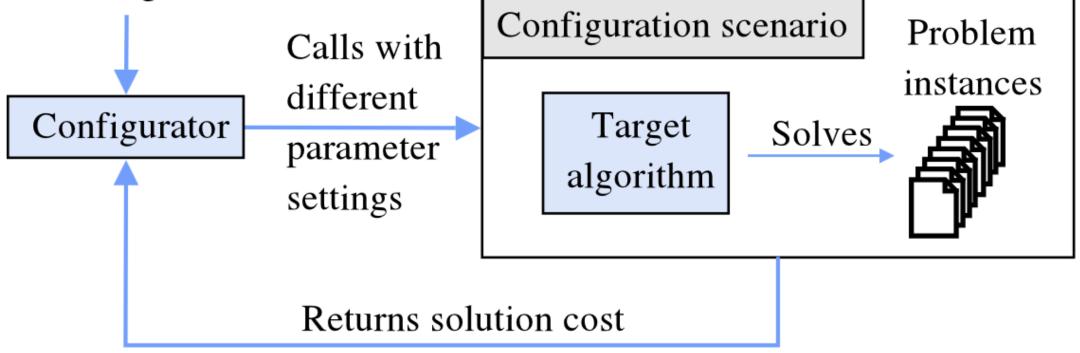
CPXPARAM MIP Pool RelGap 148 CPXPARAM_MIP_Pool_Replace 151 CPXPARAM_MIP_Strategy_Branch 39 CPXPARAM MIP Strategy MIOCPStrat 93 CPXPARAM_MIP_Strategy_StartAlgorithm 139 CPX_PARAM_FRACCUTS 73 CPXPARAM MIP Strategy VariableSelect 166 CPX PARAM FRACPASS 74 CPXPARAM MIP SubMIP NodeLimit 155 CPXPARAM_OptimalityTarget 106 CPXPARAM_Output_WriteLevel 169 CPXPARAM_Preprocessing_Aggregator 19 CPXPARAM_Preprocessing_Fill 19 CPXPARAM Preprocessing Linear 120 CPXPARAM_Preprocessing_Reduce 131 CPXPARAM Preprocessing Symmetry 156 CPXPARAM_Read_DataCheck 54 CPXPARAM Read Scale 142 CPXPARAM_ScreenOutput 143 CPXPARAM Sifting Algorithm 143 CPXPARAM_Sifting_Iterations 145 CPX PARAM SOLNPOOLREPLACE 151 CPXPARAM Simplex Limits Singularity 146 CPXPARAM_SolutionType 152 CPXPARAM_Threads 157 CPXPARAM_TimeLimit 159 CPXPARAM_Tune_DetTimeLimit 160 CPXPARAM_Tune_Display 162 CPXPARAM_Tune_Measure 163 CPXPARAM_Tune_Repeat 164 CPXPARAM_Tune_TimeLimit 165 CPXPARAM_WorkDir 167 CPXPARAM_WorkMem 168 CraInd 50

CPX PARAM FLOWCOVERS 70 CPX PARAM FLOWPATHS 71 CPX_PARAM_FPHEUR 72 CPX PARAM FRACCAND 73 CPX_PARAM_GUBCOVERS 75 CPX_PARAM_HEURFREQ 76 CPX_PARAM_IMPLBD 76 CPX_PARAM_INTSOLFILEPREFIX 78 CPX_PARAM_COVERS 47 CPX_PARAM_INTSOLLIM 79 CPX PARAM ITLIM 80 CPX_PARAM_LANDPCUTS 82 CPX PARAM LBHEUR 81 CPX_PARAM_LPMETHOD 136 CPX PARAM MCFCUTS 82 CPX_PARAM_MEMORYEMPHASIS CPX PARAM MIPCBREDLP 84 CPX_PARAM_MIPDISPLAY 85 CPX PARAM MIPEMPHASIS 87 CPX_PARAM_MIPINTERVAL 88 CPX PARAM MIPKAPPASTATS 89 CPX_PARAM_MIPORDIND 90 CPX PARAM MIPORDTYPE 91 CPX_PARAM_MIPSEARCH 92 CPX_PARAM_MIQCPSTRAT 93 CPX_PARAM_MIRCUTS 94 CPX PARAM MPSLONGNUM 94 CPX_PARAM_NETDISPLAY 95 CPX PARAM NETEPOPT 96 CPX_PARAM_NETEPRHS 96 CPX PARAM NETFIND 97 CPX_PARAM_NETITLIM 98 CPX PARAM NETPPRIIND 98

