Reinforcement learning
refresher

Content draws on material by Zico Kolter

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15780-s16/www/

L earner interaction with environment

Learner

State s Reward r Action a

Environment

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning

3. Branch-and-bound as an MDP

Markov decision processes

* MDPs defined by:
* States
* Actions
* Transition probabilities
« Rewards

» States: encode how system will evolve when taking actions

« System governed by transition probabilities P(s;1 | s, a;)
* Only depend on current state and action (Markov assumption)

» Agent’s goal: take actions that maximize expected reward

Slide by Kolter

Markov decision processes

S: set of states (assumed for now to be discrete)

A: set of actions

Transition probability distribution P(s’ | s, a)
Probability of entering state s’ from state s after taking action a

Reward function R:S - R

Goal: Policy m: § = A that maximizes total (discounted) reward

Slide by Kolter

Gridworld domain

 Goal state with reward 1
e “Bad state” with reward -100

* Actions move:
* North with probably 0.8
 East or west with probability 0.1

* Action that would bump into a wall leaves agent where it is

0 0 0 1 P =038

0 o |-100 I

0 0 0 0 P =01« — P =0.1

Policies and value functions

Policy is a mapping from states to actions m: S — A

Value function for a policy:
Expected su_rrgoof discounted rewards

Vi(s) = E

D VR(s) Isy =5, = 7(50), Sevalserac ~ P

Gl

[Discount factor]

Bellman equation

Can also define V™ (s) recursively via the Bellman equation:

VT(s) = R(s) + z P(s' | 's,m(s))VT(s")

s'es

Slide by Kolter

Computing the policy value

« ¥ € RISl is a vector of values for each state
e r € RISl is a vector of rewards for each state

« P™ € RISIXISI contains the transition probabilities under o
Pi? = P(St41 =115 =j,a; =1(s))
 Bellman equation can be written in vector form as
v =r+yP™o"
= —yPYH)v" =r
>v" = —-yP") Ir
i.e., computing the policy value requires solving a linear system

Slide by Kolter

Optimal policy and value tunction

Optimal policy m* achieves the highest value for every state
V™ (s) = max V™ (s)
T

Value function is written V* = V™

There are an exponential number of policies
= Formulation is not very useful

Slide by Kolter

Optimal policy and value tunction

Instead, define V*(s) using the Bellman optimality equation
V*(s) = R(s) + y max Z P(s'|s,a)V*(s")
a

s'es

Optimal policy is simply the action that attains this max

n*(s) = argmax z P(s'|s,a)V*(s")

s'es

Slide by Kolter

Outline

1. Markov decision processes
i. Computing the optimal policy
a. Value iteration
b. Policy iteration

2. Reinforcement learning
3. Branch-and-bound as an MDP

Computing the optimal policy

Approach #1: value iteration
Repeatedly update estimate of the optimal value function
(according to Bellman optimality equation)

1. V(s) < 0,¥s€S
2. Repeat:

V(s) « R(s) + y max z P(s'|s,a)V(s)

s'es

V*(s) = R(s) + y max 2 P(s'"|s,a)V*(s")
a
s’'es

Slide by Kolter

Computing the optimal policy

Approach #1: value iteration
Repeatedly update estimate of the optimal value function
(according to Bellman optimality equation)

1. V(s) < 0,¥s€S
2. Repeat:

V(s) « R(s) + y max z P(s'|s,a)V(s)

