Reinforcement learning
refresher

Content draws on material by Zico Kolter



https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15780-s16/www/

L earner interaction with environment

Learner

State s Reward r Action a

Environment

Slide by Kolter



Outline
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2. Reinforcement learning
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Markov decision processes

* MDPs defined by:
* States
* Actions
* Transition probabilities
« Rewards

» States: encode how system will evolve when taking actions

« System governed by transition probabilities P(s;1 | s, a;)
* Only depend on current state and action (Markov assumption)

» Agent’s goal: take actions that maximize expected reward
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Markov decision processes

S: set of states (assumed for now to be discrete)

A: set of actions

Transition probability distribution P(s’ | s, a)
Probability of entering state s’ from state s after taking action a

Reward function R:S - R

Goal: Policy m: § = A that maximizes total (discounted) reward
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Gridworld domain

 Goal state with reward 1
e “Bad state” with reward -100

* Actions move:
* North with probably 0.8
 East or west with probability 0.1

* Action that would bump into a wall leaves agent where it is

0 0 0 1 P =038

0 o |-100 I

0 0 0 0 P =01« — P =0.1




Policies and value functions

Policy is a mapping from states to actions m: S — A

Value function for a policy:
Expected su_rrgoof discounted rewards

Vi(s) = E

D VR(s) Isy =5, = 7(50), Sevalserac ~ P

Gl

[ Discount factor ]




Bellman equation

Can also define V™ (s) recursively via the Bellman equation:

VT(s) = R(s) + z P(s' | 's,m(s))VT(s")

s'es
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Computing the policy value

« ¥ € RISl is a vector of values for each state
e r € RISl is a vector of rewards for each state

« P™ € RISIXISI contains the transition probabilities under o
Pi? = P(St41 =115 =j,a; =1(s) )
 Bellman equation can be written in vector form as
v =r+yP™o"
= —yPYH)v" =r
>v" = —-yP") Ir
i.e., computing the policy value requires solving a linear system
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Optimal policy and value tunction

Optimal policy m* achieves the highest value for every state
V™ (s) = max V™ (s)
T

Value function is written V* = V™

There are an exponential number of policies
= Formulation is not very useful
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Optimal policy and value tunction

Instead, define V*(s) using the Bellman optimality equation
V*(s) = R(s) + y max Z P(s'|s,a)V*(s")
a

s'es

Optimal policy is simply the action that attains this max

n*(s) = argmax z P(s'|s,a)V*(s")

s'es
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Computing the optimal policy

Approach #1: value iteration
Repeatedly update estimate of the optimal value function
(according to Bellman optimality equation)

1. V(s) < 0,¥s€S
2. Repeat:

V(s) « R(s) + y max z P(s'|s,a)V(s)

s'es

V*(s) = R(s) + y max 2 P(s'"|s,a)V*(s")
a
s’'es
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Computing the optimal policy

Approach #1: value iteration
Repeatedly update estimate of the optimal value function
(according to Bellman optimality equation)

1. V(s) < 0,¥s€S
2. Repeat:

V(s) « R(s) + y max z P(s'|s,a)V(s)

s'es

Theorem: Value iteration converges to optimal value: V - V*
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Illustration of value iterati

Running value iteration with y = 0.9

on

-100

Original reward function



Illustration of value iteration

Running value iteration with y = 0.9

0

0 0.72

1.81

-99.91

V at 1 iteration



Illustration of value iteration

Running value iteration with y = 0.9

0.809

0.268

0

1.598

0.034

2.475 | 3.745
0.302 | -99.59
0.122 | 0.004

V at 5 iterations



Illustration of value iteration

Running value iteration with y = 0.9

2.686

2.021

1.390

3.527

0.903

4.402 | 5.812
1.095 | -98.82
0.738 | 0.123

V at 10 iterations



Illustration of value iteration

Running value iteration with y = 0.9

5.470

6.313

4.802

4.161

3.654

7.190 | 8.669
3.347 | -96.67
3.222 | 1.526

7 at 1000 iterations



Illustration of value iteration

Running value iteration with y = 0.9

h

L=

Resulting policy after 1000 iterations
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Policy iteration

1. Initialize policy m randomly
2. Compute value of policy V™ (e.g., by solving linear system)
3. Update 7 to be greedy policy with respect to V"
n(s) « argmax z P(s'|s,a)V™(s")
a

s'es
4. If policy m changed in last iteration, return to step 2

Theorem: Policy iteration converges to optimal policy: 1 — *



llustration of policy iteration

Running policy iteration with y = 0.9, initialize with m(s) = North

0 0 0 1

0 -100

Original reward function



llustration of policy iteration

Running policy iteration with y = 0.9, initialize with m(s) = North

0.418 | 0.884 | 2.331 | 6.367

0.367 -8.610 | -105.7

-0.168 | -4.641 | -14.27 | -85.05

V'™ at iteration 1



llustration of policy iteration

Running policy iteration with y = 0.9, initialize with m(s) = North

5414 | 6.248 | 7.116 | 8.634

4.753 2.881 | -102.7

2.251 | 1.977 | 1.849 | -8.701

V'™ at iteration 2



llustration of policy iteration

Running policy iteration with y = 0.9, initialize with m(s) = North

5470 | 6.313 | 7.190 | 8.669

4.803 3.347 | -96.67

4161 | 3.654 | 3.222 | 1.526

V™ at iteration 3 (converged)



