
ParamILS:
An Automatic Algorithm

Configuration Framework
Hutter, Hoos, Leyton-Brown, Stützle

JAIR’09

Reading

Comprehensive journal paper on a seminal work

Check website for specific sections to read 👀

Feel free to read more at your own interest 😊

Integer programing and SAT

Integer program (IP)
max 𝒄 " 𝒛
s.t. 𝐴𝒛 ≤ 𝒃

𝒛 ∈ ℤ!

Tons of applications:

Robust ML MAP estimation SchedulingClustering Routing

SAT
𝑥" ∨ 𝑥# ∧ 𝑥" ∨ �̅�$ ∨ �̅�%
∧ 𝑥" ∨ 𝑥% ∨ 𝑥"& ∧ 𝑥& ∨ 𝑥""

Solvers come with tons of tunable parameters
Tuning by hand is notoriously slow, tedious, and error-prone

Can we automatically optimize parameters?

Algorithm configuration

Algorithm configuration pipeline

Figure by Hutter et al. [JAIR’09]

Key challenge

• Solver performance is extremely volatile
• Gradients are often uninformative

Solver parameter

Solver search
tree size

Figure by Balcan et al. [NeurIPS’21]

Outline

1. Introduction
2. Setup
3. ParamILS
4. Experiments
5. Spectrum auctions

Setup: Parameterized algorithm
Algorithm 𝒜 with 𝑘 parameters

𝑖'(parameter setting from a set Θ)
Assume Θ! is finite (e.g., by discretizing continuous parameters)

𝚯 ⊆ Θ"×⋯×Θ* is the set of all feasible configurations
In experiments, 𝚯 as large as 1.38 ⋅ 10"#

𝒜(𝜽) is the algorithm with parameters 𝜽 ∈ 𝚯

Setup: Modeling the application domain

Set of problem instances Π
• E.g., 𝜋 ∈ Π is a routing integer program

Application-specific distribution 𝒟 over problem instances, e.g.:
• Distribution over Bay Area routing problems
• Uniform distribution over benchmark dataset

Setup: Measuring performance

𝑜(𝜽, 𝜋, 𝜅): runtime of 𝒜(𝜽) on instance 𝜋 with runtime cap 𝜅

𝜅+,-: maximum runtime after which any run will be terminated

𝑐(𝜽): overall cost of running algorithm with parameters 𝜽
• E.g., expected runtime 𝑐 𝜽 = 𝔼$∼𝒟[𝑜 𝜽, 𝜋, 𝜅'()]
• If 𝒟 is the uniform distribution over a benchmark set Π, equivalent to

𝑐 𝜽 =
1
Π
6
$∈+

𝑜 𝜽, 𝜋, 𝜅'()

Algorithm configuration goal

Goal: Find parameter setting 𝜽 with low cost 𝑐(𝜽)

Challenges:
• Distribution 𝒟 may be unknown
• Do not know analytical form of 𝑐
• 𝑐 may be nonconvex, non-Lipschitz, …

Empirical cost

Sequence of runs 𝐑 = 𝜽", 𝜋", 𝑠", 𝜅", 𝑜" , … , 𝜽! , 𝜋! , 𝑠! , 𝜅! , 𝑜!

Parameter setting

Problem instance

Random seed

Runtime cap

Observed runtime

Empirical cost

Sequence of runs 𝐑 = 𝜽", 𝜋", 𝑠", 𝜅", 𝑜" , … , 𝜽! , 𝜋! , 𝑠! , 𝜅! , 𝑜!

Empirical cost �̂� 𝜽, 𝐑 = average 𝑜): 𝜽 = 𝜽)

Goal: Find 𝜽 with low empirical (training) cost �̂� 𝜽, 𝐑
• Ideally, this should lead to low actual cost 𝑐(𝜽)
• Later this quarter: statistical guarantees for bounding 𝑐 𝜽 − �̂� 𝜽, 𝐑

Could be replaced by another statistic, e.g., median

Key questions

1. Which parameter configurations 𝚯. ⊆ 𝚯 should we evaluate?

2. Which instances Π𝜽. ⊆ Π should we use to evaluate 𝜽. ∈ 𝚯′?

3. Which cutoff times 𝜅) should we use for each run?

Outline

1. Introduction
2. Setup
3. ParamILS
4. Experiments
5. Spectrum auctions

ParamILS

ParamILS:
A seminal general-purpose algorithm configuration procedure

• Begins with a default parameter configuration
• Performs local search in configuration space
• Changes the setting of one parameter at a time
• Keeps those changes resulting in performance improvements

• After finding a local minimum:
Randomly changes some parameters in order to escape

