
Reinforcement learning
refresher

Content draws on material by Zico Kolter

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15780-s16/www/

Learner interaction with environment

Learner

Environment

Action 𝑎Reward 𝑟State 𝑠

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning
3. Branch-and-bound as an MDP

Markov decision processes

• MDPs defined by:
• States
• Actions
• Transition probabilities
• Rewards

• States: encode how system will evolve when taking actions
• System governed by transition probabilities 𝑃(𝑠!"# ∣ 𝑠! , 𝑎!)
• Only depend on current state and action (Markov assumption)

• Agent’s goal: take actions that maximize expected reward

Slide by Kolter

Markov decision processes

𝑆: set of states (assumed for now to be discrete)

𝐴: set of actions

Transition probability distribution 𝑃(𝑠′ ∣ 𝑠, 𝑎)
Probability of entering state 𝑠′ from state 𝑠 after taking action 𝑎

Reward function 𝑅: 𝑆 → ℝ

Goal: Policy 𝜋: 𝑆 → 𝐴 that maximizes total (discounted) reward

Slide by Kolter

Gridworld domain

• Goal state with reward 1
• “Bad state” with reward -100
• Actions move:
• North with probably 0.8
• East or west with probability 0.1

• Action that would bump into a wall leaves agent where it is
0

0

0

0

0

0

0

0

1

-100

0 𝑃 = 0.1𝑃 = 0.1

𝑃 = 0.8

Slide by Kolter

Policies and value functions

Policy is a mapping from states to actions 𝜋: 𝑆 → 𝐴

Value function for a policy:
Expected sum of discounted rewards

𝑉$ 𝑠 = 𝔼 4
!%&

'

𝛾!𝑅 𝑠! ∣ 𝑠& = 𝑠, 𝑎! = 𝜋 𝑠! , 𝑠!"#|𝑠! , 𝑎! ∼ 𝑃

Discount factor

Slide by Kolter

Bellman equation

Can also define 𝑉$ 𝑠 recursively via the Bellman equation:
𝑉$ 𝑠 = 𝑅 𝑠 + 𝛾 4

(!∈*

𝑃 𝑠+ 𝑠, 𝜋 𝑠 𝑉$ 𝑠+

Slide by Kolter

Computing the policy value

• 𝒗$ ∈ ℝ|*| is a vector of values for each state
• 𝒓 ∈ ℝ|*| is a vector of rewards for each state
• 𝑃$ ∈ ℝ * ×|*| contains the transition probabilities under 𝜋

𝑃./$ = 𝑃 𝑠!"# = 𝑖 𝑠! = 𝑗, 𝑎! = 𝜋 𝑠!
• Bellman equation can be written in vector form as

𝒗$ = 𝒓 + 𝛾𝑃$𝒗$
⇒ 𝐼 − 𝛾𝑃$ 𝒗$ = 𝒓
⇒ 𝒗$ = 𝐼 − 𝛾𝑃$ 0#𝒓

i.e., computing the policy value requires solving a linear system

Slide by Kolter

Optimal policy and value function

Optimal policy 𝜋⋆ achieves the highest value for every state
𝑉$⋆(𝑠) = max

$
𝑉$ 𝑠

Value function is written 𝑉⋆ = 𝑉$⋆

There are an exponential number of policies
⇒ Formulation is not very useful

Slide by Kolter

Optimal policy and value function

Instead, define 𝑉⋆ 𝑠 using the Bellman optimality equation
𝑉⋆ 𝑠 = 𝑅 𝑠 + 𝛾max

2∈𝒜
4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 𝑉⋆ 𝑠+

Optimal policy is simply the action that attains this max
𝜋⋆ 𝑠 = argmax

2
4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 𝑉⋆ 𝑠+

Slide by Kolter

Outline

1. Markov decision processes
i. Computing the optimal policy

a. Value iteration
b. Policy iteration

2. Reinforcement learning
3. Branch-and-bound as an MDP

Computing the optimal policy
Approach #1: value iteration

Repeatedly update estimate of the optimal value function
(according to Bellman optimality equation)