s'es

Theorem: Value iteration converges to optimal value: V - V*

Slide by Kolter

Illustration of value iterati

Running value iteration with y = 0.9

on

-100

Original reward function

Illustration of value iteration

Running value iteration with y = 0.9

0

0 0.72

1.81

-99.91

V at 1 iteration

Illustration of value iteration

Running value iteration with y = 0.9

0.809

0.268

0

1.598

0.034

2.475 | 3.745
0.302 | -99.59
0.122 | 0.004

V at 5 iterations

Illustration of value iteration

Running value iteration with y = 0.9

2.686

2.021

1.390

3.527

0.903

4.402 | 5.812
1.095 | -98.82
0.738 | 0.123

V at 10 iterations

Illustration of value iteration

Running value iteration with y = 0.9

5.470

6.313

4.802

4.161

3.654

7.190 | 8.669
3.347 | -96.67
3.222 | 1.526

7 at 1000 iterations

Illustration of value iteration

Running value iteration with y = 0.9

h

L=

Resulting policy after 1000 iterations

Outline

1. Markov decision processes
i. Computing the optimal policy
a. Value iteration
b. Policy iteration

2. Reinforcement learning
3. Branch-and-bound as an MDP

Policy iteration

1. Initialize policy m randomly
2. Compute value of policy V™ (e.g., by solving linear system)
3. Update 7 to be greedy policy with respect to V"
n(s) « argmax z P(s'|s,a)V™(s")
a

s'es
4. If policy m changed in last iteration, return to step 2

Theorem: Policy iteration converges to optimal policy: 1 — *

llustration of policy iteration

Running policy iteration with y = 0.9, initialize with m(s) = North

0 0 0 1

0 -100

Original reward function

llustration of policy iteration

Running policy iteration with y = 0.9, initialize with m(s) = North

0.418 | 0.884 | 2.331 | 6.367

0.367 -8.610 | -105.7

-0.168 | -4.641 | -14.27 | -85.05

V'™ at iteration 1

llustration of policy iteration

Running policy iteration with y = 0.9, initialize with m(s) = North

5414 | 6.248 | 7.116 | 8.634

4.753 2.881 | -102.7

2.251 | 1.977 | 1.849 | -8.701

V'™ at iteration 2

llustration of policy iteration

Running policy iteration with y = 0.9, initialize with m(s) = North

5470 | 6.313 | 7.190 | 8.669

4.803 3.347 | -96.67

4161 | 3.654 | 3.222 | 1.526

V™ at iteration 3 (converged)

Gridworld results

Approximation of value function
* Policy iteration: exact value function after three iterations
* Value iteration: after 100 iterations, [|[V —=V*||, = 7.1-10~*

Calculation of optimal policy
* Policy iteration: three iterations
 Value iteration: 12 iterations

VI converges to m* long before it converges to V* in this MDP
But this property is highly MDP-specific

Slide by Kolter

Policy iteration or value iteration?

Policy iteration requires fewer iterations than value iteration
« But each iteration requires solving a linear system
* Only need to apply Bellman operator for value iteration

In practice, policy iteration is often faster
 Especially if the transition probabilities are structured (e.g., sparse)
= Solving linear system is efficient

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning
3. Branch-and-bound as an MDP

Challenge of RL

MDP (S,A,P,R):
¢ §: set of states (assumed for now to be discrete)
* A: set of actions
* Transition probability distribution P(s;41 | ¢, a;)
 Reward function R: S - R

RL twist: We don't know P or R, or too big to enumerate

Slide by Kolter

Model-based RL

* Asimple approach: just estimate the MDP from data

* Agent acts according to some policy, observes
Sl’rl, al, Sz,rz’ az, ---,Sm,rm’ am

* We form the empirical estlmate of the MDP:

~ . _Z 1{Sl_Sal_aSl+1:S}
P(stlsa) >miti{s; =s,a;, =a}
R\(S) _ Zi= 1{Sl — S}rl

Zﬁ1 1{s; = s}
» Now solve the MDP (S, 4, P, R)

Slide by Kolter

Model-based RL

Will converge to correct MDP (and hence correct policy)

Disadvantages:
* Requires we build the the actual MDP models
* State space may be too large

Slide by Kolter

Outline

1. Markov decision processes

2. Reinforcement learning
i. Model-free RL

a. Temporal difference methods

b. Q-learning
c. Function approximation

ii. Exploration vs exploitation

3. Branch-and-bound as an MDP

Model-free RL

Temporal difference methods (TD, SARSA, Q-learning):
Directly learn value function V™

