
Stanford MS&E 236 / CS 225: Lecture 12

GNNs for integer programming

Ellen Vitercik∗

vitercik@stanford.edu

May 20, 2024

In these notes, we will cover one of the most influential ways that machine learning has
been integrated into the branch-and-bound algorithm for integer programming [5]. As in the
previous lecture, we will stick with binary integer programs of the form

maximize cTx
subject to Ax ≤ b

xi ∈ {0, 1} for all i ∈ [n].
(1)

(However, the methods we will discuss also apply to binary integer programs with continuous
variables.) As we discussed in the last class, the key idea of the branch-and-bound algorithm
is to intelligently search through an enumeration tree. Each leaf of the enumeration tree
corresponds to a solution to the integer program (though it may not be feasible). Using LP
relaxations, we can bound the optimal solutions in subtrees of the enumeration tree. We can
eliminate entire subtrees when we recognize they only contain solutions with low objective
values.

As should be clear from the last class, we must make many different design choices when
implementing B&B, which impact its runtime. In these notes, we will focus on a key design
choice: variable selection, which can have an enormous impact on B&B’s runtime.

1 Variable selection

In Figure 1, we started by branching on variable x1 in the first layer, then x2 to create the
second layer, and so on. Branching on variables in this fixed, lexicographic way is quite
arbitrary, and it’s certainly not permutation invariant. We will begin by discussing classical
variable selection policies that do not depend on learning and then move on to learning-based
variable selection policies.

1.1 Variable selection without machine learning

To build intuition, we will begin with variable selection at the root node, where in Figure 1,
we branched on variable x1. Let x(1) = (x(1)1, . . . , x(1)n) be the optimal solution to the

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1

https://vitercik.github.io/ml4do/assets/notes/lecture10.pdf


Figure 1: Enumeration tree for an integer program with four binary variables. The leaf labeled 16,
for example, corresponds to the solution x = 0, and the leaf labeled 26 corresponds to the solution
x = (1, 0, 1, 0).

input integer program’s LP relaxation:

maximize cTx
subject to Ax ≤ b

xi ∈ [0, 1] for all i ∈ [n].
(2)

Moreover, let z = cTx(1) be its objective value.
One of the simplest variable selection policies is themost fractional variable policy : branch

on the variable xi where x(1)i is closest to 1
2
. Intuitively, this is the variable we have the

most uncertainty about. Although this policy is generally better than choosing variables
lexicographically, we can typically explore less of the enumeration tree if we use a one-step-
look-ahead approach.

In particular, suppose we compute the LP optimal solutions if we branched on each
variable xi. Specifically, let z

−
i be the objective value of the optimal solution to

maximize cTx
subject to Ax ≤ b

xi = 0
xj ∈ [0, 1] for all j ∈ [n].

Similarly, let z+i be the objective value of the optimal solution to

maximize cTx
subject to Ax ≤ b

xi = 1
xj ∈ [0, 1] for all j ∈ [n].

As we have discussed in previous classes, z−i < z and z+i < z. Thus, z − z−i and z − z+i
measure the change in objective value when we branch on xi. Intuitively, we want our

2



variable selection policy to take into account both z − z−i and z − z+i , but it’s not entirely
clear how to combine these scores into a single value (I had a paper that thought about
this from a theoretical perspective [3]). A popular approach in practice is called full strong
branching (FSB) with the product scoring rule, a policy that branches on the variable that
maximizes (

z − z−i
) (

z − z+i
)
1. (3)

FSB can be generalized to any node j of the enumeration tree. Inductively, suppose
we have branched on some set of variables to arrive at node j. Let Problem(j) be the
LP relaxation of the original integer program (Equation (2)) with additional constraints
corresponding to each of the variables we have branched on2. Let x(j) = (x(j)1, . . . , x(j)n)
be the optimal solution of LP relaxation corresponding to Problem(j) and z(j) = cTx(j). Let
z(j)+i (respectively, z(j)−i ) be the optimal value of LP relaxation corresponding to Problem(j)
with additional constraint xi = 1 (respectively, xi = 0). At node j, FSB branches on the
variable that maximizes (z(j)− z(j)−i )(z(j)− z(j)+i ).

FSB has pros and cons. On one hand, if we use FSB, we typically only need to search
through a very small part of the enumeration tree using B&B before we find the optimal
solution. On the other hand, FSB is extremely slow since it requires us to solve many LP
relaxations at every node. Although LPs are efficiently solvable, FSB is still untenably slow.