1. F𝑉 𝑠 ← 0, ∀𝑠 ∈ 𝑆
2. Repeat:

F𝑉 𝑠 ← 𝑅 𝑠 + 𝛾max
2∈𝒜

4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 F𝑉 𝑠+

𝑉⋆ 𝑠 = 𝑅 𝑠 + 𝛾max
2∈𝒜

4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 𝑉⋆ 𝑠+

Slide by Kolter

Computing the optimal policy
Approach #1: value iteration

Repeatedly update estimate of the optimal value function
(according to Bellman optimality equation)

1. F𝑉 𝑠 ← 0, ∀𝑠 ∈ 𝑆
2. Repeat:

F𝑉 𝑠 ← 𝑅 𝑠 + 𝛾max
2∈𝒜

4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 F𝑉 𝑠+

Theorem: Value iteration converges to optimal value: F𝑉 → 𝑉⋆

Slide by Kolter

Illustration of value iteration

Running value iteration with 𝛾 = 0.9

0

0

0

0

0

0

0

0

1

-100

0

Original reward function

Slide by Kolter

Illustration of value iteration

Running value iteration with 𝛾 = 0.9

0

0

0

0

0

0.72

0

0

1.81

-99.91

0

'𝑉 at 1 iteration

Slide by Kolter

Illustration of value iteration

Running value iteration with 𝛾 = 0.9

0.809

0.268

0

1.598

0.034

2.475

0.302

0.122

3.745

-99.59

0.004

'𝑉 at 5 iterations

Slide by Kolter

Illustration of value iteration

Running value iteration with 𝛾 = 0.9

2.686

2.021

1.390

3.527

0.903

4.402

1.095

0.738

5.812

-98.82

0.123

'𝑉 at 10 iterations

Slide by Kolter

Illustration of value iteration

Running value iteration with 𝛾 = 0.9

5.470

4.802

4.161

6.313

3.654

7.190

3.347

3.222

8.669

-96.67

1.526

'𝑉 at 1000 iterations

Slide by Kolter

Illustration of value iteration

Running value iteration with 𝛾 = 0.9

Resulting policy after 1000 iterations

Slide by Kolter

Outline

1. Markov decision processes
i. Computing the optimal policy

a. Value iteration
b. Policy iteration

2. Reinforcement learning
3. Branch-and-bound as an MDP

Policy iteration

1. Initialize policy 𝜋 randomly
2. Compute value of policy 𝑉$ (e.g., by solving linear system)
3. Update 𝜋 to be greedy policy with respect to 𝑉$

𝜋 𝑠 ← argmax
2

4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 𝑉$ 𝑠+

4. If policy 𝜋 changed in last iteration, return to step 2

Theorem: Policy iteration converges to optimal policy: 𝜋 → 𝜋⋆

Slide by Kolter

Illustration of policy iteration

Running policy iteration with 𝛾 = 0.9, initialize with 𝜋(𝑠) = North

0

0

0

0

0

0

0

0

1

-100

0

Original reward function

Slide by Kolter

Illustration of policy iteration

Running policy iteration with 𝛾 = 0.9, initialize with 𝜋(𝑠) = North

0.418

0.367

-0.168

0.884

-4.641

2.331

-8.610

-14.27

6.367

-105.7

-85.05

𝑉! at iteration 1

Slide by Kolter

Illustration of policy iteration

Running policy iteration with 𝛾 = 0.9, initialize with 𝜋(𝑠) = North

5.414

4.753

2.251

6.248

1.977

7.116

2.881

1.849

8.634

-102.7

-8.701

𝑉! at iteration 2

Slide by Kolter

Illustration of policy iteration

Running policy iteration with 𝛾 = 0.9, initialize with 𝜋(𝑠) = North

5.470

4.803

4.161

6.313

3.654

7.190

3.347

3.222

8.669

-96.67

1.526

𝑉! at iteration 3 (converged)

Slide by Kolter

Gridworld results
Approximation of value function
• Policy iteration: exact value function after three iterations
• Value iteration: after 100 iterations, 𝑉 − 𝑉⋆ * = 7.1 ⋅ 10+,

Calculation of optimal policy
• Policy iteration: three iterations
• Value iteration: 12 iterations

VI converges to 𝜋⋆ long before it converges to 𝑉⋆ in this MDP
But this property is highly MDP-specific

Slide by Kolter

Policy iteration or value iteration?