Temporal difterence (TD) methods

» Consider computing VT via the update
V7(s) « R(s)+y z P(s'|s,m(s))V™(s"), Vs €S

s'es
* We're in state s;, receive ry, take action a; = n(s;), end in s;, 4

 Can't update V™ for all s, but can we update just for s,?
Vs ety) P(s | e)07 (s)

s'es

e ...No, still can't compute this sum

Temporal difterence (TD) methods

But, s;4, is @ sample from the distribution P(s' | s, a;)

Could perform the update V*(s;) « 1 + ¥V ™(sp41)

* Too "harsh” an assignment
« Assumes that s;44 is the only possible next state

Instead “smooth” the update using some a < 1
Vi(se) « (1 —a)V™(sp) + a (rt + VVn(5t+1))

This is the temporal difference (TD) algorithm

Slide by Kolter

Temporal difterence (TD) algorithm

algorithm V™ = TD(m, a, y)
initialize V" (s) < 0
repeat
Observe state s and reward r
Take action a = m(s) and observe next state s’

Ve(s) « (1 —a)V™(s) + «a (r +)/17”(5’))

return V™

Will converge to V™ (s) - V™(s) (for all s visited often enough)

TD experiments

Run TD on gridworld domain for 1000 episodes. Each episode:
* 10 steps

« Sampled according to policy &
e Starting at a random state

Initialize with V = R

0 -100

TD progress

1 8 T T I

— alpha=0.5
— alpha=0.1
141 — alpha = 0.05 |

12}

10F

0 200 400 600 800 1000

Episode

Slide by Kolter

Temporal difterence (TD) algorithm

TD lets us learn the value function of a policy m directly
Don‘t ever need to construct the MDP

But is this really that helpful?

Consider trying to execute greedy policy w.r.t. estimated V™
n'(s) = argmax z T(s,a,s)V™(s")
a

s'es
We need a model anyway

Slide by Kolter

Outline

1. Markov decision processes

2. Reinforcement learning
i. Model-free RL

a. Temporal difference methods
b. Q-learning
c. Function approximation

ii. Exploration vs exploitation

3. Branch-and-bound as an MDP

Q-learning

Q functions:
Like value functions but defined over state-action pairs

07(5,@) = R()+v) P(s'15,a)Q"(s',n(s")

s'es

l.e., Q function is the value of:
1. Starting in state s
2. Taking action a
3. Then acting accordington

Q-learning

Q*(s,a) =R(s)+vy Z P(s'|s,a) max Q*(s',a")
s'es

=R(s)+vy z P(s'|s,a)V*(s")

s'es

Q* is the value of:
1. Starting in state s
2. Taking action a
3. Then acting optimally

Q-learning

As with TD:

1. Observe s and reward r
2. Take action a (but not necessarily a = n(s))
3. Observe next state s’

Estimate Q*(s,a) as
0*(s,a) « (1 —a)0*(s,a) + a (r +y max 0*(s’, a’))

Q* — Q™ if all state-action pairs seen frequently enough

Q-learning

As with TD:

1. Observe s and reward r
2. Take action a (but not necessarily a = n(s))
3. Observe next state s’

Estimate Q*(s,a) as
0*(s,a) « (1 —a)0*(s,a) + a (r +y max 0*(s’, a’))

We can now learn an optimal policy without an MDP model
(s) = maxQ(s,a)

Q-learning experiments

* Run Q-Learning on gridworld for 20000 episodes
* 10 step per episode
e Initialize with 0*(s,a) = R(s)
* Policy (epsilon-greedy): act according to current optimal
1*(s) = max 0*(s, a)

with probability 0.9, else act randomly o | o[o

Q-learning progress

— alpha=0.1
— alpha=0.05 ||
120} — alpha = 0.01|]

20} \‘*‘Nr 1‘ Mt M‘ ‘\‘ k*?

0 5000 10000 15000 20000
Episode

Slide by Kolter

Outline

1. Markov decision processes

2. Reinforcement learning
i. Model-free RL

a. Temporal difference methods

b. Q-learning
c. Function approximation

ii. Exploration vs exploitation

3. Branch-and-bound as an MDP

Function approximation

« How to avoid keeping track of each state?