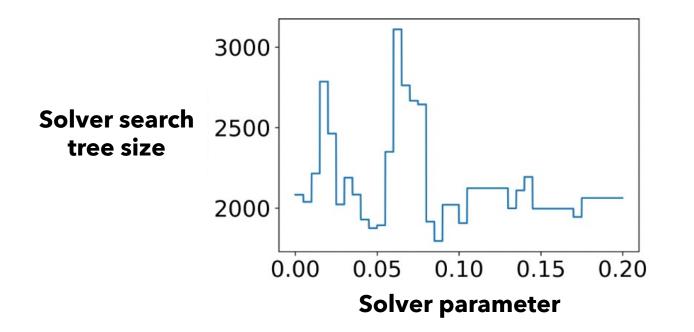
CPX_PARAM_BRDIR 39 CPX_PARAM_BTTOL 40 CPX_PARAM_CALCOCPDUALS 41 CPX PARAM CLIOUES 42 CPX_PARAM_CLOCKTYPE 43 CPX PARAM CLONELOG 43 CPX_PARAM_COEREDIND 44 CPX PARAM COLREADLIM 45 CPX_PARAM_CONFLICTDISPLAY 46 CPX_PARAM_CPUMASK 48 CPX PARAM CRAIND 50 CPX_PARAM_CUTLO 51 CPX PARAM CUTPASS 52 CPX_PARAM_CUTSFACTOR 52 CPX PARAM CUTUP 53 83CPX_PARAM_DATACHECK 54 CPX_PARAM_DEPIND 55 CPX_PARAM_DETTILIM 56 CPX PARAM DISICUTS 57 CPX_PARAM_DIVETYPE 58 CPX PARAM DPRIIND 59 CPX_PARAM_EACHCUTLIM 60 CPX PARAM EPAGAP 61 CPX_PARAM_EPGAP 61 CPX PARAM EPINT 62 CPX_PARAM_EPMRK 64 CPX PARAM EPOPT 65 CPX_PARAM_EPPER 65 CPX PARAM EPRELAX 66 CPX_PARAM_EPRHS 67 CPX PARAM FEASOPTMODE 68 CPX_PARAM_FILEENCODING 69

Algorithm configuration pipeline

Parameter domains



Key challenge



- Solver performance is **extremely volatile**
- Gradients are often **uninformative**

Outline

1. Introduction

2. Setup

- 3. ParamILS
- 4. Experiments
- 5. Spectrum auctions

Setup: Parameterized algorithm

Algorithm \mathcal{A} with k parameters

 i^{th} parameter setting from a set Θ_i Assume $|\Theta_i|$ is finite (e.g., by discretizing continuous parameters)

 $\Theta \subseteq \Theta_1 \times \cdots \times \Theta_k$ is the set of all feasible configurations In experiments, $|\Theta|$ as large as $1.38 \cdot 10^{37}$

 $\mathcal{A}(\boldsymbol{\theta})$ is the algorithm with parameters $\boldsymbol{\theta} \in \boldsymbol{\Theta}$

Setup: Modeling the application domain

Set of problem instances Π

• E.g., $\pi \in \Pi$ is a routing integer program

Application-specific distribution \mathcal{D} over problem instances, e.g.:

- Distribution over Bay Area routing problems
- Uniform distribution over benchmark dataset

Setup: Measuring performance

 $o(\theta, \pi, \kappa)$: runtime of $\mathcal{A}(\theta)$ on instance π with runtime cap κ

 κ_{max} : maximum runtime after which any run will be terminated

 $c(\boldsymbol{\theta})$: overall cost of running algorithm with parameters $\boldsymbol{\theta}$

- E.g., expected runtime $c(\boldsymbol{\theta}) = \mathbb{E}_{\pi \sim \mathcal{D}}[o(\boldsymbol{\theta}, \pi, \kappa_{\max})]$
- If $\mathcal D$ is the uniform distribution over a benchmark set Π , equivalent to

$$c(\boldsymbol{\theta}) = \frac{1}{|\Pi|} \sum_{\pi \in \Pi} o(\boldsymbol{\theta}, \pi, \kappa_{\max})$$

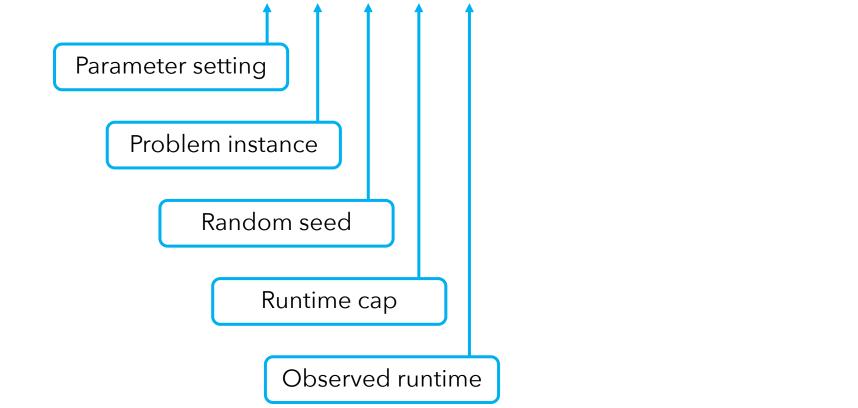
Algorithm configuration goal

Goal: Find parameter setting $\boldsymbol{\theta}$ with low cost $c(\boldsymbol{\theta})$

Challenges:

- Distribution ${\mathcal D}$ may be unknown
- Do not know analytical form of *c*
- *c* may be nonconvex, non-Lipschitz, ...