Policy iteration requires fewer iterations than value iteration
• But each iteration requires solving a linear system
• Only need to apply Bellman operator for value iteration

In practice, policy iteration is often faster
• Especially if the transition probabilities are structured (e.g., sparse)

⇒ Solving linear system is efficient

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning
3. Branch-and-bound as an MDP

Challenge of RL

MDP (𝑺, 𝑨, 𝑷, 𝑹):
• 𝑆: set of states (assumed for now to be discrete)
• 𝐴: set of actions
• Transition probability distribution 𝑃(𝑠!"# ∣ 𝑠! , 𝑎!)
• Reward function 𝑅: 𝑆 → ℝ

RL twist: We don’t know 𝑃 or 𝑅, or too big to enumerate

Slide by Kolter

Model-based RL

• A simple approach: just estimate the MDP from data
• Agent acts according to some policy, observes

𝑠#, 𝑟#, 𝑎#, 𝑠4, 𝑟4, 𝑎4, … , 𝑠5 , 𝑟5 , 𝑎5
• We form the empirical estimate of the MDP:

F𝑃 𝑠+ 𝑠, 𝑎 =
∑.%#50#𝟏 𝑠. = 𝑠, 𝑎. = 𝑎, 𝑠."# = 𝑠+

∑.%#50#𝟏 𝑠. = 𝑠, 𝑎. = 𝑎

F𝑅 𝑠 =
∑.%#5 𝟏 𝑠. = 𝑠 𝑟.
∑.%#
5 𝟏 𝑠. = 𝑠

.

• Now solve the MDP 𝑆, 𝐴, F𝑃, F𝑅
Slide by Kolter

Model-based RL

Will converge to correct MDP (and hence correct policy)

Disadvantages:
• Requires we build the the actual MDP models
• State space may be too large

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning

i. Model-free RL
a. Temporal difference methods
b. Q-learning
c. Function approximation

ii. Exploration vs exploitation
3. Branch-and-bound as an MDP

Model-free RL

Temporal difference methods (TD, SARSA, Q-learning):
Directly learn value function 𝑉$

Slide by Kolter

Temporal difference (TD) methods
• Consider computing 𝑉$ via the update

F𝑉$ 𝑠 ← 𝑅 𝑠 + 𝛾 4
(!∈*

𝑃 𝑠+ 𝑠, 𝜋 𝑠 F𝑉$ 𝑠+ , ∀𝑠 ∈ 𝑆

• We’re in state 𝑠!, receive 𝑟!, take action 𝑎! = 𝜋(𝑠!), end in 𝑠!"#
• Can’t update F𝑉$ for all 𝑠, but can we update just for 𝒔𝒕?

F𝑉$ 𝑠! ← 𝑟! + 𝛾 4
(!∈*

𝑃 𝑠+ 𝑠! , 𝑎! F𝑉$ 𝑠+

• …No, still can’t compute this sum
Slide by Kolter

Temporal difference (TD) methods
But, 𝑠!"# is a sample from the distribution 𝑃 𝑠+ 𝑠! , 𝑎!

Could perform the update F𝑉$ 𝑠! ← 𝑟! + 𝛾 F𝑉$ 𝑠!"#
• Too “harsh” an assignment
• Assumes that 𝑠-./ is the only possible next state

Instead “smooth” the update using some 𝛼 < 1
F𝑉$ 𝑠! ← 1 − 𝛼 F𝑉$ 𝑠! + 𝛼 𝑟! + 𝛾 F𝑉$ 𝑠!"#

This is the temporal difference (TD) algorithm
Slide by Kolter

Temporal difference (TD) algorithm

algorithm F𝑉$ = TD 𝜋, 𝛼, 𝛾
initialize F𝑉$ 𝑠 ← 0
repeat

Observe state 𝑠 and reward 𝑟
Take action 𝑎 = 𝜋(𝑠) and observe next state 𝑠+
F𝑉$ 𝑠 ← 1 − 𝛼 F𝑉$ 𝑠 + 𝛼 𝑟 + 𝛾 F𝑉$ 𝑠′

return F𝑉$

Will converge to F𝑉$ 𝑠 → 𝑉$(𝑠) (for all 𝑠 visited often enough)
Slide by Kolter

TD experiments

Run TD on gridworld domain for 1000 episodes. Each episode:
• 10 steps
• Sampled according to policy 𝜋
• Starting at a random state

Initialize with F𝑉 = 𝑅 0

0

0

0

0

0

0

0

1

-100

0

Slide by Kolter

TD progress

' 𝑉
!
−
𝑉
!