Gridworld results

Approximation of value function
* Policy iteration: exact value function after three iterations
* Value iteration: after 100 iterations, [|[V —=V*||, = 7.1-10~*

Calculation of optimal policy
* Policy iteration: three iterations
 Value iteration: 12 iterations

VI converges to m* long before it converges to V* in this MDP
But this property is highly MDP-specific
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Policy iteration or value iteration?

Policy iteration requires fewer iterations than value iteration
« But each iteration requires solving a linear system
* Only need to apply Bellman operator for value iteration

In practice, policy iteration is often faster
 Especially if the transition probabilities are structured (e.g., sparse)
= Solving linear system is efficient
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Challenge of RL

MDP (S,A,P,R):
¢ §: set of states (assumed for now to be discrete)
* A: set of actions
* Transition probability distribution P(s;41 | ¢, a;)
 Reward function R: S - R

RL twist: We don't know P or R, or too big to enumerate
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Model-based RL

* Asimple approach: just estimate the MDP from data

* Agent acts according to some policy, observes
Sl’rl, al, Sz,rz’ az, ---,Sm,rm’ am

* We form the empirical estlmate of the MDP:

~ . _Z 1{Sl_Sal_aSl+1:S}
P(stlsa) >miti{s; =s,a;, =a}
R\(S) _ Zi= 1{Sl — S}rl

Zﬁ1 1{s; = s}
» Now solve the MDP (S, 4, P, R)
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Model-based RL

Will converge to correct MDP (and hence correct policy)

Disadvantages:
* Requires we build the the actual MDP models
* State space may be too large
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Model-free RL

Temporal difference methods (TD, SARSA, Q-learning):
Directly learn value function V™



Temporal difterence (TD) methods

» Consider computing VT via the update
V7(s) « R(s)+y z P(s'|s,m(s))V™(s"), Vs €S

s'es
* We're in state s;, receive ry, take action a; = n(s;), end in s;, 4

 Can't update V™ for all s, but can we update just for s,?
Vs ety ) P(s | e )07 (s)

s'es

e ...No, still can't compute this sum



Temporal difterence (TD) methods

But, s;4, is @ sample from the distribution P(s' | s, a;)

Could perform the update V*(s;) « 1 + ¥V ™(sp41)

* Too "harsh” an assignment
« Assumes that s;44 is the only possible next state

Instead “smooth” the update using some a < 1
Vi(se) « (1 —a)V™(sp) + a (rt + VVn(5t+1))

This is the temporal difference (TD) algorithm
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Temporal difterence (TD) algorithm

algorithm V™ = TD(m, a, y)
initialize V" (s) < 0
repeat
Observe state s and reward r
Take action a = m(s) and observe next state s’

Ve(s) « (1 —a)V™(s) + «a (r + )/17”(5’))

return V™

Will converge to V™ (s) - V™(s) (for all s visited often enough)



TD experiments

Run TD on gridworld domain for 1000 episodes. Each episode:
* 10 steps

« Sampled according to policy &
e Starting at a random state

Initialize with V = R

0 -100




TD progress

1 8 T T I

— alpha=0.5
— alpha=0.1
141 — alpha = 0.05 |

12}

10F

0 200 400 600 800 1000

Episode
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Temporal difterence (TD) algorithm

TD lets us learn the value function of a policy m directly
Don‘t ever need to construct the MDP

But is this really that helpful?

Consider trying to execute greedy policy w.r.t. estimated V™
n'(s) = argmax z T(s,a,s)V™(s")
a

s'es
We need a model anyway

Slide by Kolter



Outline

1. Markov decision processes

2. Reinforcement learning
i. Model-free RL

a. Temporal difference methods
b. Q-learning
c. Function approximation

ii. Exploration vs exploitation

3. Branch-and-bound as an MDP



Q-learning

Q functions:
Like value functions but defined over state-action pairs

07(5,@) = R()+v ) P(s'15,a)Q"(s',n(s")

s'es

l.e., Q function is the value of:
1. Starting in state s
2. Taking action a
3. Then acting accordington



Q-learning

Q*(s,a) =R(s)+vy Z P(s'|s,a) max Q*(s',a")
s'es

=R(s)+vy z P(s'|s,a)V*(s")

s'es

Q* is the value of:
1. Starting in state s
2. Taking action a
3. Then acting optimally



Q-learning

As with TD:

