Stanford MS&E 236 / CS 225: Lecture 14

Guarantees for algorithm configuration

Ellen Vitercik*
vitercik@stanford.edu

May 23, 2024

In this lecture, we will continue to discuss algorithm configuration, a data-driven approach
to optimizing an algorithm’s parameters. In the previous lecture, we discussed a generally
applicable heuristic search procedure for algorithm configuration. This lecture will investi-
gate algorithm configuration from a more theoretical perspective, providing approaches with
provable guarantees. This lecture is based on a paper by Gupta and Roughgarden [2], which
was later covered in a book chapter by Balcan [1].

1 Notation and problem definition

As in the previous lecture, our goal is to optimally configure an algorithm with parameters .
We use the notation II to denote the set of all possible inputs to this algorithm. For example,
if the algorithm is an integer programming solver, then 7 € Il would be an integer program.
To model the application domain, we assume there is an application-specific distribution D
over II. For example, D might be a distribution over the particular routing IPs that a Bay
Area shipping company has to solve on a day-to-day basis. Alternatively, if IT is a known
benchmark set, then D might be the uniform distribution over this set.

We use the notation rg(7) € R to denote the “performance” of the algorithm parameter-
ized by 0 on the input 7. In the previous lecture, we measured performance using runtime,
but it also could be measured by the quality of the solution returned by the algorithm (we
will see an example of this in Section 2).

Our goal is to find a parameter setting 8 with good expected performance E.p[re(7)].
For example, if D represents the distribution of routing IPs that a shipping company has
to solve on a day-to-day basis, then E,.p[rg(m)] represents the expected performance (e.g.,
runtime) of our solver on IPs that we’ll encounter in the future. Since we do not know the
distribution D, we will sample a “training set” S = {my,...,7x} ~ D" and find a parameter
setting @ with good empirical performance

1
~ > ro(m). (1)

i=1

This lecture will address two questions:

*These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

https://vitercik.github.io/ml4do/assets/notes/lecture13.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture13.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture13.pdf

Question 1. Is it possible to find a parameter setting 6 that provably optimizes Equa-
tion (1)? In the previous lecture, we saw a heuristic algorithm for this task, but that
algorithm does not come with any provable optimality guarantees.

Question 2. How many sample instances do we need to avoid overfitting? In other words,
how many samples are sufficient to ensure that if we find a parameter setting @ with good
empirical performance, then its expected future performance E,.p [rg(m)] will also be good?

2 Maximum weight independent set

For concreteness, this lecture is centered on a parameterized algorithm for the maximum
weight independent set (MWIS) problem. (In the homework, you will apply the same ideas
to another computational problem. Moreover, Balcan [1] provides a more general treatment
in her book chapter.) The input is a graph G = (V, E) with n = |V| vertex weights
wy, ..., w, > 0. For simplicity, we assume these weights are normalized so that > w; < 1.
As we have seen in previous lectures, S C V is an independent set if no two vertices in S are
connected by an edge. The goal is to find an independent set S with maximum weight

S

i€S
For each vertex i € V, let N(i) = {j : (i,j) € E} be the neighborhood of i. A classic
greedy heuristic for MWIS is to greedily add vertices in decreasing order of
w;
1+ |N ()]

while maintaining independence. Gupta and Roughgarden [2] propose a parameterized vari-
ant of this heuristic, which is defined by a parameter § > 0. It greedily adds vertices in
decreasing order of
W;
(1L+[NG))’

while maintaining independence.

In this context, we will measure algorithmic performance based on the weight of the
set that the algorithm returns. In particular, if S is the set returned by the algorithm
parameterized by € on input G, then

ro(G) = Z W;.
€S

Instantiating the notation from Section 1, D will be a distribution over graphs. Given a
“training set” of graphs S = {G1,...,Gn} ~ DY, our algorithm configuration goal is to
find a parameter setting that maximizes

N

() &)

=1

To this end, we will begin with a useful lemma.

https://vitercik.github.io/ml4do/assets/notes/lecture13.pdf
https://vitercik.github.io/ml4do/assets/notes/lecture5.pdf

1 Wy
0 ky —
8,

Figure 1: For 6 smaller than the threshold, the greedy algorithm parameterized by 6 would add
node 1 to the independent set before node 2. Otherwise, it would add node 2 before node 1.