In practice, pseudo-cost branching is the most common way of quickly approximating
FSB. (Warning: this paragraph is a simplified description of pseudo-cost branching. See
Appendix A for the nitty-gritty details.) Suppose we are trying to decide which variable to
branch on at node j, i.e., Problem(j). Let D+

i be the average value of z(j′)− z(j′)+i across
all nodes j′ where we already branched on the variable xi. This means that we already
calculated z(j′)+i , so computing D+

i has low overhead. Similarly, let D−
i be the average value

of z(j′)− z(j′)−i across all such nodes j′. Intuitively, you can think of pseudo-cost branching
as branching on the variable that maximizes D+

i · D−
i . Finally, in reliability pseudo-cost

branching, if a variable has only been branched on a small number of times, and thus D+
i

and D−
i are poor estimates, we fall back on FSB to compute Equation (3).

1.2 GNNs for variable selection

A key observation is that the pseudo-cost branching rule is like a naive machine learning
technique for quickly predicting the decisions of FSB. The approach in this section takes
this intuition to the next level and significantly improves over pseudo-cost branching. This
approach was introduced by Gasse et al. [5] and builds on prior research by Khalil et al. [8],
Alvarez et al. [2], and Hansknecht et al. [7].

Overall, our goal will be to learn a branching policy πθ, where πθ(i | st) is the probability
of branching on the variable xi when the solver is in “state” st and θ represents the ML
model’s parameters. There are a few questions we must address to achieve this goal.

1This is a simplification. This policy actually branches on the variable that maximizes{
z − z−i , γ

}
·
{
z − z+i , γ

}
where γ = 10−6. Comparing z− z−i and z− z+i to γ allows the algorithm to compare two variables even if z− z−i = 0
or z − z+i = 0. After all, if z − z−i = 0, then Equation (3) equals 0, canceling out the value of z − z+i and thus losing
the information encoded by this difference.

2For example, in Figure 1, Problem(5) would include the additional constraints that x1 = 0 and x2 = 1.

3



Figure 2: Clause-variable graph for the IP in Equation (4).

Question 1: How should we represent the “state” st of the solver? Suppose the solver
is deciding which variable to branch on at node j, i.e., Problem(j). The key idea—which
will allow us to use GNNs—is to encode Problem(j) as a variable-clause graph with node
and edge features. To illustrate, suppose we have the following input IP:

maximize 9x1 + 5x2 + 6x3 + 4x4

subject to 6x1 + 3x2 + 5x3 + 2x4 ≤ 10 (c1)
x3 + x4 ≤ 10 (c2)
x1 + x3 ≤ 0 (c3)
−x2 + x4 ≤ 0 (c4)
x1, . . . , x4 ∈ {0, 1}.

(4)

We have labeled the four constraints as c1, c2, c3, and c4. Its clause-variable graph—which
we can think of as our state encoding for Problem(1)—is illustrated in Figure 2. There is
one node per variable and one node per clause. There is an edge between node xi and clause
cj if variable xi has a non-zero coefficient in clause cj. The feature of the edge connecting
variable xi and clause cj is the coefficient of xi in cj. For example, the edge between x1 and
c1 would be 6. An example of a variable node feature would be that variable’s coefficient
in the objective function. Meanwhile, an example of a constraint node feature would be the
constraint’s cosine similarity with the objective. For example, this feature for node c1 would
be

9 · 6 + 5 · 3 + 6 · 5 + 4 · 2
∥(9, 5, 6, 4)∥ · ∥(6, 3, 5, 2)∥

≈ 0.99.

See the paper by Gasse et al. [5] for more node features.

Question 2: How should we define the function πθ(· | st)? Now that we have a graph
representation of our state, we use a 2-layer GNN to compute embeddings h1,h2, . . . ,hn

for each variable. See the paper by Gasse et al. [5] for more details, but it is quite similar
to the basic message-passing neural network that we covered in Lecture 6. Given these
embeddings, we compute scalars f(h1), f(h2), . . . , f(hn) ∈ R, where f is a shallow neural
network. Finally, we define πθ(· | st) = softmax (f(h1), f(h2), . . . , f(hn)).

Question 3: How should we train πθ? Our final missing piece is training πθ. Here, we will
use imitation learning, where our goal will be to train πθ so that it imitates the decisions of
FSB. In the training procedure, we run FSB on a training set of integer programs. In doing

4

https://vitercik.github.io/ml4do/assets/notes/lecture6.pdf


Policy Time Wins Nodes

FSB 17.30± 6.1% 0/100 17± 13.7%

Reliability pseudo-cost branching 8.98± 4.8% 0/100 54± 20.8%
Trees [2] 9.28± 4.9% 0/100 187± 9.4%
SVMRank [8] 8.10± 3.8% 1/100 165± 8.2%
LMART [7] 7.19± 4.2% 14/100 167± 9.0%
GNN [5] 6.59± 3.1% 85/100 134± 7.6%

Table 1: Results for set covering instances. The GNN is trained and tested on “easy” instances
with 1000 columns and 500 rows.