1. Observe s and reward r
2. Take action a (but not necessarily a = n(s))
3. Observe next state s’

Estimate Q*(s,a) as
0*(s,a) « (1 —a)0*(s,a) + a (r +y max 0*(s’, a’))

Q* — Q™ if all state-action pairs seen frequently enough



Q-learning

As with TD:

1. Observe s and reward r
2. Take action a (but not necessarily a = n(s))
3. Observe next state s’

Estimate Q*(s,a) as
0*(s,a) « (1 —a)0*(s,a) + a (r +y max 0*(s’, a’))

We can now learn an optimal policy without an MDP model
*(s) = maxQ*(s,a)



Q-learning experiments

* Run Q-Learning on gridworld for 20000 episodes
* 10 step per episode
e Initialize with 0*(s,a) = R(s)
* Policy (epsilon-greedy): act according to current optimal
1*(s) = max 0*(s, a)

with probability 0.9, else act randomly o | o[ o




Q-learning progress

— alpha=0.1
— alpha=0.05 ||
120} — alpha = 0.01|]

20} \‘*‘Nr 1‘ Mt M‘ ‘\‘ k*?

0 5000 10000 15000 20000
Episode
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Function approximation

« How to avoid keeping track of each state?

* Major advantage to model-free RL methods:
Can use function approximation to represent V™ compactly

* Let V™(s) = fy(s) be our approximator parameterized by 6
» TD update: V7(s) « (1 — a)V™(s) + a (r + yV”(s’))

2
« Update 6: ideally argmin (V”(s) — fo (s))
0

* Instead, arg;nin ((1 — ) fg(s) + a(r +yfe(s)) — fg(S))z

(using gradient descent)
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Function approximation

« How to avoid keeping track of each state?

* Major advantage to model-free RL methods:
Can use function approximation to represent V™ compactly

* Let V™(s) = fy(s) be our approximator parameterized by 6

Can use similar approximators for the Q function
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Exploration/exploitation problem

All the methods discussed so far had some condition like:
* "assuming we visit each state enough”, or
e "taking actions according to some policy”

Fundamental question: should we
1. Take exploratory actions to get more information, or
2. Exploit current knowledge to perform as best we can?
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Exploration/exploitation

Epsilon-greedy Policy:
2(s) — \maxQ"(s,@)  with probability 1 — e
random action otherwise

Want to decrease € as we see more examples, e.g.:
1

€ =
Jn(s)

where n(s) is the number of times we've visited state s




Exploration experiments

0 -100

e Gridworld but with U([0, 1]) rewards instead of rewards above

e Initialize Q function with O(s,a) = 0

* Run with @ = 0.05,6 = 0.1, = 0 (greedy), € = Vyn(s)



Exploration experiments

90 . I i I
— Epsilon = 0.1
80 : i
— Epsilon = 0.0
70} — Espilon = 1/sqrt[n(s)]|-
60 i

e e

lo* - o

0 10000 20000 30000 40000 50000
Episode
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Exploration experiments

8.0 . : l r

— Epsilon = 0.1
o1 — Epsilon = 0.0 |
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Average reward (sliding average over past 5000 episodes) for different strategies

4.0
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Branch and bound (B&B)

‘max (40,60, 10,10, 3,20, 60) - z A

s.t.  (40,50,30,10,10,40,30) - z < 100
7

. z € {0,1} )

(0.1,0,1,0,5,1)

135

z=(§,1,0,0,0,o,1)

140

Z1:0

Z]_:].

(1.2,0,0,0,0,1)

136




Branch and bound (B&B)

‘max (40,60, 10,10, 3,20, 60) - z A

s.t.  (40,50,30,10,10,40,30) - z < 100
7

L z € {0,1} )

e ~\
7= (% 1.0,0,0,0, 1)
State s
140
U——— y
Zl == 0 Zl = 1

Action ay: Branch on z;



Branch and bound (B&B)

z= (%1 0,0,0,0, 1)
State s,
140
z1=0 z1 =1
(0, 1,0,1,0,7, 1) (1, 2,0,0,0,0, 1)
135 136
Zg =1

Action a4: Branch on z



Branch and bound (B&B)

z= (%1 0,0,0,0, 1)
State s,
140
z1=0 z1 =1
(0, 1,0,1,0,7, 1) (1, 2,0,0,0,0, 1)
135 136

Action a: Explore this node

He et al., NeurlPS'14



Papers we'll read

Gasse, Maxime, et al. "Exact combinatorial optimization with
graph convolutional neural networks." NeurlPS. (2019).

* Frame B&B variable selection as an MDP
« Use GNNs to design variable selection policies

Dai, Hanjun, Khalil, Elias, et al. "Learning combinatorial
optimization algorithms over graphs." NeurlPS’17.
* Develop RL algorithms for a variety of combinatorial problems
« Suggest RL could be used for algorithm discovery