I I I I 0
logs, — log, = logk — logn —
ogs s, ogi s loguT logu O
Figure 2: In any interval between consecutive thresholds, the algorithm returns the exact same
independent set.

Lemma 2.1 (Gupta and Roughgarden [2]). Let G be a graph with vertex weights wy, ..., wy,.

There are (”) thresholds in [0,00) such that if 0 and 0 lie between the same consecutive
thresholds, then ro(G) = r¢/(G).

2

Proof. To simplify notation, we let k; = |[N(i)| + 1. The greedy algorithm parameterized by
f would add node 1 to the independent set before node 2 if

w1 W2 w2
— > — & 0 > logk, —
K=k = 082

as illustrated in Figure 1. Applying the same logic for all pairs of nodes i,5 € [n], we
obtain a total of (Z) thresholds, as illustrated in Figure 2. If 6 and €’ lie between the same
consecutive thresholds, the algorithm parameterized by 6 adds the same set of vertices to
the independent set as the algorithm parameterized by #’. Consequently, r9(G) = r¢/(G), as
illustrated in Figure 3. O]

Across all graphs G1,...,Gy in the training set, we have a total of N (Z) thresholds.

These thresholds partition the positive reals into M = N (’;) + 1 intervals Iy, I5, ..., Iy; such
that if 6,60" € I;, then for all graphs i € [N], ro(G;) = 1¢/(G;). In other words,

N

1 1«
N ;Tg(GJ = N ;Tgl(Gi).

This observation suggests the following natural algorithm for finding a parameter setting 0
that maximizes Equation (2):

1. Compute the N (Z) thresholds corresponding to all graphs G,..., Gy in the training
set.

2. Calculate Equation (2) using an arbitrary 6 between subsequent thresholds.
3. Return the parameter setting 6 that maximizes Equation (2).

We’ve now answered Question 1 for this problem.

rfG)

(as a function of 6)

: 0
W3 w, w; ws
S = logy, — =
log% ” log% ” g:_j m log:_; o
Figure 3: Illustration of Lemma 2.1.
6 O Vo) @ ¥4 @
NN L . .
T %) 2 (%) Al Tty V2 /%)
(a) Above/above (b) Below/below (c) Above/below (d) Below/above

Figure 4: Pseudo-dimension illustration. We pick two values 71, w9 € [0, 1] and two targets 21, 29 €
R such that we can “achieve all above/below patterns” using affine functions.

3 Statistical guarantees

We now move on to Question 2: how many sample instances do we need to avoid overfitting?
In other words, how many samples are sufficient to ensure that for the parameter setting
returned by the algorithm above, E,.p [14(G)] is also large?

3.1 Pseudo-dimension

We will use pseudo-dimension to answer Question 2. Pseudo-dimension is a complexity mea-
sure that applies to any class R of real-valued functions that map a set I to some interval
[—H, H]. We first state pseudo-dimension informally in words. It’s ok if this informal de-
scription doesn’t make complete sense at first; it’s best illustrated with a picture. Informally,
the pseudo-dimension of R, denoted Pdim(R), is the size of the largest set {my,...,7n} CII
such that for some set of targets zq,2s,...,2y € R, we can “achieve all above/below pat-
terns” using functions in R. You are probably wondering: what are these targets, and what
does it mean to “achieve all above/below patterns”? Let’s illustrate with an example.

Let IT = [0, 1] and let R be the set of all affine functions over R. An affine function r, ()
is defined by a slope a and offset b, with r,,(z) = axz + b. We will show that Pdim(R) > 2.
To do so, we need to identify two values 71, m € [0, 1], together with two targets z1, zo € R,
such that we can “achieve all above/below patterns” using affine functions. In Figure 4, we
choose two arbitrary points m; < m, and two targets z; < zo. The affine (constant) function in
Figure 4a achieves the “above/above” pattern because when we evaluate the affine function
at 7y, it is larger than (or “above”) the target z;, and when we evaluate the function at 7,
it is larger than z,. Meanwhile, the affine function in Figure 4b achieves the “below/below”
pattern because when we evaluate the affine function at 7y, it is smaller than (or “below”)

the target z;, and when we evaluate the function at w5, it is smaller than z,. Similarly, the
affine function in Figure 4c achieves the “above/below” pattern and the affine function in
Figure 4d achieves the “above/below” pattern.

