
Stanford MS&E 236 / CS 225: Lecture 10

Integer programming formulations

Ellen Vitercik∗

May 12, 2024

Integer programming is the most broadly applicable way to formulate discrete optimiza-
tion problems, with many applications across science and engineering, including scheduling,
routing, planning, manufacturing, and finance. This lecture will cover how to formulate
discrete optimization problems as integer programs. In the next lecture, we will cover the
basics of integer programming solvers, at which point we will discuss how machine learning
can be incorporated into these solvers.

At a high level, there are three basic components of an optimization problem:

1. Decision variables: these variables describe choices that are under our control.

2. Objective function: this is the criterion we want to minimize (for example, minimiz-
ing cost) or maximize (for example, maximizing profit).

3. Constraints: these are limitations restricting our choices for the decision variables.

An integer linear program (the focus of this module) is an optimization problem where
the objective function is linear, each constraint is a linear inequality or equality, and some
decision variables must be integer-valued, which typically makes the optimization problem
NP-hard.

1 Examples

We will start with a variety of different examples before discussing integer programming
more abstractly.

1.1 Minimum vertex cover (MVC)

The minimum vertex cover problem should be very familiar at this point in the course. As
a refresher, a vertex cover of a graph G = (V,E) is a subset S ⊆ V such that every edge
(i, j) ∈ E is incident to a vertex in S, i.e., i ∈ S, j ∈ S, or both. In the MVC problem, the
goal is to find the smallest vertex cover.

We will begin by identifying the three basic components of this optimization problem:

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

1. Decision variables: for each vertex i ∈ V , we define the decision variable

xi =

{
1 if i is in the vertex cover

0 else.

2. Objective function: since our goal is to minimize the size of the vertex cover, our
objective function is to minimize ∑

i∈V

xi,

which is a linear function.

3. Constraints: We must design the constraints so that if an assignment of the decision
variables x1, . . . , x|V | satisfies the constraints, then {i : xi = 1} is a vertex cover. To do
so, we will add the constraint xi + xj ≥ 1 for all edges (i, j) ∈ E. This ensures that for
every edge, xi = 1 and/or xj = 1.

Putting these ingredients together, we have the MVC integer program:

minimize
∑
i∈V

xi

subject to xi + xj ≥ 1 for all (i, j) ∈ E
xi ∈ {0, 1} for all i ∈ V.

1.2 Maximum independent set (MIS)

The maximum independent set integer program is very similar to the MVC integer program.
Remember, S ⊆ V is an independent set if no vertices in S are connected by an edge. In the
MIS problem, the goal is to find the largest independent set. At this point, I’d recommend
trying to write the MIS integer program yourself before reading further.

As before, we will identify the three basic components of this integer program:

1. Decision variables: for each vertex i ∈ V , we define the decision variable

xi =

{
1 if i is in the independent set

0 else.

2. Objective function: Since we aim to maximize the size of the independent set, our
goal will be to maximize ∑

i∈V

xi.

3. Constraints: Finally, we must define the constraints so that if x1, . . . , x|V | satisfy the
constraints, then {i : xi = 1} is an independent set. To this end, we add the constraint
xi+xj ≤ 1 for all (i, j) ∈ E. This constraint ensures that for every edge, either xi = 1,
xj = 1, or xi = xj = 0.

Putting these pieces together, we get the MIS integer program: MIS integer program:

maximize
∑
i∈V

xi

subject to xi + xj ≤ 1 for all (i, j) ∈ E
xi ∈ {0, 1} for all i ∈ V.

2

1.3 Warehouse location

We wrap up this section with an integer program for a more practical problem [1]. The
manager of a company that produces some goods must decide which of n warehouses to
open to meet the demands of m customers. Her decision depends on the following values:

• If the manager chooses to open warehouse i ∈ [n], she must pay a fixed cost fi ≥ 0.

• The company has committed to meeting the demand dj ≥ 0 of each consumer j ∈ [m].
This is the number of units of the company’s product that the consumer demands.