Iterated local search

BasicILS

Step 1: Randomly search for good initial configuration

i. 𝜽0: initial configuration
ii. For 𝑖 = 1,… , 𝑟:

a. 𝜽 ← random(𝚯)
b. if BETTER(𝜽, 𝜽𝟎), 𝜽- ← 𝜽

Essentially, run 𝒜(𝜽) on some random instances and compare �̂�(𝜽, 𝐑) and �̂�(𝜽!, 𝐑)

BasicILS

Step 2: Search for better configuration in neighborhood of 𝜽0

𝜽123 ← ITERATIVEFIRSTIMPROVEMENT(𝜽0)

ITERATIVEFIRSTIMPROVEMENT(𝜽):
Repeat:

i. 𝜽! ← 𝜽
ii. Find best parameter setting 𝜽!! in the neighborhood of 𝜽! according to �̂�
iii. Set 𝜽 = 𝜽!′

Until 𝜽6 = 𝜽 ⇒ found a local minimum𝜽′′ differs from 𝜽′ in one component

BasicILS

Step 2: Search for better configuration in neighborhood of 𝜽0

𝜽123 ← ITERATIVEFIRSTIMPROVEMENT(𝜽0)

ITERATIVEFIRSTIMPROVEMENT(𝜽):
Repeat:

i. 𝜽! ← 𝜽
ii. Find best parameter setting 𝜽!! in the neighborhood of 𝜽! according to �̂�
iii. Set 𝜽 = 𝜽!′

Until 𝜽6 = 𝜽 ⇒ found a local minimum

BasicILS

Step 3 (repeat as many times as you can):
1. 𝜽 ← 𝜽123
2. for s rounds do random exploration:

𝜽 ← random 𝜽′ in the neighborhood of 𝜽
3. 𝜽 ← ITERATIVEFIRSTIMPROVEMENT(𝜽)
4. if BETTER(𝜽, 𝜽123), set 𝜽123 ← 𝜽
5. With some small probability, restart: 𝜽 ← random(𝚯)

Return best 𝜽 the algorithm ever found according to �̂�

Adaptive capping

Solving IPs can take forever…
• We want to give up as early as we can
• But still correctly evaluate BETTER(𝜽", 𝜽&)

Without a good way to cap runs, will waste time on bad 𝜽’s

Adaptive capping

Illustrative example:
• 𝜽8 takes 10 seconds total to solve 100 instances

�̂� 𝜽8, 𝐑 =
1
100

⋅ 10 = 0.1
• 𝜽9 takes at least 11 seconds to solve the first instance

�̂� 𝜽9, 𝐑 ≥
1
100

⋅ 11 + 0 + 0 +⋯0 = 0.11

• Can stop evaluating 𝜽9 11 seconds into the first run

99 zeros

Simple adaptive capping

BETTER(𝜽", 𝜽&):
1. Evaluate 𝜽8 on 𝑁 random instances to compute �̂� 𝜽8, 𝐑
2. Evaluate 𝜽9 on 𝑁 random instances to compute �̂� 𝜽9, 𝐑

But give up after 𝑁 ⋅ �̂� 𝜽8, 𝐑 seconds and return 𝜽8
3. If didn’t give up, return

C𝜽8 if �̂� 𝜽8, 𝐑 < �̂� 𝜽9, 𝐑
𝜽9 else

Many ways cap more aggressively and improve this further

Outline

1. Introduction
2. Setup
3. ParamILS
4. Experiments
5. Spectrum auctions

Experiments: example
Average runtime

• SAPS and SPEAR: SAT solvers
• SWGCP: graph coloring problems
• QCP: quasi-group completion problem
• SimpleLS: local search w/o randomization
• Should get stuck in local minima

Outline

1. Introduction
2. Setup
3. ParamILS
4. Experiments
5. Spectrum auctions

Spectrum auctions

Later work by the same UBC lab (and others):
• In 2016–17, FCC held an auction to repurpose radio spectrum

• Broadcast television → wireless internet
• In total, the auction yielded $19.8 billion

Kevin-Leyton Brown
UBC

Ilya Segal
Stanford

Paul Milgrom
Stanford

And many others!

Spectrum auctions

• The auction involves solving huge graph coloring problems

• SATFC uses algorithm configuration + portfolio selection
• Simulations indicate SATFC saved the government billions

Leyton-Brown et al., PNAS’17; Leyton-Brown and Hutter, ICML’19 tutorial

Overview

ParamILS: a seminal general-purpose configuration procedure

Combines local search with random exploration

Speedups for IP and SAT solvers

Inspired later breakthroughs for spectrum auctions