Sequence of runs $\mathbf{R} = ((\boldsymbol{\theta}_1, \pi_1, s_1, \kappa_1, o_1), \dots, (\boldsymbol{\theta}_n, \pi_n, s_n, \kappa_n, o_n))$



Empirical cost

Sequence of runs $\mathbf{R} = ((\boldsymbol{\theta}_1, \pi_1, s_1, \kappa_1, o_1), \dots, (\boldsymbol{\theta}_n, \pi_n, s_n, \kappa_n, o_n))$

Empirical cost $\hat{c}(\boldsymbol{\theta}, \mathbf{R}) = \operatorname{average}(\{o_i : \boldsymbol{\theta} = \boldsymbol{\theta}_i\})$

Could be replaced by another statistic, e.g., median

Goal: Find θ with low empirical (training) cost $\hat{c}(\theta, \mathbf{R})$

- Ideally, this should lead to low **actual** cost $c(\theta)$
- Later this quarter: statistical guarantees for bounding $|c(\theta) \hat{c}(\theta, \mathbf{R})|$

Key questions

- 1. Which parameter configurations $\Theta' \subseteq \Theta$ should we evaluate?
- 2. Which instances $\Pi_{\theta'} \subseteq \Pi$ should we use to evaluate $\theta' \in \Theta'$?
- 3. Which cutoff times κ_i should we use for each run?

Outline

- 1. Introduction
- 2. Setup
- 3. ParamILS
- 4. Experiments
- 5. Spectrum auctions

ParamILS:

A seminal general-purpose algorithm configuration procedure

- Begins with a **default** parameter configuration
- Performs **local search** in configuration space
 - Changes the setting of **one parameter at a time**
 - Keeps those changes resulting in performance improvements
- After finding a **local minimum**:

Randomly changes some parameters in order to escape

BasicILS

Step 1: Randomly search for good initial configuration

- i. $\boldsymbol{\theta}_0$: initial configuration
- ii. For i = 1, ..., r:
 - a. $\boldsymbol{\theta} \leftarrow random(\boldsymbol{\Theta})$
 - b. if $BETTER(\boldsymbol{\theta}, \boldsymbol{\theta}_0), \boldsymbol{\theta}_0 \leftarrow \boldsymbol{\theta}$

Essentially, run $\mathcal{A}(\boldsymbol{\theta})$ on some random instances and compare $\hat{c}(\boldsymbol{\theta}, \mathbf{R})$ and $\hat{c}(\boldsymbol{\theta}_0, \mathbf{R})$

Step 2: Search for better configuration in neighborhood of $\boldsymbol{\theta}_0$

 $\boldsymbol{\theta}_{\text{ils}} \leftarrow \text{IterativeFirstImprovement}(\boldsymbol{\theta}_0)$

IterativeFirstImprovement($\boldsymbol{\theta}$):

Repeat:

- i. $\boldsymbol{\theta}' \leftarrow \boldsymbol{\theta}$
- ii. Find best parameter setting θ'' in the neighborhood of θ' according to \hat{c}

 ${\boldsymbol{\theta}}^{\prime\prime}$ differs from ${\boldsymbol{\theta}}^{\prime}$ in one component

Step 2: Search for better configuration in neighborhood of $\boldsymbol{\theta}_0$

 $\boldsymbol{\theta}_{\text{ils}} \leftarrow \text{IterativeFirstImprovement}(\boldsymbol{\theta}_0)$

IterativeFirstImprovement($\boldsymbol{\theta}$):

Repeat:

i. $\boldsymbol{\theta}' \leftarrow \boldsymbol{\theta}$

ii. Find best parameter setting θ'' in the neighborhood of θ' according to \hat{c}

iii. Set $\boldsymbol{\theta} = \boldsymbol{\theta}^{\prime\prime}$

Until $\theta' = \theta \implies$ found a local minimum

BasicILS

Step 3 (repeat as many times as you can):

- 1. $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}_{\text{ils}}$
- 2. for s rounds do random exploration:

 $\boldsymbol{\theta} \leftarrow \text{random } \boldsymbol{\theta}' \text{ in the neighborhood of } \boldsymbol{\theta}$

- 3. $\theta \leftarrow \text{ITERATIVEFIRST}\text{IMPROVEMENT}(\theta)$
- 4. if $BETTER(\boldsymbol{\theta}, \boldsymbol{\theta}_{ils})$, set $\boldsymbol{\theta}_{ils} \leftarrow \boldsymbol{\theta}$
- 5. With some small probability, restart: $\theta \leftarrow random(\Theta)$

Return best $\boldsymbol{\theta}$ the algorithm ever found according to \hat{c}

Adaptive capping

Solving IPs can take forever...