To move toward the formal definition of pseudo-dimension, note that if r; is the function

in Figure 4a, then
(kn@gﬁ) _ (0) ‘
L (ma) <22} 0
Similarly, if 79, r3, and 74 are the functions in Figures 4b-4d, then
<1{T2(7r1)<Z1}) _ <1> (1{T3(ﬂ1)<21}) _ <0> and (1{r4(m)<zl}) _ <1> '
Lira(ma)<an} 1)° Lira(ma) <o} 1)” Liri(ma)<a) 0
With this intuition, we now formally define pseudo-dimension.

Definition 3.1. The pseudo-dimension of R is the size of the largest set {my,..., 7y} CII

such that for some set of targets z1,29,...,2y € R
Lir(m)<a)
: reR p| =2V
Lir(an)<zn}

Pseudo-dimension implies an upper bound on the number of samples we need to avoid
overfitting:

Theorem 3.2 (Pollard [3]). Fore, d € (0,1), let

N=0 Mlogl _
€2 0

With probability at least 1 — & over my,..., iy ~ D, for allr € R,

%ir(m) - WIED[T(W)] < eH.

3.2 Back to maximum weight independent set

Let’s return back to MWIS. In Section 2, we determined that for N graphs G, ..., Gy, there
are M = N(;‘) + 1 intervals Iy, Is, ..., Iy such that if 6,60" € I;, then for all graphs i € [N],
ro(Gi) = 1o (G;). Said another way,

Lirg(Gr)<a) L, (G)<a1)
Lirg(an)<zn) Liry (Gr)<zn)
Therefore,
1g(Gry<and .
: 0>0 §N(2)+1. (3)
Lirg(@n)<an

This fact allows us to bound the pseudo-dimension of the set R = {ry: 6 > 0}.

5

Theorem 3.3 (Gupta and Roughgarden [2]). Let R = {rg : 6 > 0}. Then Pdim(R) =
O(logn).

Proof. Let N = Pdim(R). By definition, there exist graphs G, . .., Gy and targets 21, ..., 2x
such that
Lirg(G1)<ar)

N — : 0> 0 §N<2)+1,
1{7“6(GN)SZN}

where the inequality follows from Equation (3). By the following lemma, this means that
Pdim(R) = N = O(logn).

Lemma 3.4 (Lemma A.2 by Shalev-Shwartz and Ben-David [4]). Let a > 1 and b > 0. If
x < alogz + b, then x < 4alog(2a) + 2b.

]

Finally, if we combine this pseudo-dimension bound with Theorem 3.2, we obtain the
following guarantee: for €, € (0,1), let

N=0 <log2n log 1> .
€

)
Then with probability at least 1 — 9 over G1,...,Gy ~ D, for all 6 > 0,
| XN
NZTQ(Gi) — E [r(@)]] <e
— G~D

We have now answered Question 2! Given N = O (lofz” log %) sample graphs, we know

that since 6 (the parameter setting we obtained in Section 2) leads to independent sets with

large weight on average
N
1
N Z ré<Gi>7
i=1

it will also lead to independent sets with large weight in expectation Eq.p [r3(G)]. In fact,
as extra credit in the homework, you will show that 6 is nearly optimal in expectation:

GINED [75(G)] > max GIEJD [19(G)] — 2e.

References

[1] Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden, editor, Be-
yond the Worst-Case Analysis of Algorithms. Cambridge University Press, 2020.

[2] Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992-1017, 2017.

[3] David Pollard. Convergence of Stochastic Processes. Springer, 1984.

[4] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge University Press, 2014.

6

	Notation and problem definition
	Maximum weight independent set
	Statistical guarantees
	Pseudo-dimension
	Back to maximum weight independent set

