
Stanford MS&E 236 / CS 225: Lecture 11

Integer programming solvers

Ellen Vitercik∗

May 12, 2024

In this lecture, we cover the branch-and-bound (B&B) algorithm [1], which is the primary
algorithm used to solve integer programs (IPs). It is the algorithm used by commercial solvers
like CPLEX and Gurobi. For simplicity, we will focus on binary IPs:

maximize cTx
subject to Ax ≤ b

x ∈ {0, 1}n.
(1)

However, all of the ideas we discuss will apply to general integer programs, which may have
continuous variables as well. This linear programming (LP) relaxation of a binary integer
program has the form

maximize cTx
subject to Ax ≤ b

xi ∈ [0, 1] for all i ∈ [n].
(2)

Throughout this lecture, we will use the following important observation.

Observation 1. Let x′ be the solution to the LP relaxation with an additional constraint, for
example, xi = 0:

maximize cTx
subject to Ax ≤ b

xi = 0
xj ∈ [0, 1] for all j 6= i.

Let x∗LP be the optimal solution to LP 2. Then cTx′ ≤ cTx∗LP: by further constraining the
LP, we can only decrease the objective value.

1 Branch-and-bound

To describe B&B, we will use the following running example:

maximize 15x1 + 12x2 + 4x3 + 2x4

subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10
x1, x2, x3, x4 ∈ {0, 1}.

(3)

1



Figure 1: Enumeration tree.

Number of variables Solution times

30 1 second

40 17 minutes

50 11.6 days

60 31 years

70 31,000 years

Table 1: Runtime to brute-force search for the optimal solution to an IP if we can evaluate 1 billion
solutions per second [2].

The first thing we might try to solve this integer program is brute force search, which can
be organized using the enumeration tree in Figure 1. At each node of this tree, we branch
on a variable (x1 in the first layer, then x2, and so on). On each branch, the variable is
restricted to equal either 0 or 1. Thus, each of the leaves corresponds to a possible solution
to the IP. For example, the leaf labeled 16 corresponds to the solution x = 0, and the leaf
labeled 26 corresponds to the solution x = (1, 0, 1, 0). To perform brute-force search, we
could compute the IP’s objective for each leaf and pick the best one.

To understand the enormous runtime of brute-force search, suppose we could evaluate 1
billion solutions per second. Table 1 shows how long it would take to evaluate every leaf of
the enumeration tree for relatively small IPs. Clearly, this is not a reasonable approach!

The key idea of B&B is that by using LP relations, we can bound the optimal solutions
in subtrees of the enumeration tree. By doing so, we can eliminate entire subtrees when we
recognize they only contain solutions with low objective values. To illustrate, we begin with
several thought experiments.

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

2



Thought experiment #1. Suppose we solve the LP relaxation of the problem correspond-
ing to node 7 of the enumeration tree in Figure 1, which we refer to as Problem(7). Specifi-
cally, Problem(7) corresponds to the following LP:

maximize 15x1 + 12x2 + 4x3 + 2x4

subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10
x1 = 1
x2 = 1
x3, x4 ∈ [0, 1].

This LP is infeasible since if x1 = x2 = 1, then the inequality constraint becomes 13 + 3x3 +
2x4 ≤ 10, which is not possible for x3, x4 ∈ [0, 1]. Moreover, there is no way we can make
this LP feasible by adding more constraints on x3 or x4. Therefore, we can eliminate, or
prune, the subtree rooted at node 7: the optimal solution cannot be any of its leaves.

Thought experiment #2. Suppose we have discovered a feasible binary solution x∗ =
(0, 1, 1, 1) with cTx∗ = 18, but we do not yet know if it is the optimal integer solution.
Suppose we solve the LP relaxation corresponding to node 6, i.e., Problem(6):

maximize 15x1 + 12x2 + 4x3 + 2x4

subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10
x1 = 1
x2 = 0
x3, x4 ∈ [0, 1].

Its solution is
(
1, 0, 2

3
, 0
)
, with an objective value of 17.66. Since 17.66 < 18, we can prune

the entire subtree rooted at node 6: by further constraining x3 and x4, the objective value
will only become worse, as we discussed in Observation 1.

We are now ready to present B&B, Algorithm 1. To start, we assume that we have a
feasible solution x∗ to IP (1), e.g., x∗ = 0. In each iteration of B&B, x∗ is called the incument
solution, i.e., “best so far.” We describe the algorithm by working step-by-step through how
it would solve IP (3) in Figure 2-7. As these figures illustrate, to find the optimal solution,
we only have to explore 7 nodes, rather than all 31 nodes in Figure 1. Thus, by pruning
subtrees, B&B can significantly speed up the time it takes to solve IPs.

In the next class, we will discuss two key policies underlying B&B: node selection and
variable selection. There is no reason why we should branch on variable x1 first, then x2,
and so on in Figure 1. In fact, the variable selection policy can have a huge impact on the
runtime of B&B. Similarly, the policy governing which active node to explore next is an
important determinant of B&B’s runtime.