- We want to give up as early as we can
- But still correctly evaluate BETTER(θ_1, θ_2)

Without a good way to **cap** runs, will waste time on bad θ 's

Adaptive capping

Illustrative example:

• θ_1 takes 10 seconds total to solve 100 instances $\hat{c}(\theta_1, \mathbf{R}) = \frac{1}{100} \cdot 10 = 0.1$ • θ_2 takes at least 11 seconds to solve the first instance $\hat{c}(\theta_2, \mathbf{R}) \ge \frac{1}{100} \cdot (11 + 0 + 0 + \cdots 0) = 0.11$

99 zeros

• Can stop evaluating $\boldsymbol{\theta}_2$ 11 seconds into the first run

Simple adaptive capping

BETTER($\boldsymbol{\theta}_1$, $\boldsymbol{\theta}_2$):

- 1. Evaluate $\boldsymbol{\theta}_1$ on N random instances to compute $\hat{c}(\boldsymbol{\theta}_1, \mathbf{R})$
- 2. Evaluate θ_2 on N random instances to compute $\hat{c}(\theta_2, \mathbf{R})$ But give up after $N \cdot \hat{c}(\theta_1, \mathbf{R})$ seconds and return θ_1
- 3. If didn't give up, return

$$\begin{cases} \boldsymbol{\theta}_1 & \text{if } \hat{c}(\boldsymbol{\theta}_1, \mathbf{R}) < \hat{c}(\boldsymbol{\theta}_2, \mathbf{R}) \\ \boldsymbol{\theta}_2 & \text{else} \end{cases}$$

Many ways **cap more aggressively** and improve this further

Outline

- 1. Introduction
- 2. Setup
- 3. ParamILS

4. Experiments

5. Spectrum auctions

Experiments: example

Average runtime

Scenario	SimpleLS(100)	BasicILS(100)		<i>p</i> -value
	Performance	Performance	Avg. # ILS iterations	
Saps-SWGCP	0.5 ± 0.39	0.38 ± 0.19	2.6	$9.8\cdot10^{-4}$
Saps-QCP	3.60 ± 1.39	3.19 ± 1.19	5.6	$4.4\cdot 10^{-4}$
Spear-QCP	0.4 ± 0.39	0.36 ± 0.39	1.64	0.008

- SAPS and SPEAR: SAT solvers
- SWGCP: graph coloring problems
- QCP: quasi-group completion problem
- SimpleLS: local search w/o randomization
 - Should get stuck in local minima

Outline

- 1. Introduction
- 2. Setup
- 3. ParamILS
- 4. Experiments
- **5. Spectrum auctions**

Spectrum auctions

Later work by the same UBC lab (and others):

- In 2016-17, FCC held an auction to repurpose radio spectrum
 - Broadcast television \rightarrow wireless internet
 - In total, the auction yielded \$19.8 billion

Kevin-Leyton Brown UBC

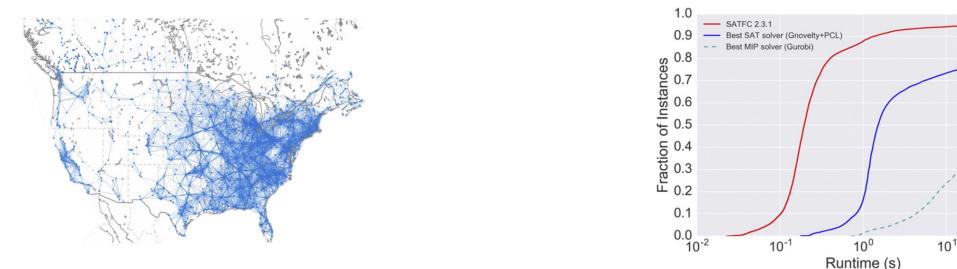
llya Segal Stanford

Paul Milgrom Stanford

And many others!

Spectrum auctions

• The auction involves solving huge graph coloring problems



- SATFC uses algorithm configuration + portfolio selection
- Simulations indicate SATFC saved the government billions

 10^{2}

ParamILS: a seminal general-purpose configuration procedure

Combines local search with random exploration

Speedups for **IP** and **SAT** solvers

Inspired later breakthroughs for **spectrum auctions**