Policy Time Wins Nodes

FSB 3600.00± 0.0% 0/0 N/A

Reliability pseudo-cost branching 1677.02± 3.0% 4/65 47299± 4.9%
Trees [2] 2869.21± 3.2% 0/35 59013± 9.3%
SVMRank [8] 2389.92± 2.3% 0/47 42120± 5.4%
LMART [7] 2165.96± 2.0% 0/54 45319± 3.4%
GNN [5] 1489.91± 3.3% 66/70 29981± 4.9%

Table 2: Results for set covering instances. The GNN is trained on “easy” instances with 1000
columns and 500 rows and tested on “hard” instances with 1000 columns and 2000 rows.

so, we collect dataset {(si, i∗)}Ni=1, where xi∗ is the variable chosen by the “expert policy”
FSB. Finally, we optimize θ so as to minimize the cross-entropy loss

−
N∑
i=1

log πθ(i
∗ | si).

Subset of results

This section presents a small sample of the results by Gasse et al. [5]. Table 1 presents results
for randomly generated set-covering IPs. The GNN is trained on “easy” instances with 1000
columns and 500 rows. It is also tested on 100 easy instances. We include results for several
earlier baselines—Trees [2], SVMRank [8], and LMART [7]—which also train ML models
to imitate strong branching but do not use GNNs. The “time” column reports runtime in
seconds with a timeout of 1 hour. The “wins” column reports (number of instances where
the policy has the fastest runtime) / (total number of test instances that the policy solved
before the 1-hour timeout). Finally, the “nodes” column reports the size of the B&B tree.
We can see that although reliability pseudo-cost branching builds smaller trees, the GNN is
faster. This is likely because the trees are so small that, in most cases, reliability pseudo-cost
branching is roughly equivalent to FSB. In Table 2, we can see that the GNN continues to
dominate the baselines when we train on easy instances but tested on “hard” instances with
1000 columns and 2000 rows.

5



References

[1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited.
Operations Research Letters, 33(1):42–54, January 2005.

[2] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-
based approximation of strong branching. INFORMS Journal on Computing, 29(1):
185–195, 2017.

[3] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to
branch: Generalization guarantees and limits of data-independent discretization. Journal
of the ACM, 71(2), apr 2024.

[4] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière,
and O Vincent. Experiments in mixed-integer linear programming. Mathematical Pro-
gramming, 1(1):76–94, 1971.

[5] Maxime Gasse, Didier Chetelat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. In Conference on
Neural Information Processing Systems (NeurIPS), 2019.

[6] J-M Gauthier and Gerard Ribière. Experiments in mixed-integer linear programming
using pseudo-costs. Mathematical Programming, 12(1):26–47, 1977.

[7] Christoph Hansknecht, Imke Joormann, and Sebastian Stiller. Cuts, primal heuristics,
and learning to branch for the time-dependent traveling salesman problem. arXiv preprint
arXiv:1805.01415, 2018.

[8] Elias Boutros Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina.
Learning to branch in mixed integer programming. In AAAI Conference on Artificial
Intelligence, 2016.

[9] Jeff Linderoth and Martin Savelsbergh. A computational study of search strategies for
mixed integer programming. INFORMS Journal of Computing, 11(2):173–187, 1999.

A Pseudo-cost branching

To introduce pseudo-cost branching [4, 6, 9], we first define some notation. At a node j,
let f(j)−i = x(j)i − ⌊x(j)i⌋ and f(j)+i = ⌈x(j)i⌉ − x(j)i denote how far x(j)i is from being
integral. Let c(j)−i and c(j)+i be the objective gains per unit change in variable xi at node j
after branching in each direction. More formally,

c(j)−i =
z(j)− z(j)−i

f(j)−i
and c(j)+i =

z(j)− z(j)+i
f(j)+i

.

Let σ−
i (respectively, σ+

i ) be the sum of c(j)−i (respectively, c(j)+i ) over all nodes j where xi

was chosen as the branching variable. Let ηi be the number of such nodes. The pseudo-costs
of variable xi are defined as

D−
i =

σ−
i

ηi
and D+

i =
σ+
i

ηi
.

6



We initialize the pseudo-costs using strong branching: if ηi = 0 when we are choosing which
variable to branch on at a node j, we set

D−
i =

z(j)− z(j)−i
f(j)−i

(5)

and similarly for D+
i .

In pseudo-cost branching, we estimate z(j) − z(j)−i using the value D−
i f(j)

−
i and we

estimate z(j) − z(j)+i using the value D+
i f(j)

+
i . For example, Equation (3) would become(

D−
i f(j)

−
i

)
·
(
D+

i f(j)
+
i

)
.

Reliability branching [1] is a variation on pseudo-cost branching. Variable i’s pseudo-
costs are said to be unreliable if ηi < ηrel, where ηrel ∈ Z is a tunable parameter. We set the
pseudo-costs of unreliable variables as in Equation (5).

7


	Variable selection
	Variable selection without machine learning
	GNNs for variable selection

	Pseudo-cost branching