* Major advantage to model-free RL methods:
Can use function approximation to represent V™ compactly

* Let V™(s) = fy(s) be our approximator parameterized by 6
» TD update: V7(s) « (1 — a)V™(s) + a (r + yV”(s’))

2
« Update 6: ideally argmin (V”(s) — fo (s))
0

* Instead, arg;nin ((1 —) fg(s) + a(r +yfe(s)) — fg(S))z

(using gradient descent)

Slide by Kolter

Function approximation

« How to avoid keeping track of each state?

* Major advantage to model-free RL methods:
Can use function approximation to represent V™ compactly

* Let V™(s) = fy(s) be our approximator parameterized by 6

Can use similar approximators for the Q function

Slide by Kolter

Outline

1. Markov decision processes

2. Reinforcement learning
i. Model-free RL
ii. Exploration vs exploitation

3. Branch-and-bound as an MDP

Exploration/exploitation problem

All the methods discussed so far had some condition like:
* "assuming we visit each state enough”, or
e "taking actions according to some policy”

Fundamental question: should we
1. Take exploratory actions to get more information, or
2. Exploit current knowledge to perform as best we can?

Slide by Kolter

Exploration/exploitation

Epsilon-greedy Policy:
2(s) — \maxQ"(s,@) with probability 1 — e
random action otherwise

Want to decrease € as we see more examples, e.g.:
1

€ =
Jn(s)

where n(s) is the number of times we've visited state s

Exploration experiments

0 -100

e Gridworld but with U([0, 1]) rewards instead of rewards above

e Initialize Q function with O(s,a) = 0

* Run with @ = 0.05,6 = 0.1, = 0 (greedy), € = Vyn(s)

Exploration experiments

90 . I i I
— Epsilon = 0.1
80 : i
— Epsilon = 0.0
70} — Espilon = 1/sqrt[n(s)]|-
60 i

e e

lo* - o

0 10000 20000 30000 40000 50000
Episode

Slide by Kolter

Exploration experiments

8.0 . : l r

— Epsilon = 0.1
o1 — Epsilon = 0.0 |
70k — Espilon = 1/sqrt[n(s)] |

o
(9
T

ul
u
T
L

2
o
T
|

Average reward per episode
(@)]
o
1
1

-
92}
T

MW

0 10000 20000 30000 40000 50000
Episode

Average reward (sliding average over past 5000 episodes) for different strategies

4.0

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning
3. Branch-and-bound as an MDP

Branch and bound (B&B)

‘max (40,60, 10,10, 3,20, 60) - z A

s.t. (40,50,30,10,10,40,30) - z < 100
7

. z € {0,1})

(0.1,0,1,0,5,1)

135

z=(§,1,0,0,0,o,1)

140

Z1:0

Z]_:].

(1.2,0,0,0,0,1)

136

Branch and bound (B&B)

‘max (40,60, 10,10, 3,20, 60) - z A

s.t. (40,50,30,10,10,40,30) - z < 100
7

L z € {0,1})

e ~\
7= (% 1.0,0,0,0, 1)
State s
140
U——— y
Zl == 0 Zl = 1

Action ay: Branch on z;

Branch and bound (B&B)

z= (%1 0,0,0,0, 1)
State s,
140
z1=0 z1 =1
(0, 1,0,1,0,7, 1) (1, 2,0,0,0,0, 1)
135 136
Zg =1

Action a4: Branch on z

Branch and bound (B&B)

z= (%1 0,0,0,0, 1)
State s,
140
z1=0 z1 =1
(0, 1,0,1,0,7, 1) (1, 2,0,0,0,0, 1)
135 136

Action a: Explore this node

He et al., NeurlPS'14

Papers we'll read

Gasse, Maxime, et al. "Exact combinatorial optimization with
graph convolutional neural networks." NeurlPS. (2019).

* Frame B&B variable selection as an MDP
« Use GNNs to design variable selection policies

Dai, Hanjun, Khalil, Elias, et al. "Learning combinatorial
optimization algorithms over graphs." NeurlPS’17.
* Develop RL algorithms for a variety of combinatorial problems
« Suggest RL could be used for algorithm discovery

