
Stanford MS&E 236 / CS 225: Lecture 16

Transformers

Ellen Vitercik∗

vitercik@stanford.edu

June 12, 2024

In the final two classes, we will investigate a surprising phenomenon: large neural sequence
models can perform in-context learning [e.g., 1, 2, 4]. Let T be a trained transformer. A test
prompt for this transformer is defined by a set of “training points” x1, . . . , xN in some set
X , a function f : X → R, and a test point x′ ∈ X . The test prompt has the following form:

P = [(x1, f(x1)) , (x2, f(x2)) , . . . , (xN , f(xN)) , x′] .

The transformer has already been trained, so we will not retrain it on this test prompt (hence
the adjective “test”). Instead, we want to have already trained T so that for any1 such test
prompt P ,

T (P) ≈ f(x′). (1)

Intriguingly, the transformer hasn’t learned a single function f , it seems to have learned an
algorithm. For example, suppose f and f ′ are two linear functions that define two prompts

P = [(x1, f(x1)) , (x2, f(x2)) , . . . , (xN , f(xN)) ,x′]

P ′ = [(x1, f
′(x1)) , (x2, f

′(x2)) , . . . , (xN , f
′(xN)) ,x′] .

It is not that the transformer has learned a single weight vector w and outputs T (P) = wTx
and T (P ′) = wTx′. Clearly, Equation (1) would not be even close to satisfied for all prompts.
Instead, the transformer seems to have learned a regression algorithm. Is it ridge regression,
ordinary least-squares, or something else?

We will investigate this phenomenon further in the next class. We will start with an
overview of the transformer architecture [5] (these notes are largely based on Chapter 12 of
the textbook by Bishop and Bishop [3]).

1 Attention

The concept of attention—which we first encountered in Lecture 3—forms the basis of the
transformer architecture, as we will illustrate through the following example. Consider the
following two sentences:

∗These notes are course material and have not undergone formal peer review. Please feel free to send me any
typos or comments.

1This is likely too much to ask for, so we will discuss relaxations of this goal in the next class.

1

https://vitercik.github.io/ml4do/assets/notes/lecture3.pdf

• He swung the bat and hit a foul.

• A bat flew out of the cave at dusk.

The word “bat” is a homonym with two different meanings in these two sentences. In the first
sentence, the words “swung,” “hit,” and “foul” indicate that the sentence is about baseball.
Meanwhile, in the second sentence, the words “flew” and “cave” indicate that the sentence
is about an animal. Intuitively, to properly parse these sentences, a neural network should
be able to figure out which words to rely on (i.e., “attend to”) to interpret the context. This
is all the more challenging because the positions of the important contextual words differ in
each sentence.

Old-school word embeddings struggle to handle homonyms: “bat” would map to a single
vector, which may not capture its range of meaning. Meanwhile, we can think of transformers
as forming word embeddings that depend on the entire context of each word. For example,
“bat” would be close to “baseball” in the embedding corresponding to the first sentence,
whereas “bat” would be close to “nocturnal” in the second.

2 The transformer layer

The input to a transformer is a set of vectors x1, . . . ,xN ∈ RD (called “tokens”). We will
use the matrix notation

X =

−−−− x1 −−−−
...

−−−− xN −−−−

 ∈ RN×D.

Our goal is to transform X to a matrix

X̃ = TransformerLayer(X) =

−−−− y1 −−−−
...

−−−− yN −−−−

 ∈ RN×D

which captures the new, contextual embeddings of these inputs. As such, the new embedding
yn should depend on xn as well as the entire input x1, . . . ,xN . This dependence should be
stronger for an input xm if xm is important for determining yn. A simple way to capture
this dependence is to define

yn =
N∑

m=1

anmxm, (2)

where each anm is the “attention weight.” For simplicity, we enforce that anm ≥ 0 and∑N
m=1 anm = 1.
The next question we must answer is how to define the attention weights. The intuition

comes from the field of information retrieval, which we motivate via an analogy. Suppose
that a streaming video service’s movies can be represented by a D-dimensional feature vector
(corresponding to, for example, the movie’s genre, main actors, length, etc.). The feature
vector is called the movie’s “key,” whereas the movie itself is called the “value” (you might
remember these terms from when you learned about hash tables in an introductory data
structures class). Suppose the user provides a D-dimensional vector of attributes describing

2

the movie they want to see, called the user’s “query.” The streaming service could return
the movie whose key is closest to the user’s query. This would correspond to hard attention
in the realm of neural networks. Meanwhile, soft attention is defined by continuous weights,
which measure the similarity between the user’s query and each movie’s key. These weights
then determine the likelihood of returning a given key’s value.

In Equation (2), we can think of xn as the query and x1, . . . ,xN as the keys. The
similarity between xn and xm is measured as xT

nxm. Based on these weights, we define the
likelihood of returning a given key’s value using softmax:

anm =
exp

(
xT
nxm

)∑N
m′=1 exp (xT

nxm′)
. (3)

Finally, we can rewrite Equation (2) as

Y = Softmax
(
XXT

)
X. (4)

To be clear,

Softmax
(
XXT

)
=

a11 . . . a1N
...