References

[1] Ailsa H Land and Alison G Doig. An automatic method of solving discrete programming
problems. Econometrica, pages 497–520, 1960.

[2] James Orlin and Ebrahim Nasrabadi. IP techniques 1.
branch and bound, 2013. URL https://ocw.mit.edu/courses/

3

https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/


Algorithm 1 Vanilla B&B algorithm

Input: Binary integer program (Equation (1)) with feasible solution x∗

1: z∗ ← cTx∗

2: Mark the root node of the enumeration tree as “active”
3: while there remain active nodes do
4: Select an active node j and mark it as “inactive”
5: if Problem(j) is infeasible then
6: Prune node j
7: else
8: x(j)← optimal solution of the LP relaxation to Problem(j)
9: z(j) = cTx(j)

10: if z∗ < z(j) and x(j) 6∈ {0, 1}n then
. It may be possible to find a better incumbent among j’s descendants

11: Mark the direct descendants of node j as “active”
12: else if z∗ < z(j) and x(j) ∈ {0, 1}n then
13: x∗ ← x(j) . x∗ may be the optimal solution

14: Prune node j
15: else
16: Prune node j

Output: x∗

LP relaxation of Problem(1):

maximize 15x1 + 12x2 + 4x3 + 2x4
subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

x1, x2, x3, x4 ∈ [0, 1]

Optimal solution of LP relaxation:

x(1) =

(
5

8
, 1, 0, 0

)
, z(1) = 21.38

Incumbent solution:

x∗ = (0, 0, 0, 0), z∗ = 0

Figure 2: First, B&B marks the root node of the enumeration tree as “active,” represented by
the blue node. It solves the LP relaxation of Problem(1). Since x(1) =

(
5
8 , 1, 0, 0

)
6∈ {0, 1} and

z(1) = 21.38 > z∗ = 0, we follow the directions of the if statement in Line 10 and mark nodes 2
and 3 as “active,” as illustrated in Figure 3.

4

https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/


LP relaxation of Problem(2):

maximize 15x1 + 12x2 + 4x3 + 2x4
subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

x1 = 0
x2, x3, x4 ∈ [0, 1]

Optimal solution of LP relaxation:

x(2) = (0, 1, 1, 1) , z(2) = 18

(New) incumbent solution:

x∗ = (0, 1, 1, 1), z∗ = 18

Figure 3: Next, we explore node 2. In Problem(2), we add the additional constraint that x1 = 0.
The optimal solution to the LP relaxation of Problem(2) is x(2) = (0, 1, 1, 1), which is integral and
thus could be the optimal solution to the integer program. Since z(2) = 18 > z∗ = 0, we follow the
directions of the if statement in Line 12: we set x∗ ← (0, 1, 1, 1) and prune node 2, as illustrated
in Figure 4.

LP relaxation of Problem(3):

maximize 15x1 + 12x2 + 4x3 + 2x4
subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

x1 = 1
x2, x3, x4 ∈ [0, 1]

Optimal solution of LP relaxation:

x(1) =

(
1,

2

5
, 0, 0

)
, z(1) = 19.8

Incumbent solution:

x∗ = (0, 1, 1, 1), z∗ = 18

Figure 4: Next, we explore node 3. Since x(3) =
(
1, 25 , 0, 0

)
and z(3) = 19.8 > z∗ = 18, we

follow the if statement in Line 10 and mark the descendants of node 3 as “active,” as illustrated in
Figure 5.

5

https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/


LP relaxation of Problem(6):

maximize 15x1 + 12x2 + 4x3 + 2x4
subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

x1 = 1
x2 = 0
x3, x4 ∈ [0, 1]

Optimal solution of LP relaxation:

x(6) =

(
1, 0,

2

3
, 0

)
, z(6) = 17.66

Incumbent solution:

x∗ = (0, 1, 1, 1), z∗ = 18

Figure 5: Next, we explore node 6. Since z(6) = 17.66 < 18 = z∗, we follow the directions of the if
statement in Line 15 and simply prune node 6, as illustrated in Figure 6.

LP relaxation of Problem(7):

maximize 15x1 + 12x2 + 4x3 + 2x4
subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

x1 = 1
x2 = 1
x3, x4 ∈ [0, 1]

LP relaxation is infeasible

Incumbent solution:

x∗ = (0, 1, 1, 1), z∗ = 18

Figure 6: The only active node is node 7. The LP relaxation of Problem(7) is infeasible. Therefore,
we prune node 7, as instructed by Step 5 and illustrated in Figure 7.

Optimal solution:

x∗ = (0, 1, 1, 1), z∗ = 18

Figure 7: Finally, since there are no more active nodes, as illustrated in Figure 7, B&B is terminated.
We are now guaranteed that the incumbent solution x∗ = (0, 1, 1, 1) is in fact the optimal solution.

6

https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/


15-053-optimization-methods-in-management-science-spring-2013/resources/

mit15_053s13_lec12/. [Online; accessed 5-May-2024].

7

https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/resources/mit15_053s13_lec12/

	Branch-and-bound

