Reinforcement learning refresher

Content draws on material by <u>Zico Kolter</u>

Learner interaction with environment

Outline

1. Markov decision processes

- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP

Markov decision processes

- MDPs defined by:
 - States
 - Actions
 - Transition probabilities
 - Rewards
- **States**: encode how system will evolve when taking actions
- System governed by transition probabilities P(s_{t+1} | s_t, a_t)
 Only depend on current state and action (Markov assumption)
- Agent's goal: take actions that maximize expected reward

Markov decision processes

S: set of states (assumed for now to be discrete)

A: set of actions

Transition probability distribution P(s' | s, a)Probability of entering state s' from state s after taking action a

Reward function $R: S \rightarrow \mathbb{R}$

Goal: Policy $\pi: S \rightarrow A$ that maximizes total (discounted) reward

Gridworld domain

- Goal state with reward 1
- "Bad state" with reward -100
- Actions move:
 - North with probably 0.8
 - East or west with probability 0.1
- Action that would bump into a wall leaves agent where it is

Policies and value functions

Policy is a mapping from states to actions $\pi: S \rightarrow A$

Value function for a policy:

Expected sum of discounted rewards

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \mid s_{0} = s, a_{t} = \pi(s_{t}), s_{t+1} \mid s_{t}, a_{t} \sim P\right]$$
Discount factor

Bellman equation

Can also define $V^{\pi}(s)$ recursively via the **Bellman equation**: $V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) V^{\pi}(s')$

Computing the policy value

- $v^{\pi} \in \mathbb{R}^{|S|}$ is a vector of **values** for each state
- $r \in \mathbb{R}^{|S|}$ is a vector of **rewards** for each state
- $P^{\pi} \in \mathbb{R}^{|S| \times |S|}$ contains the **transition probabilities** under π $P_{ij}^{\pi} = P(s_{t+1} = i \mid s_t = j, a_t = \pi(s_t))$
- Bellman equation can be written in vector form as $v^{\pi} = r + \gamma P^{\pi} v^{\pi}$ $\Rightarrow (I - \gamma P^{\pi}) v^{\pi} = r$ $\Rightarrow v^{\pi} = (I - \gamma P^{\pi})^{-1} r$

i.e., computing the policy value requires solving a linear system

Optimal policy and value function

Optimal policy π^* achieves the highest value for every state $V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s)$

Value function is written $V^* = V^{\pi^*}$

There are an exponential number of policies ⇒ Formulation is not very useful

Optimal policy and value function

Instead, define $V^*(s)$ using the **Bellman optimality equation** $V^*(s) = R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in S} P(s' | s, a) V^*(s')$

Optimal policy is simply the action that attains this max $\pi^*(s) = \operatorname*{argmax}_a \sum_{s' \in S} P(s' \mid s, a) V^*(s')$

Outline

- 1. Markov decision processes
 - i. Computing the optimal policy
 - a. Value iteration
 - b. Policy iteration
- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP

Computing the optimal policy

Approach #1: value iteration

Repeatedly update estimate of the optimal value function (according to Bellman optimality equation)

- 1. $\hat{V}(s) \leftarrow 0, \forall s \in S$
- 2. Repeat:

$$\hat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{\substack{s' \in S \\ a \in \mathcal{A}}} P(s' \mid s, a) \hat{V}(s')$$
$$V^{\star}(s) = R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{\substack{s' \in S \\ s' \in S}} P(s' \mid s, a) V^{\star}(s')$$

Computing the optimal policy

Approach #1: value iteration

Repeatedly update estimate of the optimal value function (according to Bellman optimality equation)

- 1. $\hat{V}(s) \leftarrow 0, \forall s \in S$
- 2. Repeat:

$$\widehat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in S} P(s' \mid s, a) \widehat{V}(s')$$

Theorem: Value iteration converges to optimal value: $\hat{V} \rightarrow V^*$

Running value iteration with $\gamma = 0.9$

0	0	0	1
0		0	-100
0	0	0	0

Original reward function

Running value iteration with $\gamma = 0.9$

0	0	0.72	1.81
0		0	-99.91
0	0	0	0

 \hat{V} at 1 iteration

Running value iteration with $\gamma = 0.9$

0.809	1.598	2.475	3.745
0.268		0.302	-99.59
0	0.034	0.122	0.004

 \hat{V} at 5 iterations

Running value iteration with $\gamma = 0.9$

2.686	3.527	4.402	5.812
2.021		1.095	-98.82
1.390	0.903	0.738	0.123

 \hat{V} at 10 iterations

Running value iteration with $\gamma = 0.9$

5.470	6.313	7.190	8.669
4.802		3.347	-96.67
4.161	3.654	3.222	1.526

 \hat{V} at 1000 iterations

Running value iteration with $\gamma = 0.9$

Resulting policy after 1000 iterations

Outline

- 1. Markov decision processes
 - i. Computing the optimal policy
 - a. Value iteration
 - b. Policy iteration
- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP

Policy iteration

- 1. Initialize policy π randomly
- 2. Compute value of policy V^{π} (e.g., by solving linear system)
- 3. Update π to be greedy policy with respect to V^{π} $\pi(s) \leftarrow \operatorname{argmax}_{a} \sum_{s' \in S} P(s' \mid s, a) V^{\pi}(s')$
- 4. If policy π changed in last iteration, return to step 2

Theorem: Policy iteration converges to optimal policy: $\pi \rightarrow \pi^*$

Running policy iteration with $\gamma = 0.9$, initialize with $\pi(s) = \text{North}$

0	0	0	1
0		0	-100
0	0	0	0

Original reward function

Running policy iteration with $\gamma = 0.9$, initialize with $\pi(s) = \text{North}$

0.418	0.884	2.331	6.367
0.367		-8.610	-105.7
-0.168	-4.641	-14.27	-85.05

 V^{π} at iteration 1

Running policy iteration with $\gamma = 0.9$, initialize with $\pi(s) = \text{North}$

5.414	6.248	7.116	8.634
4.753		2.881	-102.7
2.251	1.977	1.849	-8.701

 V^{π} at iteration 2

Running policy iteration with $\gamma = 0.9$, initialize with $\pi(s) = \text{North}$

5.470	6.313	7.190	8.669
4.803		3.347	-96.67
4.161	3.654	3.222	1.526

 V^{π} at iteration 3 (converged)

Gridworld results

Approximation of value function

- Policy iteration: exact value function after three iterations
- Value iteration: after 100 iterations, $||V V^*||_2 = 7.1 \cdot 10^{-4}$

Calculation of optimal policy

- Policy iteration: three iterations
- Value iteration: 12 iterations

VI converges to π^* long before it converges to V^* in this MDP But this property is highly MDP-specific

Policy iteration or value iteration?

Policy iteration requires **fewer iterations** than value iteration

- But each iteration requires solving a linear system
- Only need to apply Bellman operator for value iteration

In practice, policy iteration is often **faster**

- Especially if the transition probabilities are structured (e.g., sparse) \Rightarrow Solving linear system is efficient

Outline

- 1. Markov decision processes
- 2. Reinforcement learning
- 3. Branch-and-bound as an MDP

Challenge of RL

MDP (*S*, *A*, *P*, *R*):

- S: set of states (assumed for now to be discrete)
- A: set of actions
- Transition probability distribution $P(s_{t+1} | s_t, a_t)$
- Reward function $R: S \rightarrow \mathbb{R}$

RL twist: We don't know *P* or *R*, or too big to enumerate

Model-based RL

- A simple approach: just estimate the MDP from data
- Agent acts according to some policy, observes $s_1, r_1, a_1, s_2, r_2, a_2, \dots, s_m, r_m, a_m$
- We form the **empirical estimate** of the MDP:

$$\hat{P}(s' \mid s, a) = \frac{\sum_{i=1}^{m-1} \mathbf{1} \{s_i = s, a_i = a, s_{i+1} = s'\}}{\sum_{i=1}^{m-1} \mathbf{1} \{s_i = s, a_i = a\}}$$
$$\hat{R}(s) = \frac{\sum_{i=1}^{m} \mathbf{1} \{s_i = s\} r_i}{\sum_{i=1}^{m} \mathbf{1} \{s_i = s\}}$$

• Now solve the MDP (S, A, \hat{P}, \hat{R})

Model-based RL

Will **converge** to correct MDP (and hence correct policy)

Disadvantages:

- Requires we build the the actual MDP models
- State space may be too large

Outline

- 1. Markov decision processes
- 2. Reinforcement learning
 - i. Model-free RL
 - a. Temporal difference methods
 - b. Q-learning
 - c. Function approximation
 - ii. Exploration vs exploitation
- 3. Branch-and-bound as an MDP