Slide by Kolter

Temporal difference (TD) algorithm

TD lets us learn the value function of a policy 𝜋 directly
Don’t ever need to construct the MDP

But is this really that helpful?

Consider trying to execute greedy policy w.r.t. estimated F𝑉$

𝜋+ 𝑠 = argmax
2

4
(!∈*

𝑇 𝑠, 𝑎, 𝑠+ F𝑉$ 𝑠+

We need a model anyway

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning

i. Model-free RL
a. Temporal difference methods
b. Q-learning
c. Function approximation

ii. Exploration vs exploitation
3. Branch-and-bound as an MDP

Q-learning

Q functions:
Like value functions but defined over state-action pairs

𝑄$ 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 𝑄$ 𝑠+, 𝜋 𝑠+

I.e., Q function is the value of:
1. Starting in state 𝑠
2. Taking action 𝑎
3. Then acting according to 𝜋

Slide by Kolter

Q-learning

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 max
2!

𝑄⋆ 𝑠′, 𝑎′

= 𝑅 𝑠 + 𝛾 4
(!∈*

𝑃 𝑠+ 𝑠, 𝑎 𝑉⋆ 𝑠+

𝑄⋆ is the value of:
1. Starting in state 𝑠
2. Taking action 𝑎
3. Then acting optimally

Slide by Kolter

Q-learning
As with TD:

1. Observe 𝑠 and reward 𝑟
2. Take action 𝑎 (but not necessarily 𝑎 = 𝜋(𝑠))
3. Observe next state 𝑠′

Estimate 𝑄⋆(𝑠, 𝑎) as
F𝑄⋆ 𝑠, 𝑎 ← 1 − 𝛼 F𝑄⋆ 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max

2+
F𝑄⋆ 𝑠′, 𝑎′

We can now learn an optimal policy without an MDP model
𝜋⋆ 𝑠 = max F𝑄⋆ 𝑠, 𝑎

F𝑄⋆ → 𝑄⋆ if all state-action pairs seen frequently enough

Slide by Kolter

Q-learning
As with TD:

1. Observe 𝑠 and reward 𝑟
2. Take action a (but not necessarily 𝑎 = 𝜋(𝑠))
3. Observe next state 𝑠′

Estimate 𝑄⋆(𝑠, 𝑎) as
F𝑄⋆ 𝑠, 𝑎 ← 1 − 𝛼 F𝑄⋆ 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max

2+
F𝑄⋆ 𝑠′, 𝑎′

We can now learn an optimal policy without an MDP model
[𝜋⋆ 𝑠 = max F𝑄⋆ 𝑠, 𝑎

Slide by Kolter

Q-learning experiments

• Run Q-Learning on gridworld for 20000 episodes
• 10 step per episode

• Initialize with F𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠
• Policy (epsilon-greedy): act according to current optimal

[𝜋⋆ 𝑠 = max F𝑄⋆ 𝑠, 𝑎
with probability 0.9, else act randomly 0

0

0

0

0

0

0

0

1

-100

0

Slide by Kolter

Q-learning progress

' 𝑄
⋆
−
𝑄
⋆

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning

i. Model-free RL
a. Temporal difference methods
b. Q-learning
c. Function approximation

ii. Exploration vs exploitation
3. Branch-and-bound as an MDP

Function approximation
• How to avoid keeping track of each state?
• Major advantage to model-free RL methods:

Can use function approximation to represent !𝑉! compactly
• Let !𝑉! 𝑠 = 𝑓"(𝑠) be our approximator parameterized by 𝜃
• TD update: !𝑉! 𝑠 ← 1 − 𝛼 !𝑉! 𝑠 + 𝛼 𝑟 + 𝛾 !𝑉! 𝑠′