. . .
...

aN1 . . . aNN

 ,

where anm is defined as in Equation (3). Although Y defines a new D-dimensional embedding
for each input, we cannot stop here because there are no learnable parameters!

2.1 Network parameters

To introduce learnable parameters, we will define separate query, key, and value matrices

Q = XW (q)

K = XW (k)

V = XW (v)

where W (q), W (k), and W (v) are learnable weight matrices. We now generalize Equation (4) as
follows: Y = Attention(Q,K, V) = Softmax

(
QKT

)
V . It is important that the dimensions

of the weight matrices are independent of the sequence length so that the final architecture
can be applied to sequences of any length. As such, we set

W (q) ∈ RD×D,

so Q = XW (q) ∈ RN×D. Similarly,

W (k) ∈ RD×D,

so K = XW (k) ∈ RN×D. As a result, QKT ∈ RN×N , so Softmax(QKT) ∈ RN×N as well.
Finally, we set

W (v) ∈ RD×Dv ,

where Dv is our desired output dimension. This means that V = XW (v) ∈ RN×Dv , so
Y ∈ RN×Dv . (In full generality, we could have set W (q),W (k) ∈ RD×Dk for some Dk, but
oftentimes, D = Dk.)

3

2.2 Multi-head attention

The transformation Y = Attention(Q,K, V) defines a single attention head. However, mul-
tiple attention patterns may be relevant at the same time. For example, some words may be
relevant to determine tense, whereas others may be relevant to determine vocabulary. There-
fore, we can compute multiple “attention heads” with different weight parameters. We denote
these computations across M different heads as Hh = Attention(Qh, Kh, Vh) for h ∈ [M]. We
concatenate these M outputs together, forming a matrix Concat(H1, . . . , HM) ∈ RN×MDv .
To compute a final (N ×D)-dimensional matrix, we use a learned matrix W (o) ∈ RMDv×D,
defining

Y (X) = Concat(H1, . . . , HM)W (o) ∈ RN×D.

2.3 Transformer layers

There are two more improvements we can include in the final architecture. First, it may
be useful to include residual layers so that some elements of X are directly retained in the
output. We can achieve this by adding X to the output Y (X), i.e., Y (X) + X. Moreover,
Y (X) is primarily computed using linear transformations, with a few non-linearities in the
form of the softmax from Equation (3). Therefore, we might like to include additional non-
linearities. To do so, we run each row of Y (X) +X through a standard, feed-forward neural
network with D inputs and D outputs. We denote this computation as MLP(·), where MLP
stands for multi-layer perceptron. Thus, we finally define

X̃ = TransformerLayer(X) = MLP(Y (X) + X).

This is the basic building block of the transformer architecture. Many of these transformer
layers are stacked upon each other to build the transformer architecture.

3 Positional encoding

Interestingly, the transformer architecture is equivariant with respect to input permutations.
To see why, note that to compute Q = XW (q), each row of X (i.e., token) is multiplied by
the same matrix W (q). The same holds when compute K = XW (k) and V = XW (v).
Moreover, each row of Y (X) + X is run through the same MLP. Therefore, if we permute
the input sequence x1, . . . ,xN , the output will be the same, except permuted in the same
way. However, this property is not always desirable, as illustrated by the following two
sentences:

• The food was bad, not good at all.

• The food was good, not bad at all.

These sentences have the exact same words, but when permuted, they have very different
meanings. To break permutation equivariance, it is common to use a positional encoding
vector rn and redefine the input tokens to be x̃n = xn + rn.

As a first idea, we might associate each position with its index 1, 2, 3, However, this
may limit generalization to longer inputs than the transformer was trained on since it will
encounter positional embeddings it was never trained on. Alternatively, we might associate

4

each position with a number in (0, 1). However, each position’s encoding will depend on the
entire sequence length, which will differ across sequences; we’d rather the first token, for
example, have the same positional encoding across sequences.

To address these issues, there are two common approaches. First, we can make rn a
learnable weight vector, breaking permutation equivariance. Another common approach
is to use a sinusoidal encoding of each position—reminiscent of binary encodings—with
rn ∈ (−1, 1)D. Check out Section 12.1.9 of the textbook linked to on the course webpage for
more details [3].

References

[1] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? investigations with linear models. In Proceed-
ings of the International Conference on Learning Representations (ICLR), 2023.

[2] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statis-
ticians: Provable in-context learning with in-context algorithm selection. In Conference
on Neural Information Processing Systems (NeurIPS), 2023.

[3] Christopher M. Bishop and Hugh Bishop. Deep learning: foundations and concepts.
Springer Cham, 2023.

[4] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can trans-
formers learn in-context? a case study of simple function classes. In Conference on Neural
Information Processing Systems (NeurIPS), 2022.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Conference on
Neural Information Processing Systems (NeurIPS), volume 30, 2017.

5

	Attention
	The transformer layer
	Network parameters
	Multi-head attention
	Transformer layers

	Positional encoding