• Finally, there is a transportation cost of cij ≥ 0 to ship each unit of the good from
warehouse i to customer j.

The manager’s goal is to minimize their total operating and transportation costs while en-
suring that all of the customers’ demands are fulfilled. We now identify the three basic
components of this optimization problem:

1. Decision variables: there are two types of decision variables. For each warehouse
i ∈ [n], we define the decision variable

yi =

{
1 if warehouse i is opened

0 else.

Moreover, we define the decision variable xij to be the number of units that are sent
from warehouse i to customer j. For simplicity, this amount may be fractional, so we
will only require that xij ≥ 0.

2. Objective function: the goal is to minimize the total transportation and opening
costs, i.e.,

n∑
i=1

m∑
j=1

cijxij︸ ︷︷ ︸
Transportation costs

+
n∑

i=1

fiyi︸ ︷︷ ︸
Opening costs

.

3. Constraints: there are several categories of constraints. First, we require that xij ≥ 0
and yi ∈ {0, 1}. Second, for each customer j ∈ [m], the total amount of goods sent to
them—across all n warehouses—must equal their demand, meaning that

n∑
i=1

xij = dj.

Finally, goods can only be shipped from a warehouse if that warehouse is open—a
relationship we must enforce between the xij and yi variables. If yi = 0, warehouse i is
not opened, so it cannot ship any goods to any customers, meaning that

yi = 0 ⇒
m∑
j=1

xij = 0. (1)

3

Meanwhile, if yi = 1, warehouse i can ship any number of units to the customers, and
the total amount it ships should only be constrained by the total demand. In other
words,

yi = 1 ⇒
m∑
j=1

xij ≤
m∑
j=1

dj. (2)

We can encode Equations (1) and (2) with the following constraint:

m∑
j=1

xij ≤ yi

m∑
j=1

dj.

Putting these pieces together, we obtain the warehouse location integer program:

maximize
n∑

i=1

m∑
j=1

cijxij +
n∑

i=1

fiyi

subject to
n∑

i=1

xij = dj for all j ∈ [m]

m∑
j=1

xij ≤ yi

m∑
j=1

dj for all i ∈ [n]

xij ≥ 0 for all i ∈ [n], j ∈ [m]
yi ∈ {0, 1} for all i ∈ [n].

2 General form of an integer program

In general, an integer program can be written in the following general form:

maximize
x1,...,xn

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for all i ∈ [m]

xj ≥ 0 for all j ∈ [n]
xj ∈ Z for some or all j ∈ [n].

An equality constraint
n∑

j=1

aijxj = bi

can be written using two inequality constraints:

n∑
j=1

aijxj ≤ bi and −
n∑

j=1

aijxj ≤ −bi.

Moreover, if we aim to minimize a linear objective
∑

cjxj, we can simply maximize −
∑

cjxj.

4

It is typical to write integer programs using vector and matrix notation, with b =
(b1, . . . , bm), c = (c1, . . . , cn), and

A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 .

The integer program is written as

maximize cTx
subject to Ax ≤ b

x ≥ 0
xj ∈ Z for some or all j ∈ [n].

(3)

3 Linear programming

If we ignore the integrality constraint in Equation (3), we obtain the integer program’s linear
programming relaxation:

maximize cTx
subject to Ax ≤ b

x ≥ 0.
(4)

Unlike integer programs, linear programs are efficiently solvable. The following is an impor-
tant fact that we will rely on in the next lecture.

Fact 3.1. Let x∗
IP be the optimal solution to Equation (3) and let x∗

LP be the optimal solution
to Equation (4). Then cTx∗

LP ≥ cTx∗
IP.

This fact follows from the observation that we can only improve the solution to this
maximization problem by removing the integrality constraints.

References

[1] Stephen P Bradley, Arnoldo C Hax, and Thomas L Magnanti. Applied mathematical
programming. Addison-Wesley, 1977.

5

	Examples
	Minimum vertex cover (MVC)
	Maximum independent set (MIS)
	Warehouse location

	General form of an integer program
	Linear programming