• Update 𝜃: ideally argmin
"

!𝑉! 𝑠 − 𝑓" 𝑠
#

• Instead, argmin
"

1 − 𝛼 𝑓" 𝑠 + 𝛼 𝑟 + 𝛾𝑓" 𝑠′ − 𝑓" 𝑠
#

(using gradient descent)

Slide by Kolter

Function approximation
• How to avoid keeping track of each state?
• Major advantage to model-free RL methods:

Can use function approximation to represent !𝑉! compactly
• Let !𝑉! 𝑠 = 𝑓"(𝑠) be our approximator parameterized by 𝜃

Can use similar approximators for the 𝑄 function

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning

i. Model-free RL
ii. Exploration vs exploitation

3. Branch-and-bound as an MDP

Exploration/exploitation problem

All the methods discussed so far had some condition like:
• “assuming we visit each state enough”, or
• “taking actions according to some policy”

Fundamental question: should we
1. Take exploratory actions to get more information, or
2. Exploit current knowledge to perform as best we can?

Slide by Kolter

Exploration/exploitation

Epsilon-greedy policy:

𝜋 𝑠 = \
max
2

F𝑄$(𝑠, 𝑎) with probability 1 − 𝜖
random action otherwise.

Want to decrease 𝜖 as we see more examples, e.g.:
𝜖 = #

7(()
where 𝑛(𝑠) is the number of times we’ve visited state 𝑠

Slide by Kolter

Exploration experiments

• Gridworld but with U([0, 1]) rewards instead of rewards above
• Initialize Q function with F𝑄 𝑠, 𝑎 = 0

• Run with 𝛼 = 0.05, 𝜖 = 0.1, 𝜖 = 0 (greedy), 𝜖 = #
7(()

0

0

0

0

0

0

0

0

1

-100

0

Slide by Kolter

Exploration experiments

' 𝑄
⋆
−
𝑄
⋆

Slide by Kolter

Exploration experiments

Average reward (sliding average over past 5000 episodes) for different strategies

Slide by Kolter

Outline

1. Markov decision processes
2. Reinforcement learning
3. Branch-and-bound as an MDP

Branch and bound (B&B)
max (40, 60, 10, 10, 3, 20, 60) 9 𝒛
s.t. 40, 50, 30, 10, 10, 40, 30 9 𝒛 ≤ 100

𝒛 ∈ {0,1}#

𝒛 = $
%
, 1, 0, 0, 0, 0, 1

140

1, &
'
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0, $
(
, 1

135

𝑧$ = 0 𝑧$ = 1

Branch and bound (B&B)
max (40, 60, 10, 10, 3, 20, 60) 9 𝒛
s.t. 40, 50, 30, 10, 10, 40, 30 9 𝒛 ≤ 100

𝒛 ∈ {0,1}#

𝒛 = $
%
, 1, 0, 0, 0, 0, 1

140

𝑧$ = 0 𝑧$ = 1

State 𝒔𝟎

Action 𝒂𝟎: Branch on 𝑧#

Branch and bound (B&B)

𝒛 = $
%
, 1, 0, 0, 0, 0, 1

140

𝑧$ = 0 𝑧$ = 1

State 𝒔𝟏

1, &
'
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0, $
(
, 1

135

𝑧) = 0 𝑧) = 1

Action 𝒂𝟏: Branch on 𝑧<

Branch and bound (B&B)

𝒛 = $
%
, 1, 0, 0, 0, 0, 1

140

𝑧$ = 0 𝑧$ = 1

State 𝒔𝟏

1, &
'
, 0, 0, 0, 0, 1

136

0, 1, 0, 1, 0, $
(
, 1

135

Action 𝒂𝟏: Explore this node

He et al., NeurIPS’14

Papers we’ll read

Gasse, Maxime, et al. "Exact combinatorial optimization with
graph convolutional neural networks." NeurIPS. (2019).
• Frame B&B variable selection as an MDP
• Use GNNs to design variable selection policies

Dai, Hanjun, Khalil, Elias, et al. "Learning combinatorial
optimization algorithms over graphs." NeurIPS’17.
• Develop RL algorithms for a variety of combinatorial problems
• Suggest RL could be used for algorithm discovery

