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Today, we will discuss automated algorithm configuration, a broadly applicable way of
using ML to optimize the parameters of any parameterized algorithm, such as an integer
programming (IP) solver. Integer programming solvers like CPLEX and Gurobi each come
with over one hundred tunable parameters. In automated algorithm configuration, our goal
is to use a data-driven approach to find optimized, application-specific parameter settings.

This lecture will overview a seminal approach to automated algorithm configuration
by Hutter et al. [3]. This will give us a glimpse into some of the historical origins of this
field, though there are related papers from several years earlier as well [e.g., 1, 2, 6, 7].

1 Setup

Our goal will be to optimize the parameters of an arbitrary algorithm with k tunable pa-
rameters. The ith parameter setting is from a set Θi. We will assume, for now, that |Θi| is
finite (for example, by discretizing continuous parameters). The entire parameter space is
then Θ ⊆ Θ1 × · · · × Θk. Hutter et al. [3] report that for IP solvers, |Θ| can be as large as
1037 (for context, the number of stars in the universe is 1024)!

Our goal is to find algorithm parameter settings that lead to particularly strong algorith-
mic performance (e.g., low runtime) on problems from the particular application domain at
hand. Thus, we need a way of modeling an application domain. We will use Π to denote a
set of problem instances that the parameterized algorithm may take as input. For example,
π ∈ Π may be an integer program. Moreover, we will assume that there is an application-
specific distribution D over Π, which may or may not be known. For example, D might be a
distribution over the particular routing IPs that a Bay Area shipping company has to solve
on a day-to-day basis. Alternatively, if Π is a known benchmark set, then D might be the
uniform distribution over this set. We use rθ(π) to denote the runtime of the algorithm with
parameters θ ∈ Θ on instance π.

2 Problem statement

Formally, our goal is to find a parameter setting θ with low expected runtime Eπ∼D[rθ(π)].
For example, if D represents the distribution of routing IPs that a shipping company has to
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solve on a day-to-day basis, then Eπ∼D[rθ(π)] is what we expect the runtime of our solver to
be on IPs that we’ll encounter in the future. Alternatively, if D is the uniform distribution
over a benchmark set Π, then

E
π∼D

[rθ(π)] =
1

|Π|
∑
π∈Π

rθ(π).

There are several key challenges we face in achieving this goal. First, D may be unknown.
Therefore, our approach will be to sample a “training set” S = {π1, . . . , πN} ∼ DN and find
a parameter setting θ with low empirical runtime

r̂θ(S) =
1

N

N∑
i=1

rθ(πi).

You can think of this training set as a set of historical instances that have been encountered
in the past (for example, all of the routing integer programs that the shipping company has
had to solve over the past year). Ideally, this parameter setting will also have low expected
runtime (if we are not overfitting), which is a proxy for future runtime when the algorithm
is fielded in the wild. However, finding a parameter setting with low empirical runtime is
easier said than done: we do not know the analytical form of rθ and it is typically a gnarly,
discontinuous function of θ.

3 ParamILS (Parameter Iterated Local Search)

ParamILS is an algorithm proposed by Hutter et al. [3] for parameter optimization that is
based on local search. It begins with an initial, default configuration θils. It then performs
local search in the configuration space. In particular, it changes the setting of one parameter
at a time, thereby searching within the neighborhood N(θ) of the current parameter setting
θ. Specifically, N(θ) denotes the set of configurations that differ from θ in exactly one of
its k coordinates. It keeps the changes that result in an empirical runtime improvement.
After finding a local minimum in this fashion, it randomly changes some parameter settings
to escape. Algorithm 1 is the main ParamILS routine, and Algorithm 2 is the local search

Algorithm 1 Vanilla ParamILS

Input: Initial configuration θils
1: repeat
2: θ ← θils
3: for s rounds do ▷ Do random exploration
4: Set θ to be a uniformly random configuration in N(θ)

5: θ ← IterativeFirstImprovement(θ)
6: if r̂θils(S) > r̂θ(S) on a set S sampled from D then
7: θils ← θ

8: With some small probability, restart: set θ to be a uniformly random configuration in Θ

Output: θ

subroutine that it depends on.
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Algorithm 2 IterativeFirstImprovement

Input: Initial configuration θ
1: θ∗ ← θ
2: repeat
3: for each θ′ ∈ N(θ∗) (in a random order) do
4: if r̂θ∗(S) > r̂θ′(S) on a set S sampled from D then
5: θ∗ ← θ′; break ▷ θ′ has lower empirical runtime than θ∗

6: until θ∗ = θ′

Output: θ∗ ▷ Found a local minimum

3.1 Adaptive capping

Hutter et al. [3] improve upon the basic ParamILS algorithm (Algorithm 1) in a number of
ways, one of which is adaptively capping configuration evaluations. Solving integer programs
is time-consuming, so checking if r̂θ′(S) > r̂θ(S) in Step 4 of Algorithm 2 can have extremely
high runtime. Hutter et al.’s adaptive capping strategy stems from the observation that if
we have already evaluated r̂θ(S) and, while evaluating r̂θ′(S), we discover that θ′ is clearly
worse than θ, then we might be able to give up evaluating r̂θ′(S) early.

As an illustrative example, suppose we evaluate θ and θ′ on one hundred instances
S = {π1, . . . , π100} ∼ D100. Suppose that the algorithm parameterized by θ takes ten
seconds to solve all one hundred instances:

r̂θ(S) =
1

100

100∑
i=1

rθ(πi) =
1

100
· 10 = 0.1.

Meanwhile, suppose that the algorithm parameterized by θ′ takes at least 11 seconds to solve
the first instance. We can deduce that

r̂θ′(S) =
1

100

100∑
i=1

rθ′(πi) ≥
1

100
· (11 + 0 + · · ·+ 0︸ ︷︷ ︸

99 zeros

) = 0.11.

Therefore, we can stop evaluating θ′ eleven seconds into the first run, but still be sure that
r̂θ′(S) > r̂θ(S). Hutter et al. [3] and follow-up research [4, 5, 8, 9] develop more advanced
approaches to adaptive capping, building on this intuition.
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