Model-free RL

Temporal difference methods (TD, SARSA, Q-learning):

Directly learn value function V^{π}

Temporal difference (TD) methods

- Consider computing V^{π} via the update $\hat{V}^{\pi}(s) \leftarrow R(s) + \gamma \sum_{s' \in S} P(s' \mid s, \pi(s)) \hat{V}^{\pi}(s'), \quad \forall s \in S$
- We're in state s_t , receive r_t , take action $a_t = \pi(s_t)$, end in s_{t+1}
- Can't update \hat{V}^{π} for all s, but can we update **just for** s_t ? $\hat{V}^{\pi}(s_t) \leftarrow r_t + \gamma \sum_{s' \in S} P(s' \mid s_t, a_t) \hat{V}^{\pi}(s')$
- ...No, still can't compute this sum

Temporal difference (TD) methods

But, s_{t+1} is a sample from the distribution $P(s' | s_t, a_t)$

Could perform the update $\hat{V}^{\pi}(s_t) \leftarrow r_t + \gamma \hat{V}^{\pi}(s_{t+1})$

- Too "harsh" an assignment
- Assumes that s_{t+1} is the only possible next state

Instead "smooth" the update using some $\alpha < 1$ $\hat{V}^{\pi}(s_t) \leftarrow (1 - \alpha)\hat{V}^{\pi}(s_t) + \alpha \left(r_t + \gamma \hat{V}^{\pi}(s_{t+1})\right)$

This is the **temporal difference (TD) algorithm**

Temporal difference (TD) algorithm

algorithm $\hat{V}^{\pi} = \text{TD}(\pi, \alpha, \gamma)$ initialize $\hat{V}^{\pi}(s) \leftarrow 0$ repeat Observe state *s* and reward *r* Take action $a = \pi(s)$ and observe next state *s'* $\hat{V}^{\pi}(s) \leftarrow (1 - \alpha)\hat{V}^{\pi}(s) + \alpha \left(r + \gamma \hat{V}^{\pi}(s')\right)$ return \hat{V}^{π}

Will converge to $\hat{V}^{\pi}(s) \rightarrow V^{\pi}(s)$ (for all s visited often enough)

TD experiments

Run TD on gridworld domain for 1000 episodes. Each episode:

- 10 steps
- Sampled according to policy π
- Starting at a random state

Initialize with $\hat{V} = R$

0	0	0	1
0		0	-100
0	0	0	0

TD progress

Temporal difference (TD) algorithm

TD lets us **learn the value function** of a policy π directly Don't ever need to construct the MDP

But is this really that helpful?

Consider trying to execute greedy policy w.r.t. estimated \hat{V}^{π} $\pi'(s) = \operatorname{argmax}_{a} \sum_{s' \in S} T(s, a, s') \hat{V}^{\pi}(s')$

We **need a model** anyway

Outline

- 1. Markov decision processes
- 2. Reinforcement learning
 - i. Model-free RL
 - a. Temporal difference methods
 - b. Q-learning
 - c. Function approximation
 - ii. Exploration vs exploitation
- 3. Branch-and-bound as an MDP

Q functions:

Like value functions but defined over state-action pairs

$$Q^{\pi}(s,a) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s, a) Q^{\pi}(s', \pi(s'))$$

- I.e., Q function is the value of:
 - 1. Starting in state *s*
 - 2. Taking action *a*
 - 3. Then acting according to π

$$Q^{*}(s,a) = R(s) + \gamma \sum_{\substack{s' \in S \\ s' \in S}} P(s' \mid s,a) \max_{a'} Q^{*}(s',a')$$

= $R(s) + \gamma \sum_{\substack{s' \in S \\ s' \in S}} P(s' \mid s,a) V^{*}(s')$

 Q^* is the value of:

- 1. Starting in state *s*
- 2. Taking action *a*
- 3. Then acting optimally

As with TD:

- 1. Observe *s* and reward *r*
- 2. Take action a (but not necessarily $a = \pi(s)$)
- 3. Observe next state s'

Estimate
$$Q^*(s, a)$$
 as
 $\hat{Q}^*(s, a) \leftarrow (1 - \alpha)\hat{Q}^*(s, a) + \alpha \left(r + \gamma \max_{a'} \hat{Q}^*(s', a')\right)$

 $\hat{Q}^{\star} \rightarrow Q^{\star}$ if all state-action pairs seen frequently enough

As with TD:

- 1. Observe *s* and reward *r*
- 2. Take action a (but not necessarily $a = \pi(s)$)
- 3. Observe next state s'

Estimate
$$Q^*(s, a)$$
 as
 $\hat{Q}^*(s, a) \leftarrow (1 - \alpha)\hat{Q}^*(s, a) + \alpha \left(r + \gamma \max_{a'} \hat{Q}^*(s', a')\right)$

We can now learn an optimal policy without an MDP model $\hat{\pi}^*(s) = \max \hat{Q}^*(s, a)$

Q-learning experiments

- Run Q-Learning on gridworld for 20000 episodes
 - 10 step per episode
- Initialize with $\hat{Q}^*(s, a) = R(s)$
- Policy (epsilon-greedy): act according to current optimal $\hat{\pi}^*(s) = \max \hat{Q}^*(s, a)$

with probability 0.9, else act randomly

Q-learning progress

Outline

- 1. Markov decision processes
- 2. Reinforcement learning
 - i. Model-free RL
 - a. Temporal difference methods
 - b. Q-learning
 - c. Function approximation
 - ii. Exploration vs exploitation
- 3. Branch-and-bound as an MDP

Function approximation

- How to avoid keeping track of each state?
- Major advantage to model-free RL methods: Can use **function approximation** to represent \hat{V}^{π} compactly
- Let $\hat{V}^{\pi}(s) = f_{\theta}(s)$ be our approximator parameterized by θ
- TD update: $\hat{V}^{\pi}(s) \leftarrow (1-\alpha)\hat{V}^{\pi}(s) + \alpha \left(r + \gamma \hat{V}^{\pi}(s')\right)$
- Update θ : ideally $\underset{\theta}{\operatorname{argmin}} \left(\widehat{V}^{\pi}(s) f_{\theta}(s) \right)^2$
- Instead, $\operatorname{argmin}_{\theta} \left((1 \alpha) f_{\theta}(s) + \alpha (r + \gamma f_{\theta}(s')) f_{\theta}(s) \right)^2$ (using gradient descent)

Function approximation

- How to avoid keeping track of each state?
- Major advantage to model-free RL methods: Can use **function approximation** to represent \hat{V}^{π} compactly
- Let $\hat{V}^{\pi}(s) = f_{\theta}(s)$ be our approximator parameterized by θ

Can use similar approximators for the Q function

Outline

- 1. Markov decision processes
- 2. Reinforcement learning
 - i. Model-free RL
 - ii. Exploration vs exploitation
- 3. Branch-and-bound as an MDP

Exploration/exploitation problem

All the methods discussed so far had some condition like:

- "assuming we visit each state enough", or
- "taking actions according to some policy"

Fundamental question: should we

- 1. Take **exploratory** actions to get more information, or
- 2. **Exploit** current knowledge to perform as best we can?

Exploration/exploitation

Epsilon-greedy policy: $\pi(s) = \begin{cases} \max_{a} \hat{Q}^{\pi}(s, a) & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{otherwise} \end{cases}$

Want to decrease ϵ as we see more examples, e.g.:

 $\epsilon = \frac{1}{\sqrt{n(s)}}$ where n(s) is the number of times we've visited state s

Exploration experiments

0	0	0	1
0		0	-100
0	0	0	0

- Gridworld but with U([0, 1]) rewards instead of rewards above
- Initialize Q function with $\hat{Q}(s, a) = 0$

• Run with
$$\alpha = 0.05, \epsilon = 0.1, \epsilon = 0$$
 (greedy), $\epsilon = \frac{1}{\sqrt{n(s)}}$

Exploration experiments

Exploration experiments

Average reward (sliding average over past 5000 episodes) for different strategies

Outline

- 1. Markov decision processes
- 2. Reinforcement learning
- **3. Branch-and-bound as an MDP**

Action a_0 : Branch on z_1

Action a_1 : Branch on z_6

He et al., NeurIPS'14

Papers we'll read

Gasse, Maxime, et al. "Exact combinatorial optimization with graph convolutional neural networks." *NeurIPS*. (2019).

- Frame B&B variable selection as an MDP
- Use **GNNs** to design variable selection policies

Dai, Hanjun, Khalil, Elias, et al. "Learning combinatorial optimization algorithms over graphs." *NeurIPS'17*.

- Develop **RL algorithms** for a variety of combinatorial problems
- Suggest RL could be used for **algorithm discovery**